初中计算题练习题汇总-共39页
200道初中计算题及答案
200道初中计算题及答案作为一个虚拟智能助手,我很抱歉无法为您提供2200字篇幅的完整文章。
然而,我可以为您提供一些初中计算题及答案的示例,您可以根据需要将其进行整理和编排。
请注意,以下仅为示例,具体题目和答案可根据您的需求进行调整。
1. 算术运算题:1) 请计算:12 + 8 - 5 × 2 = ?答案:12 + 8 - 5 × 2 = 12 + 8 - 10 = 22 - 10 = 122) 请计算:(4 + 7) × 3 + 5 = ?答案:(4 + 7) × 3 + 5 = 11 × 3 + 5 = 33 + 5 = 382. 分数运算题:1) 请计算:1/3 + 2/5 = ?答案:1/3 + 2/5 = (5/15) + (6/15) = 11/152) 请计算:3/4 - 1/6 = ?答案:3/4 - 1/6 = (9/12) - (2/12) = 7/123. 百分数计算题:1) 请计算:75% × 120 = ?答案:75% × 120 = (75/100) × 120 = 0.75 × 120 = 902) 请计算:32 ÷ 80% = ?答案:32 ÷ 80% = 32 ÷ (80/100) = 32 ÷ 0.8 = 404. 代数方程题:1) 若 x + 5 = 10, 求 x 的值。
答案:由方程 x + 5 = 10, 可得 x = 10 - 5 = 52) 若 2x + 3 = 9, 求 x 的值。
答案:由方程 2x + 3 = 9, 可得 2x = 9 - 3 = 6,再除以2得 x = 6 ÷ 2 = 35. 几何计算题:1) 已知正方形的边长为 8cm,求其面积。
答案:正方形的面积等于边长的平方,即面积 = 8cm × 8cm = 64cm²2) 已知长方形的长为 12cm,宽为 6cm,求其周长。
初中物理浮力计算题专题练习(含答案解析)
初中物理浮力计算题专题练习(含答案解析)一、计算题(本大题共45小题,共360.0分)1.一个实心石块在空气中称重10N,浸没在水中称重6N,求:(1)石块的质量.(2)石块所受到水的浮力.(3)石块的体积.(4)石块的密度.(g=10N/kg、ρ水=1.0×103kg/m3)2.在“阿基米德解开王冠之谜”的故事中,若王冠的重为4.9N,浸没在水中称重时,测力计示数为4.5N,求:(1)王冠浸没在水中受到的浮力是多少?王冠的体积是多少?(2)通过计算说明王冠是否是纯金制成的?(ρ金=19.3×103kg/m3)3.将边长是10cm的实心立方体木块轻轻地放入盛满水的大水槽内。
待木块静止时,从水槽中溢出了600g水,g取10N/kg,求:(1)木块受到的浮力;(2)木块的密度;(3)木块下表面受到的水的压强。
4.如图所示,一正方体边长为10cm,浸没在水中,上表面离水面的深度为5cm.求:(1)物体上表面受到水的压强和压力;(2)物体下表面受到水的压强和压力;(3)正方体在水中受到的浮力是多少?5.在如图所示的甲中,石料在钢丝绳拉力的作用下从水面上方以恒定的速度下降,直至全部没入水中.图乙是钢丝绳拉力随时间变化的图象,若不计水的摩擦力.求:(g取10N/kg)(1)石料的重力(2)石料浸没在水中时受到的浮力(3)石料的体积.6.某物体在空气中称重是10N,浸没在水中称重是6.8N,求这个物体受到的浮力?7.一个机器零件在空气中称重为4N,把它浸没在水中再称为3.5N,g=10N/kg,求:(1)零件受到的浮力;(2)零件的质量;(3)零件的体积;(4)零件的密度.8.一边长为10cm,密度为0.6×103kg/m3的正方体木块,用细线置于容器的水中,静止时如图所示。
已知水的密度为1×103kg/m3求:(1)木块所受的浮力大小?(2)细线的拉力大小?(3)细线剪断后,木块在水面静止时,木块下方所受到水的压力是多大?9.冲锋舟在抗洪救灾中发挥了重要作用,如图所示,冲锋舟满载时排开水的体积是1.5m3,冲锋舟自重为0.6×104N,假设每人的平均质量为60kg,请计算:(1)冲锋舟满载时所受的浮力;(2)为保证安全,这条冲锋舟最多能承载的人数.g10N/kg).10.如图所示已知重10长方体块静在水上,浸入在水中的体积木块总体积的45求木块所受浮力大小;若要将木块全浸没水,求至少需要大的压力.11.边长是0.1米的正方体,浸在水里,上表面距液面10厘米.则:(1)物体上表面受到的压力是多少牛顿?(2)下表面受到的压力是多少牛顿?(3)所受的浮力是多少牛顿?(取=10牛/千克)12.如图所示,一边长为20cm的正方体木块漂浮在水面上,木块浸入水中的深度为12cm。
初三数学计算题练习试题集
初三数学计算题练习试题答案及解析1.计算:【答案】.【解析】根据绝对值、有理数的乘方、立方根、特殊角三角函数值的意义分别进行计算即可求出答案.原式.【考点】实数的混合运算.2.计算:(1),(2)【答案】(1);(2).【解析】(1)分别求出值,再化简;(2)化成最简二次根式,再进行计算.试题解析:(1);(2).【考点】1.负指数次幂2.特殊角的三角函数3.绝对值4.零次幂5.二次根式混合运算.3.计算:.【答案】3.【解析】根据特殊角三角函数值、绝对值、零次幂、负整数指数幂、二次根式的意义进行计算即可得出答案.试题解析:=3.考点: 实数的混合运算.4.化简:.【答案】8.【解析】先根据单项式乘以多项式展开,再求出即可.试题解析:考点:5.计算:.【答案】.【解析】任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:.【考点】二次根式的化简.6.计算:(-)÷+.【答案】.【解析】先去括号,再计算除法,最后计算加减法.试题解析:原式=.【考点】二次根式的混合运算.7.计算题:①、;②、【答案】①、;②、【解析】根据二次根式的混合运算的法则结合二次根式的性质依次计算即可.试题解析:①、;②、.【考点】实数的运算8.计算:.【答案】解:原式=。
【解析】针对特殊角的三角函数值,绝对值,零指数幂,有理数的乘方,负整数指数幂5个考点分别进行计算,然后根据实数的运算法则求得计算结果。
9.(1)解方程:;(2)解方程组:.【答案】(1)x=—6 (2)【解析】(1)方程两边同乘以,得∴检验:当时,≠0,即是原分式方程的解(2)解得x=2把x=2代入x-y=1中,解得y=1∴【考点】分式方程和二元一次方程组点评:该题是常考题,主要考查学生对分式方程和二元一次方程组的解题过程的掌握,记得分式方程要检验。
10.计算:【答案】【解析】根据二次根式的性质、负整数指数幂、特殊角的锐角三角函数值、立方根的定义计算即可.原式==.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.11.【答案】9【解析】原式= 6分= 9【考点】实数的运算点评:解答本题的关键是熟练掌握任何非0数的0次幂为1;两个式子的积为0,则这两个式子至少有一个为0.,12.一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=30cm,点A到地面的距离AD=8cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(精确到1cm).(参考数据:)【答案】77【解析】解:过点C作CM⊥DF于点M,交AE于点N易证CN⊥AE,∴四边形ADMN是矩形,MN=AD=8cm 3分在中,∠CAN=60°∴sin60°=(50+30)×= 6分∴cm 9分答:拉杆把手处C到地面的距离约77cm.【考点】勾股定理,三角函数的值点评:本题属于勾股定理的基本运算和求解方法,在解题中需要合理的作图13.(本题满分12分)如图,I是△ABC的内心,∠BAC的平分线与△ABC的外接圆相交于点D。
(精品)七年级数学计算题大全
七年级数学计算题大全第一部分:数的运算一、加法1. 基础加法:计算 23 + 45 = ?2. 进位加法:计算 57 + 48 = ?3. 多位数加法:计算 123 + 456 = ?二、减法1. 基础减法:计算 56 23 = ?2. 借位减法:计算 87 45 = ?3. 多位数减法:计算 123 456 = ?三、乘法1. 基础乘法:计算7 × 8 = ?2. 两位数乘法:计算23 × 45 = ?3. 多位数乘法:计算123 × 456 = ?四、除法1. 基础除法:计算56 ÷ 7 = ?2. 两位数除法:计算456 ÷ 23 = ?3. 多位数除法:计算5 ÷ 456 = ?五、分数的运算1. 分数加法:计算 1/2 + 3/4 = ?2. 分数减法:计算 3/4 1/2 = ?3. 分数乘法:计算1/2 × 3/4 = ?4. 分数除法:计算3/4 ÷ 1/2 = ?六、小数的运算1. 小数加法:计算 1.23 + 4.56 = ?2. 小数减法:计算 5.67 2.34 = ?3. 小数乘法:计算1.23 ×4.56 = ?4. 小数除法:计算5.67 ÷ 2.34 = ?七、整数与分数、小数的混合运算1. 整数加分数:计算 3 + 1/2 = ?2. 整数减分数:计算 5 3/4 = ?3. 整数乘分数:计算2 × 3/4 = ?4. 整数除分数:计算4 ÷ 3/2 = ?5. 分数加小数:计算 1/2 + 0.25 = ?6. 分数减小数:计算 3/4 0.5 = ?7. 分数乘小数:计算1/2 × 0.5 = ?8. 分数除小数:计算1/2 ÷ 0.5 = ?七年级数学计算题大全第一部分:数的运算一、加法1. 基础加法:计算 23 + 45 = ?2. 进位加法:计算 57 + 48 = ?3. 多位数加法:计算 123 + 456 = ?二、减法1. 基础减法:计算 56 23 = ?2. 借位减法:计算 87 45 = ?3. 多位数减法:计算 123 456 = ?三、乘法1. 基础乘法:计算7 × 8 = ?2. 两位数乘法:计算23 × 45 = ?3. 多位数乘法:计算123 × 456 = ?四、除法1. 基础除法:计算56 ÷ 7 = ?2. 两位数除法:计算456 ÷ 23 = ?3. 多位数除法:计算5 ÷ 456 = ?五、分数的运算1. 分数加法:计算 1/2 + 3/4 = ?2. 分数减法:计算 3/4 1/2 = ?3. 分数乘法:计算1/2 × 3/4 = ?4. 分数除法:计算3/4 ÷ 1/2 = ?六、小数的运算1. 小数加法:计算 1.23 + 4.56 = ?2. 小数减法:计算 5.67 2.34 = ?3. 小数乘法:计算1.23 ×4.56 = ?4. 小数除法:计算5.67 ÷ 2.34 = ?七、整数与分数、小数的混合运算1. 整数加分数:计算 3 + 1/2 = ?2. 整数减分数:计算 5 3/4 = ?3. 整数乘分数:计算2 × 3/4 = ?4. 整数除分数:计算4 ÷ 3/2 = ?5. 分数加小数:计算 1/2 + 0.25 = ?6. 分数减小数:计算 3/4 0.5 = ?7. 分数乘小数:计算1/2 × 0.5 = ?8. 分数除小数:计算1/2 ÷ 0.5 = ?八、应用题1. 求解问题:小华有 3 个苹果,小明有 5 个苹果,他们一共有多少个苹果?2. 面积问题:一个长方形的长是 8 厘米,宽是 5 厘米,求这个长方形的面积。
初中数学计算题复习大全附答案【中考必备】
..初中数学计算题大全(一)计算下列各题1 .36)21(60tan 1)2(100+-----π 2. 431417)539(524----3.)4(31)5.01(14-÷⨯+-- 4.5.++ 6.7112238. (1)03220113)21(++-- (2)23991012322⨯-⨯10.11.(1)- (2)÷(3)1---+42338-()232812564.0-⨯⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫⎝⎛-+601651274312.418123+-13.⎛ ⎝14..x x x x 3)1246(÷- 15.61)2131()3(2÷-+-;16.20)21()25(2936318-+-+-+-17.(1))3127(12+- (2)()()6618332÷-+-18.()24335274158.0--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---1911()|2|4-- 20.())120131124π-⎛⎫---+ ⎪⎝⎭。
21.. 22.112812623-+23.2+参考答案1.解=1-|1-3|-2+23 =1+1-3-2+23 =3【解析】略2.5【解析】原式=14-9=53.87-【解析】解:)4(31)5.01(14-÷⨯+--⎪⎭⎫⎝⎛-⨯⨯--=4131231811+-=87-=先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。
注意:41-底数是4,有小数又有分数时,一般都化成分数再进行计算。
4.==.【解析】略5.3 6.4【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需细心。
1、+ +=232=3+-252=42⨯⨯ 722【解析】试题分析:先化简,再合并同类二次根式即可计算出结果.11223432223232332考点: 二次根式的运算.8.(1)32(2)9200 【解析】(1)原式=4+27+1 =32(2)原式=23(1012-992) (1分)=23(101+99)(101-99)(2分)=232200⨯⨯=9200 (1分) 利用幂的性质求值。
中考数学计算题100道
中考数学计算题100道练习1. 解方程组:{x 3−y 2=15x +3y =82. 解下列方程组:(1){4a +b =153b −4a =13(2){2(x −y)3−x +y 4=−16(x +y)−4(2x −y)=163. 解下列方程组(1){3x +5y =112x −y =3 (2){x 2−y+13=13(x +2)=−2y +124. 解下列方程组:(1){4x −3y =11y =13−2x; (2){x 4+y 3=33x −2(y −1)=11.5. 解下列方程(组)(1) 2−x x−3+3=23−x (2){2x −y =57x −3y =206. 解下列方程:(1)1−2x−56=3−x 4;(2)1.7−2x 0.3=1−0.5+2x 0.6.7. 解下列方程12[x −12(x −1)]=23(x −1)8. 2x−112−3x−24=19.解方程:(1)5(x+8)=6(2x−7)+5(2)0.1x−0.20.02−x+10.5=310.(1)化简:(x+y)(x−y)−(2x−y)(x+3y);(2)解方程:(3x+1)(3x−1)−(3x+1)2=−8.11.解方程:(1)(x−1)2=4;(2)xx+1=2x3x+3+1.12.解方程:(1)x2=3x.(2)3x2−8x−2=0.13.x2−2(√2x−2)=2.14.解方程:(1)(x−3)(x−1)=3.(2)2x2−3x−1=0.15.解方程:(1)x2−121=0(2)2(x−1)2=33816.解方程(1)x2−2x−6=0;(2)(2x−3)2=3(2x−3).17.解方程:(1)3(x−2)2=x(x−2);(2)3x2−6x+1=0(用配方法).18. 用适当的方法解下列方程:(1)x 2−12x −4=0(2)x(3−2x)= 4 x −619. 计算:(1)|−2|+(sin36°−12)0−√4+tan45°;(2)用配方法解方程:4x 2−12x −1=0.20. 解分式方程x x−1−1=3x 2−121. 解分式方程:2x 2−4=1−x x−2.22. 解下列方程:(1)x x−1−2x−1x 2−1=1(2)2−x x −1+11−x =123.解方程(1)23+x3x−1=19x−3(2)xx2−4+2x+2=1x−224.解方程(1)x2x−5+55−2x=1(2)8x2−1+1=x+3x−125.解下列分式方程:(1)1x−2+3=1−x2−x;(2)x+1x−1−4x2−1=1.26.解方程1x−3+1=4−xx−3.27.解下列方程:(1)3x−1−1=11−x;(2)xx+1−2x2−1=1.28.解方程:5−xx−4=1−34−x.29.解方程:16x2−4−x+2x−2=−1.30.(1)计算:(√7−1)0−(−12)−2+√3tan30∘;(2)解方程:x+1x−1+41−x2=1.31.解方程:2(x+1)x−1−x−1x+1=1.32.解分式方程:(1)1x−4=1−x−34−x.(2)810.9x−661.1x=4033.解方程:(1)3x+2=43x−1(2)xx+1−2x2−1=134.解分式方程:1x +3x−3=23x−x235.(1)分解因式:3a3−27a;(2)解方程:2x =3x−2.36.解分式方程:(1)3x−2+2=x2−x.(2)2x−1=4x2−1.37.计算:(1)(a−2b)2+(a−2b)(a+2b)(2)解分式方程3x−2=3+x2−x38.解方程:x−12−x −2=3x−2.39.解答下列各题(1)解方程:x24−x2=1x+2−1.(2)先化简,再求值:a−33a2−6a ÷(a+2−5a−2),其中a2+3a−1=0.40.解方程:3x+1=x2x+2+141.(1)分解因式:(a−b)(x−y)−(b−a)(x+y)(2)分解因式:5m(2x−y)2−5mn2(3)解方程:2x+1−2x1−x2=1x−142.解方程:x2+1x2−2(x+1x)−1=0.43.解方程xx−2+6x+2=144. 解分式方程(1)3x+2=2x−3 (2)8x 2−4−x x−2=−145. 求不等式组{2x −1≤13x −3<4x 的整数解.46. 解不等式组:{3(x +1)>x −1x+92>2x47. 解不等式组{2x +3≤x +112x+53−1>2−x .48. 解不等式组:{2x −1>x +13(x −2)−x ≤449. 解下列方程:(1)解方程:x 2+4x −2=0;(2)解不等式组:{x −3(x −2)≥24x −2<5x +1.50. (1)计算:(π−2)0+√8−4×(−12)2(2)解不等式组:{3(x −2)≤4x −55x−24<1+12x51. 解不等式:1−x 2>−1.52. 解下列不等式,并把解集在数轴上表示出来:(1)5x−13−2x >3; (2)x−12−x+43>−2.53. 解不等式组{2x −1⩽x +2x−23<x 2+1,并把解在数轴上表示出来.54.解不等式组:{x+1>05−4(x−1)<155.解不等式4(x−1)+3≤2x+5,并把它的解集在数轴上表示出来.56.解不等式组{2x≥−4①12x+1<32②,并把不等式组的解集表示在数轴上.57.因式分解:(1)24ax2−6ay2;(2)(2a−b)2+8ab 58.因式分解(1)2x2−4x59. 分解因式:8ab −8b 2−2a 2 60. (1)分解因式:2x 2−18(2)解不等式组{5m −3≥2(m +3)13m +1>12m61. 因式分解:(1)16m (m −n )2+56(n −m )3;(2)(2a +3b )(a −2b )−(3a +2b )(2b −a ).62. 因式分解:(1)4a 2−9 (2)x 3−2x 2y +xy 263.分解因式:(1)6m2n−15n2m+30m2n2;(2)x(x−y)2−y(x−y).64.因式分解:(1)x(x−12)+4(3x−1).(2)m3n−4m2n+4mn65.因式分解:(x2−5)2+8(x2−5)+1666.分解因式:(1)x3−3x2−28x(2)12x2−x−2067.化简:(1)(x+y)2−(x−2y)(x+y)(2)(2x+1x2−4x+4−1x−2)÷x+3x2−4(1)√12−|−3|−3tan30∘+(−1+√2)0 (2) (x +1)(x −1)−(x −2)269. 计算:(1)√643+|√2−1|−π0+(12)−1;(2)(2x −1)2−(3x +1)(3x −1)+5x(x −1).70. (1)计算: |−3|−4cos60°+(2019−2020)0.(2)先化简,再求值:(x +2)2−x (x −2),其中x =2.71. 化简:(√3+√2)2019⋅(√3−√2)2020.72. 解下列各题:(1)计算:(x +2)2+(2x +1)(2x −1)−4x(x +1)(2)分解因式:−y 3+4xy 2−4x 2y73. 先化简,再求值:[a (a 2b 2−ab )−b (a 2−a 3b )]÷2a 2b ,其中a =−12,b =13.74. 计算:(1)(−2)2×|−3|−(√6)0 (2)(x +1)2−(x 2−x)75. 计算(1)|−1|+(3−π)0+(−2)3−(13)−2(2)(x 4)3+(x 3)4−2x 4⋅x 876. 计算:(1)(2x 2)3−x 2·x 4;(2)−22+(12)−2−2−1×(−12)0.77. 计算:①(−2020)0+√−83+tan45∘;②(a +b)(a −b)+b(b −2).78.(1)计算:x(x−9y)−(x−8y)(x−y)(2)计算:(−12a5b3+6a2b−3ab)÷(−3ab)−(−2a2b)2.)−279.计算:|√3−2|+(π−2019)0+2cos30∘−(−13)−1+|1−2cos45°|80.√2×(−1)2017−(1281.计算:cos245∘−2sin60∘−|√3−2|.)−2−(2019+π)0−|2−√5|82.计算:(−12)0;83.(1)计算:−24−√12+|1−4sin60°|+(π−23(2)解方程:2x2−4x−1=0.)−2−|√3−2|84.计算√27−3tan 30∘+(−12)−3.85.计算:√3×(−√6)+|−2√2|+(123−√(−5)2+(π−3.14)0+|1−√2|.86.计算:√273−√1+9;(2)√(−2)2+|√2−1|−(√2−1) 87.计算(1)√16+√−2788. 计算:(12)−1+(−2019)0−√9+√27389. 计算:(−2)−1−12√8−(5−π)0+4cos45∘90. 计算:(12)−1−(√2−1)0+|1−√3|+√1291. (1)计算(−12)−1+√16−(π−3.14)0−|√2−2|(2)化简:(2m m+2−m m−2)÷m m 2−4.92. 计算下列各题.(1)√4+(π−3.14)0−|−√3|+(13)−1 (2)√−83+(√3)2+√(−3)2+|1−√2|93. 计算:|1−√2|−√6×√3+(2−√2)0.94. 计算:(√12+√3)×√6−4√32÷√395. 计算:12×(√3−1)2√2−1−(√22)−1.96. 已知a =2+√3,求1−2a+a 2a−1−√a 2−2a+1a 2−a 的值.97. √(1−√3)2−√24×√122−√398. 计算:(1)√32−√8+√12×√3 (2)|√3−2|+(√3)−1−(√2−1)099. 计算:(1)2√45+3√15+√(2−√5)2; √2√6−2√3(√6−√2).100.先化简,再求值:1−a−2a ÷a 2−4a 2+a ,请从−2,−1,0,1,2中选择一个合适的数,求此分式的值.答案和解析1.【答案】解:{x 3−y 2=1①5x +3y =8②,①×6,得2x −3y =6③②+③,得7x =14,解得x =2,把x =2代入②,得10+3y =8,解得y =−23,∴原方程组的解为{x =2y =−23.【解析】本题主要考查二元一次方程组的解法,可利用加减消元法求解,将①×6得③,再利用②+③解得x 值,再将x 值代入②求解y 值,即可得解.2.【答案】解:(1){4a +b =15 ①3b −4a =13 ②, ①+②得,4b =28,解得:b =7,把b =7代入①得:4a +7=15,解得:a =2, 则方程组的解为{a =2b =7; (2)将原方程组变形得{5x −11y =−12①x −5y =−8②, ②×5−①得:−14y =−28,解得:y =2,把y =2代入②得:x =2, 则方程组的解为{x =2y =2.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.3.【答案】 解:(1){3x +5y =11①2x −y =3②, ①+②×5,得:13x =26,解得:x =2,将x =2代入②,得:4−y =3,解得:y =1,所以方程组的解为{x =2y =1; (2)将方程组整理成一般式为{3x −2y =8①3x +2y =6②, ①+②,得:6x =14,解得:x =73,将x =73代入①,得:7−2y =8,解得:y =−12,所以方程组的解为{x =73y =−12.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.4.【答案】解:(1)原方程可化为{4x −3y =11①2x +y =13②, ②×2−①得:5y =15,解得:y =3,把y =3代入②得:x =5,所以方程组的解为{x =5y =3; (2)整理原方程组得{3x +4y =36①3x −2y =9②, ①−②得:6y =27,解得:y =92,把y =92代入②得:x =6,所以方程组的解为{x =6y =92.【解析】本题主要考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.5.【答案】解:(1)去分母得:2−x +3(x −3)=−2,解得:x =2.5,经检验x =2.5为原分式方程的解;(2){2x −y =5①7x −3y =20②, ②−①×3得:x =5,把x =5代入①得:y =5,则方程组的解为{x =5y =5.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程组利用加减消元法求出方程组的解即可.6.【答案】解:(1)去分母,得12−4x +10=9−3x ,移项、合并同类项,得−x =−13;系数化为1,得x =13;(2)去分母得:3.4−4x =0.6−0.5−2x ,移项合并得:2x =3.3,解得:x =1.65.【解析】本考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解;方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解.7.【答案】12[x −12(x −1)]=23(x −1)解:12x −14(x −1)]=23(x −1)6x −3(x −1)]=8(x −1)6x −3x +3=8x −86x −3x −8x =−8−3−5x =−11x =115【解析】此题考查了解一元一次方程,去括号,去分母,再去括号,移项合并,把未知数系数化为1,求出解.8.【答案】解:去分母,得2x −1−3(3x −2)=12,去括号,得2x −1−9x +6=12,移项,得2x −9x =12+1−6,合并同类项,得−7x =7,系数化成1,得x =−1.【解析】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.先去分母,再去括号,最后移项,合并同类项,化系数为1,从而得到方程的解.9.【答案】解:(1)原方程去括号得5x +40=12x −42+5,移项可得:12x −5x =40+42−5,合并同类项可得:7x =77,解得:x =11.(2)原方程去分母得5x −10−2(x +1)=3,去括号得5x −10−2x −2=3,移项合并可得:3x =15,解得:x=5.【解析】本题考查的是解一元一次方程有关知识.(1)首先对该方程去括号变形,然后再进行合并,最后再解答即可;(2)首先对该方程去分母变形,然后再解答即可.10.【答案】解:(1)原式=x2−y2−(2x2+5xy−3y2)=−x2−5xy+2y2;(2)去括号,得9x2−1−(9x2+6x+1)=−8,9x2−1−9x2−6x−1=−8,合并,得−6x−2=−8,解得x=1.【解析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到−6x−2=−8,再解一元一次方程即可求解.本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.11.【答案】解:(1)(x−1)2=4,两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1;(2)xx+1=2x3x+3+1方程两边都乘3(x+1),得:3x=2x+3(x+1),解得:x=−32,经检验x=−32是方程的解,∴原方程的解为x=−32.【解析】本题主要考查了一元二次方程的解法和分式方程的解法,解分式方程的关键是去分母,将分式方程转化为整式方程,注意解分式方程要检验.(1)先两边直接开平方,然后转化为两个一元一次方程,解之即可;(2)先在方程两边同时乘以3(x+1),去掉分母,然后解整式方程,最后检验即可.12.【答案】解:(1)x2=3xx2−3x=0x(x−3)=0x 1=0 ,x 2=3(2)3x 2−8x −2=0∵△=64−4×3×(−2)=88∴x =8±√886=4±√223 x 1=4+√223 ,x =4−√223【解析】本题考查一元二次方程的解法,熟练应用各种解法是解题的关键.(1)先把方程化为一元二次方程的一般形式,用因式分解法解方程即可;(2)用公式法解方程,先求出△的值,然后运用一元二次方程的求根公式求出方程的根即可.13.【答案】解:∵x 2−2(√2x −2)=2,∴x 2−2√2x +4=2,∴x 2−2√2x +2=0,∴(x −√2)2=0,解得:x 1=x 2=√2.【解析】本题主要考查的是直接开平方法解一元二次方程的有关知识,先将给出的方程进行变形为(x −√2)2=0,然后直接开平方求解即可.14.【答案】解:(1)原式化简得x 2−4x =0,因式分解得x(x −4)=0,即x =0或x −4=0,解得x 1=0,x 2=4;(2)2x 2−3x −1=0,∵a =2,b =−3,c =−1,则b 2−4ac =9+8=17>0,则x = 3±√174 , 则x 1= 3+√174 ,x 2= 3−√174 .【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.(1)先化简,提取公因式x 可得x(x −4)=0,然后解两个一元一次方程即可;(2)直接运用公式法来解方程.15.【答案】解:(1)x 2=121,x =±11,x 1=11,x 2=−11;(2)(x −1)2=169,x −1=±13,x 1=14, x 2=−12.【解析】略16.【答案】解:(1)x 2−2x −6=0,x 2−2x =6,x 2−2x +1=7,(x −1)2=7,x −1=±√7,∴x 1=1+√7,x 2=1−√7;(2)(2x −3)2=3(2x −3).(2x −3)2−3(2x −3)=0,(2x −3)(2x −3−3)=0,∴2x −3=0或2x −6=0,∴x 1=32,x 2=3.【解析】本题主要考查了一元二次方程的解法,解一元二次方程常用的方法有:直接开平方法,因式分解法,配方法,公式法,解答时应根据方程的特征选择恰当的方法.(1)根据方程的特征可用直接开平方法解答,解答时先将常数项移项到方程的右边将方程变为x 2−2x =6,然后方程两边同时加上1分解可得(x −1)2=7,再用直接开平方法解答即可;(2)先移项,然后分解因式可得(2x −3)(2x −6)=0,可得2x −3=0或2x −6=0,然后解之即可.17.【答案】解:(1)原方程可变形为(x −2)(3x −6−x )=0,∴x −2=0或2x −6=0,解得:x 1=2,x 2=3(2)∵3(x 2−2x +1−1)+1=0,∴3(x −1)2−3+1=0,∴3(x −1)2=2,∴x −1=±√63, ∴x 1=1+√63,x 2=1−√63【解析】本题考查的是解一元二次方程有关知识.(1)首先对该方程进行因式分解,然后再进行解答即可;(2)首先对该方程进行配方,然后再解答.18.【答案】解:(1)∵a =1,b =−12,c =−4,∴Δ=144+16=160,∴x =12±4√102, x 1=6+2√10,x 2=6−2√10;(2)x(3−2x)+2(3−2x)= 0,(x +2)(3−2x)= 0,x 1=−2,x 2=32.【解析】本题考查利用公式法和因式分解法求一元二次方程的解.(1)按公式法,先求出判别式的值,再代入公式求解;(2)将方程右边移项到左边,提取公因式后,利用因式分解法求解.19.【答案】解:(1)原式=2+1−2+1=2(2)原方程化为x 2−3x =14x 2−3x +(32)2=104 (x −32)2=±√102∴原方程的根x 1=3+√102,x 2=3−√102.【解析】本题主要考查了实数的运算和解一元二次方程,关键是熟练掌握特殊角的三角函数值和配方法解方程的方法.(1)利用零指数幂公式、绝对值和算术平方根、特殊角的三角函数值计算,最后计算加减可得结果;(2)利用配方法进行解方程即可.20.【答案】解:x x−1−1=3(x−1)(x+1),x(x +1)−(x −1)(x +1)=3,解得,x =2,经检验:当x =2时,(x −1)(x +1)≠0,∴x =2是原分式方程的解.【解析】本题考查了解分式方程,解分式方程的基本思想是转化,把分式方程转化为整式方程求解,解分式方程一定注意要验根;先把分式方程去分母,注意没有分母的项也要乘以公分母(x −1)(x +1),求出整式方程的解得到x 的值,经检验即可得到分式方程的解.21.【答案】解:等号两边同乘(x +2)(x −2)得:2=x 2−4−x 2−2x ,2x =−6,解得:x =−3,检验,当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.22.【答案】解:(1)方程两边同时乘以x 2−1得:x (x +1)−2x +1=x 2−1, 解得:x =2,经检验,x =2是原方程的解;(2)方程两边同时乘以x −1得:2−x −1=x −1,解得:x =1,经检验,x =1是增根,∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,注意解分式方程一定要验根.(1)方程两边同时乘以x 2−1去分母,转化为整式方程x (x +1)−2x +1=x 2−1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程两边同时乘以x −1去分母,转化为整式方程2−x −1=x −1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.23.【答案】解:(1)23+x3x−1=19x−3,两边同乘以3(3x−1)得,2(3x−1)+3x=1,去括号得,6x−2+3x=1,移项合并得,9x=3,系数化为1得,x=13,检验:当x=13时,3(3x−1)=0,∴x=13时原方程的增根,原方程无解;(2)xx2−4+2x+2=1x−2方程两边同乘以(x+2)(x−2)得,x+2(x−2)=x+2,去括号得,x+2x−4=x+2,移项合并得,2x=6,系数化为1得,x=3,当x=3时,(x+2)(x−2)≠0,所以原方程的解为x=3.【解析】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题的关键,两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(1)方程两边同乘以3(3x−1)转化为整式方程2(3x−1)+3x=1,解出x并检验即可;(2)方程两边同乘以(x+2)(x−2)转化为整式方程x+2(x−2)=x+2,解出x并检验即可.24.【答案】解:(1)去分母,得x−5=2x−5,移项,得x−2x=−5+5,解得x=0,检验:把x=0代入2x−5≠0,所以x=0是原方程的解;(2)去分母,得8+x2−1=(x+3)(x+1),去括号,得8+x2−1=x2+4x+3,解得x=1,把x=1代入(x+1)(x−1)=0,所以x=1是原方程的增根,所以原方程无解.【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到结论.25.【答案】解:(1)原方程可变形为1+3(x−2)=x−1,整理可得:2x=4,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解;(2)原方程可变形为(x+1)2−4=x2−1,整理可得:2x=2,解得:x=1,经检验:x=1是原方程的增根,所以原方程无解;【解析】本题考查的是解分式方程有关知识.(1)首先对该方程变形,然后再进行解答即可;(2)首先对该方程变形,然后再进行解答即可.26.【答案】解:去分母得1+x−3=4−x解得x=3.经检验x=3是原方程的增根.∴原方程无解【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是原方程的增根,所以原方程无解.27.【答案】解:(1)方程两边同时乘以(x−1)得3−x+1=−1,解得x=5,经检验x=5是分式方程的解;(2)方程两边同时乘以(x2−1)得x(x−1)−2=x2−1解得x=−1,经检验x=−1是方程的增根,∴原分式方程无解.【解析】本题考查解分式方程,关键是熟练分式方程的解法步骤.(1)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解;(2)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解.28.【答案】解:方程两边同时乘以最简公分母(x−4),得5−x=x−4+3,整理,得−2x=−6,解得x=3,检验:当x=3时,x−4≠0,所以原分式方程的根是x=3.【解析】本题考查的知识点是解分式方程,在解分式方程去分母时,两边同时乘以最简公分母,每一项都要乘,不能漏乘某一项,本题易出现如下错解:方程两边同时乘以最简公分母(x−4),得5−x=1+3,解得x=1,检验:当x=1时,x−4≠0,所以原分式方程的根是x=1,错误的原因是去分母时,常数项漏乘最简公分母,故一定要注意不能漏乘.29.【答案】解:16x2−4−x+2x−2=−1,16−(x+2)2=4−x2,16−x2−4x−4−4+x2=0,16−4x−8=0,x=2,经检验,x=2为增根,此方程无解.【解析】本题综合考查了解分式方程的解法.注意,分式方程需要验根.先去分母,然后移项、合并同类项,最后化未知数系数为1.30.【答案】解:(1)原式=1−4+√3×√33=1−4+1=−2;(2)x+1x−1+41−x2=1整理得:x+1x−1−4x2−1=1,去分母得:(x+1)2−4=x2−1,去括号得:x2+2x+1−4=x2−1,移项得:2x=−1−1+4,合并同类项得:2x=2,系数化为1得:x=1,经检验:x=1时,x−1=0,∴此方程无解.【解析】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.31.【答案】解:去分母,得2(x+1)2−(x−1)2=x2−1,化简,得6x=−2,解得x=−13.经检验,x=−13是原方程的根.所以原方程的根为x=−13.【解析】本题考查了解分式方程,根据解分式方程的步骤,去分母,去括号,化简x系数为1,即可求得答案.(注意,一定要验根)32.【答案】解:(1)去分母得:1=x−4+x−3,解得:x=4,检验:当x=4时,x−4=0,所以x=4是原方程的增根,原方程无解;(2)原方程整理得:90x −60x=40,去分母得:40x=30,解得:x=34,检验:当x=34时,0.99x≠0,所以x=34是原方程的根.【解析】本题主要考查的是解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x−4,分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先化简方程,然后方程两边都乘以x,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.33.【答案】解:(1)方程两边乘(x+2)(3x−1),得3(3x−1)=4(x+2)解得x=115检验:当x=115时,(x+2)(3x−1)≠0是原分式方程的解,∴原分式方程的解为x=115;(2)方程两边乘(x+1)(x−1),得x(x−1)−2=(x+1)(x−1)解得x=−1检验:当x=−1时,(x+1)(x−1)=0∴x=−1不是原分式方程的解,∴原分式方程无解【解析】本题考查了分式方程的解法.解题关键是把分式方程转化为整式方程,掌握解分式方程的一般步骤,特别最后需要验根.(1)先找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.(2)先把各分母分解因式,找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.注意在去分母时不能漏乘不含分母的项“1”.34.【答案】解:原方程可化为1x +3x−3=−2x(x−3)方程两边同乘x(x−3),得x−3+3x=−2,4x=1,x=14,检验:当x=14时,x(x−3)≠0,∴x=14是原分式方程的解.【解析】本题考查了解分式方程,掌握解分式方程的步骤是解题的关键,属于基础题.方程的两边同时乘以x(x−3)化为x−3+3x=−2,解之即可,注意分式方程要检验.35.【答案】(1)解:原式=3a(a2−9)=3a(a+3)(a−3);(2)解:方程两边同乘x(x−2),得2(x−2)=3x2x−4=3x2x−3x=4−x=4x=−4检验:当x=−4时,x(x−2)≠0,∴原方程的解为x=−4.【解析】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.(1)原式提取3a,再利用平方差公式分解即可;(2)分式方程两边同乘x(x−2),转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.36.【答案】解:(1)方程两边乘x−2,得3+2x−4=−x,−x−2x=−4+3,−3x=−1x=13,检验:x=13时,x−2≠0.∴原方程的根是x=1;3(2)方程两边乘(x+1)(x−1),得2(x+1)=4,2x+2=4,2x=2,解得x=1.检验:当x=1时,(x+1)(x−1)=0,x=1是增根.∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.(1)观察可得最简公分母是x−2,方程两边乘最简公分母,可以把分式方程转化为整式方程,求解即可;(2)观察可得最简公分母是(x+1)(x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程,求解.37.【答案】解:(1)原式=a2−4ab+4b2+a2−4b2=2a2−4ab; (2)两边同乘以x−2得,3=3(x−2)−x,3=3x−6−x,2x=9,x=4.5,检验:当x=4.5时,x−2≠0,∴x=4.5是原方程的解,∴原分式方程的解为x=4.5.【解析】(1)此题考查了整式的混合运算,完全平方公式,平方差公式,掌握整式的混合运算法则是关键,先去括号再合并,即可得到答案.(2)此题考查了解分式方程,掌握解分式方程的步骤是关键,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验后即可得到分式方程的解.38.【答案】解:x−1−2(2−x)=−3,x−1−4+2x=−3,3x=2,x=2,3时,2−x≠0,检验:当x=23∴x=2是原分式方程的解.3【解析】此题考查了分式方程的求解方法,此题难度不大,注意转化思想的应用,注意解分式方程一定要验根.本题的最简公分母是2−x,方程两边都乘以最简公分母转化为整式方程求解,最后要代入最简公分母验根.39.【答案】解:(1)方程两边都乘(2−x)(2+x),得x2=2−x−4+x2,解得:x=−2,检验:当x=−2时,(2−x)(2+x)=0,∴x=−2是增根,原方程无解;(2)原式=a−33a(a−2)÷(a+3)(a−3)a−2=a−33a(a−2)⋅a−2(a+3)(a−3)=13a(a+3),由a2+3a−1=0,得到a2+3a=a(a+3)=1,则原式=13.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.40.【答案】解:去分母得:6=x+2x+2,移项合并得:3x=4,解得:x=43,经检验x=43是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.41.【答案】解:(1)原式=(a−b)(x−y)+(a−b)(x+y)=(a−b)(x−y+x+y)=2x(a−b);(2)原式=5m[(2x−y)2−n2]=5m(2x−y+n)(2x−y−n);(3)方程两边都乘以(x+1)(x−1),得:2(x−1)+2x=x+1,解得:x=1,,检验:当x=1时,(x+1)(x−1)=0,则x=1是原分式方程的增根,所以分式方程无解.【解析】本题考查因式分解及其解分式方程,掌握运算法则是解题关键.(1)直接提取公因式(a−b)进行分解即可;(2)首先提取公因式5m,然后运用平方差公式进行分解即可;(3)首先方程两边都乘以(x+1)(x−1),得到整式方程2(x−1)+2x=x+1,解这个方程并检验即可.42.【答案】解:原方程可化为(x+1x )2−2−2(x+1x)−1=0即:(x+1x )2−2(x+1x)−3=0设x+1x=y,则y2−2y−3=0,即(y−3)(y+1)=0.解得y =3或y =−1.当y =3时,x +1x =3,即x 2−3x +1=0解得∴x 1=3+√52,x 2=3−√52; 当y =−1时,x +1x =−1无实数根.经检验,x 1=3+√52,x 2=3−√52都是原方程的根. ∴原方程的根为x 1=3+√52,x 2=3−√52.【解析】本题考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.整理可知,方程的两个分式具备平方关系,设x +1x =y ,则原方程化为y 2−2y −3=0.用换元法解一元二次方程先求y ,再求x.注意检验. 43.【答案】解:x x−2+6x+2=1x (x +2)+6(x −2)=x 2−4x 2+2x +6x −12=x 2−48x =8x =1,经检验,x =1是分式方程的解.【解析】本题考查了解分式方程,先将分式方程化为整式方程,求得整式方程的解,然后进行检验即可.44.【答案】解:(1)3x+2=2x−3,3(x −3)=2(x +2)3x −9=2x +43x −2x =4+9x =13,检验:当x =13时,(x +2)(x −3)≠0,所以x =13是原方程的解;(2)2x 2−4+x x−2=12+x (x +2)=x 2−4 2+x 2+2x =x 2−42x =−6x =−3 检验:当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】本题考查了解分式方程.注意验根.先去分母、去括号、合并同类项、称项、系数为1即可求出.45.【答案】解:解不等式2x −1≤1得x ≤1,解不等式3x −3<4x 得x > −3,则不等式组的解集是−3<x ≤1,则符合条件的整数解有−2、−1、0、1【解析】本题主要考查一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法是解决问题的关键.先求出每一个不等式的解集。
初三数学计算题大全
初三数学计算题大全1. 三角函数计算题a) 计算sin2θ + cos2θ 的值。
b) 已知 sin a = 2/3,且 a 为锐角,求 cos a 的值。
c) 若tan α = 3/4,求cot α 的值。
d) 若 sin x = 1/2,cos y = 4/5,x 和 y 为第一象限的角,求 sin(x+y) 的值。
2. 带有根式的计算题a) 计算√(7+4√3) × √(7-4√3) 的值。
b) 若x = √3 + 2,求 x² + 2x 的值。
c) 计算(5+2√3)² 的值。
d) 若√5 + √2 = a + b√3,求 a 和 b 的值。
3. 百分数和利息计算题a) 某物品原价为 80 元,现打 8 折出售,求打折后的价格。
b) 某公司的利润是投资的 8%,若利润是 1200 元,求总投资额。
c) 某地人口为 5000 人,去年增长了 12%,求今年的人口数量。
d) 某笔存款按年利率 5% 的复利计算,存 3 年后本息共计 18200 元,求初始存款金额。
4. 比例和比例方程计算题a) 已知 a:b = 2:5,b:c = 3:4,求 a:b:c 的比例。
b) 若 a:b = 3:4,b:c = 5:6,且 a+c = 64,求 a、b、c 的值。
c) 若 x:y = 2:3,y:z = 4:5,z:w = 6:7,且 x+y+z+w = 70,求 x、y、z、w 的值。
d) 若 a:b = 7:12,b:c = 6:7,c:d = 4:5,且 a+b+c+d = 2016,求 a、b、c、d 的值。
5. 几何图形计算题a) 一个正方形的边长是 4cm,求其面积和周长。
b) 一个圆的直径是 14cm,求其周长和面积。
c) 一个直角三角形的一条腰长是 5cm,另一条腰长是 12cm,求其斜边长和面积。
d) 一座圆形花坛的直径是 10m,外面围绕着一条宽 1m 的人行道,求人行道的面积。
七年级计算题练习30套
①6.32.53.44.15.1+--+- ② ()⎪⎭⎫⎝⎛-÷-21316 ③⎪⎭⎫⎝⎛÷⎪⎭⎫ ⎝⎛++-24161315.0 ④)7.1(5.2)4.2(5.23.75.2-⨯--⨯+⨯- ⑤2x-19=7x+31 ⑥133221=+++xx ⑦413-x - 675-x = 1 ⑧321264+-=-x x ⑨先化简后求值:m(m -3)-(m +3)(m -3),其中m =-4.⑩先化简,再求值:22(23)(22)1x y x y --+--,其中11,45x y =-=二号题①15+(―41)―15―(―0.25) ②()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛÷-+---2532.0153③ ()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-⨯-214124322④⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯----35132211|5|⑤ )4(12)2(24+-=-+x x x ⑥ )1(9)14(3)2(2x x x -=---⑦ 32213415x x x --+=- ⑧31819615x x x --+=+ ⑨已知a = 1,b = —31,求多项式()()33222312222a b ab a b ab b -+---⎛⎫ ⎪⎝⎭的值 ⑩化简(求值)y xy x y x xy y x 22)(2)(22222----+的值,其中2,2=-=y x①-9+5×(-6) -(-4)2÷(-8) ② ()2313133.0121-÷⎪⎭⎫⎝⎛+⨯+-③()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⨯-854342④)32(9449)81(-÷⨯÷-⑤ )9(76)20(34x x x x --=-- ⑥ 161232=+-x x ⑦162312=+-+x x ⑧5124121223+--=-+x x x ⑨先化简,再求值:2)(2)(3++--y x y x ,其中1-=x ,.43=y ⑩先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22312331221y x y x x ,其中x=-2,y=32四号题①—48 × )1216136141(+-- ② 4×(-3)2-13+(-12 )-|-43|③212116()4(3)2--÷-+⨯- ④32232692)23()3)(2(-÷+⨯-- ⑤2(x -2)+2=x +1 ⑥2x -13 -5x -16=1⑦122312++=-x x ⑧246231xx x -=+-- ⑨已知a = 1,b = —31,求)42()12()34(222a a a a a a +-+-+--的值。
汇总)初中数学中考计算题(最全)-含答案
汇总)初中数学中考计算题(最全)-含答案.doc1.解答题(共30小题)1.1 计算题:① 2+3=5;②解方程:x+5=10,解得x=5.1.2 计算:π+(π﹣2013)=2π-2013.1.3 计算:|1﹣|﹣2cos30°+(﹣)×(﹣1)2013|=|1-|-2cos30°+(-1)×(-1)2013||=|1-|-2×√3/2+1||=|1-√3+1|=|2-√3|。
1.4 计算:﹣(-2)+(-3)=1.1.5 计算:√(5+2√6)+√(5-2√6)=√2+√3.1.6 计算:(2+√3)(2-√3)=1.1.7 计算:(1+√2)²=3+2√2.1.8 计算:(1-√3)²=4-2√3.1.9 计算:(√2+1)²=3+2√2.1.10 计算:(√2-1)²=3-2√2.1.11 计算:(3+√5)(3-√5)=4.1.12 计算:(√3+1)(√3-1)=2.1.13 计算:(√2+√3)²=5+2√6.1.14 计算:﹣(π﹣3.14)+|﹣3|+(﹣1)2013+tan45°=0.1.15 计算:√3+√2-√6=√3-√2+√6.1.16 计算或化简:1)计算2﹣1﹣tan60°+(π﹣2013)+|﹣|=-tan60°-2011;2)(a﹣2)²+4(a﹣1)﹣(a+2)(a﹣2)=-3a²+10a-6.1.17 计算:1)(﹣1)2013﹣|﹣7|+(√2)﹣1=-√2-8;2)(2+√3)÷(√3-1)=1+√3.1.18 计算:(1+√2)(1-√2)=﹣1.1.19 解方程:x²+2x+1=0,解得x=-1.1.20 计算:1)tan45°+sin230°﹣cos30°•tan60°+cos245°=√2-1;2)(√2+1)²-(√2-1)²=4√2.1.211)|﹣3|+16÷(﹣2)³+(2013﹣)﹣tan60°=2010;2)解方程:(1-2x)²=3,解得x=√2﹣1.1.222)求不等式组:{x²-2x0},解得0<x<1.1.232)先化简,再求值:(√3+1)÷(√3-1)=2.1.241)计算:tan30°=√3/3;2)解方程:x²-2x+1=0,解得x=1.1.25 计算:1)√2-√3+√6=(√2-1)(√3-1);2)先化简,再求值:(√2+1)²+(√2-1)²=8.1.261)计算:(1-√2)÷(1+√2)=-1+√2;2)解方程:x²-2x+2=0,解得x=1-√3.1.27 计算:1)(√2+√3)²-(√2-√3)²=4√6;2)先化简,再求值:(x²+2x+1)÷(x²-1)=1+x。
初三计算题大全及答案
初三计算题大全及答案以下是一些初三计算题的大全及答案,供同学们练习:一、四则运算1. 12 ÷ 3 × 4 + 6 = 222. (8 + 3)×(15 - 7) ÷ 4 = 333. 102 - 64 ÷ 8 + 2 × 3 = 834. 5 ÷(10 - 8) + 1= 25. 88 - 76 × 2 ÷ 4 + 10 = 346. (18+20)÷2×3-16+8 = 227. 12 ÷ (5 +1) × 8 - 4 = 128. (13 - 5)×2 ÷ 3 + 1 = 39. 24 ÷(2+4)×6-10= 2210. (4 + 5)×6 + 9 ÷ 3 = 51二、百分数1. 20% ÷ 0.2 = 1002. 90% × 0.6 = 543. 500 ÷ 80% = 6254. 3 ÷ 0.15 = 205. 40 × 125% = 506. 24 ÷ 80% = 307. 0.8 × 25% = 0.28. 1200 ÷ 75% = 16009. 150% × 0.75 = 112.510. 56.25 ÷ 75% = 75三、长度、面积和体积1. 长方形的长是15cm,宽是9cm,它的面积是多少?答案:135cm²2. 一个正方形的边长是7cm,它的周长是多少?答案:28cm3. 一个立方体的边长是3cm,它的表面积是多少?答案:54cm²4. 一个正方体的表面积是96cm²,它的边长是多少?答案:4cm5. 一个圆的直径是12cm,它的周长是多少?(π≈3.14)答案:37.68cm6. 一个正立方体的体积是64cm³,它的边长是多少?答案:4cm7. 一个长方体的长是5cm,宽是3cm,高是4cm,它的体积是多少?答案:60cm³8. 一个圆的半径是6cm,它的面积是多少?答案:113.04cm²9. 一个正六面体的表面积是150cm²,它的体积是多少?答案:125cm³10. 一个长方形的长是24cm,宽是18cm,如果它的周长增加了8cm,它的面积会变成多少?答案:720cm²以上就是初三计算题的大全及答案,同学们可以利用这些题目来提高自己的计算能力。
初中数学中考计算题复习(最全)-含答案
一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.24.先化简代数式再求值,其中a=﹣2.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3. 30.化简并求值:•,其中x=21. . 2。
七年级计算题500道
七年级计算题500道一、有理数运算类。
1. 计算:(-3)+5- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|5| = 5,| - 3|=3,5>3,所以(-3)+5 = 2。
2. 计算:4 - (-2)- 解析:减去一个数等于加上这个数的相反数,所以4-(-2)=4 + 2=6。
3. 计算:(-2)×(-3)- 解析:两数相乘,同号得正,异号得负,并把绝对值相乘。
所以(-2)×(-3)=6。
4. 计算:-4÷2- 解析:两数相除,异号得负,并把绝对值相除。
所以-4÷2=-2。
5. 计算:(-2)^3- 解析:(-2)^3=(-2)×(-2)×(-2)= - 8。
二、整式加减类。
6. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
- 对于a的同类项3a和-5a,3a-5a=-2a。
- 对于b的同类项2b和-b,2b - b=b。
- 所以,3a + 2b - 5a - b=-2a + b。
7. 化简:(2x^2 - 3x + 1)-(x^2+2x - 3)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变;括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。
- 所以(2x^2 - 3x + 1)-(x^2+2x - 3)=2x^2-3x + 1 - x^2 - 2x+3。
- 然后合并同类项,2x^2-x^2=x^2,-3x-2x=-5x,1 + 3=4。
- 最终结果为x^2-5x + 4。
三、一元一次方程类。
8. 解方程:2x+3 = 7- 解析:- 首先进行移项,把常数项移到等号右边,2x=7 - 3。
- 然后计算7-3 = 4,得到2x=4。
- 最后系数化为1,两边同时除以2,x = 2。
初三数学计算题练习试题集
初三数学计算题练习试题答案及解析1.计算:.【答案】﹣7.【解析】分别用平方根定义,负指数幂法则,绝对值的代数意义,零指数幂法则进行计算即可得到结果.试题解析:原式=3﹣4×4+5+1=3﹣16+5+1=﹣7.【考点】1.实数的运算2.零指数幂3.负整数指数幂.2.计算:﹣25+()﹣1﹣|﹣8|+2cos60°.【答案】﹣33.【解析】第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可.试题解析:原式=﹣32+2﹣4+1=﹣33.【考点】1.实数的运算2.负整数指数幂3.特殊角的三角函数值.3.计算:.【答案】-6【解析】先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=,然后进行乘除运算后合并即可.原式==-6.【考点】二次根式的混合运算;特殊角的三角函数值.4.计算:(1)(2)【答案】(1)3;(2)4-3a.【解析】(1)先根据二次根式、零次幂以及特殊角的正切值运算法则进行计算,最后进行加减运算即可;(2)先根据单项式乘以多项式、平方差公式把括号展开,最后合并同类项即可.(1)原式=3-1+1=3.原式=a2-3a+4-a2=4-3a.【考点】1.实数的混合运算;2.整式的混合运算.5.计算:(-1)2 012-(-3)++.【答案】5【解析】解:原式=1+3-2+3=56.计算(1)﹣×(2)(6﹣2x)÷3.【答案】(1)1;(2)【解析】先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:(1);(2).考点: 二次根式的混合运算.7.计算:(π﹣1)0﹣﹣(﹣1)+|﹣|﹣12.【答案】.【解析】根据乘方、绝对值、二次根式的意义分别计算即可求出答案.试题解析:考点: 实数的混合运算.8.计算题:①、;②、【答案】①、;②、【解析】根据二次根式的混合运算的法则结合二次根式的性质依次计算即可.试题解析:①、;②、.【考点】实数的运算9.计算:.【答案】解:原式=。
初中数学精选计算题练习大全
初中数学精选计算题练习大全1.计算:.计算: (1);(2).2.(1)计算:(2)化简:3.(1)解不等式组:(2)化简:(﹣2)•.4.先化简,再求值:,其中.5.先化简,再求值.(其中x=1x=1,,y=2y=2))6.计算:.7.计算:.计算: (1)32﹣﹣|﹣2|×2﹣1(2)(a+1a+1))2+2+2((1﹣a )8.某同学化简a (a+2b a+2b)﹣()﹣()﹣(a+b a+b a+b))(a ﹣b )出现了错误,解答过程如下:)出现了错误,解答过程如下: 原式原式=a =a 2+2ab +2ab﹣(﹣(﹣(a a 2﹣b 2) (第一步)(第一步) =a 2+2ab +2ab﹣﹣a 2﹣b 2(第二步)(第二步) =2ab =2ab﹣﹣b 2(第三步)(第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;)该同学解答过程从第几步开始出错,错误原因是什么; (2)写出此题正确的解答过程.)写出此题正确的解答过程.9.先化简,再求值:,其中.10.计算:.11.先化简,再求值:;其中,.12.计算:(﹣1)2﹣2sin45°2sin45°++(π﹣2018)0+||.13.计算:.14.计算:15.(1)计算:;(2)分解因式:6(a-b)2+3(a-b).16.计算:.17.计算:2﹣1sin60°+|1|.sin60°+|118.已知T.(1)化简T;的值.(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.19.化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.的值代入求值.20.2﹣1+|1﹣|+(﹣2)00﹣cos60°21.计算:.22.先化简,再求值:,其中23.计算化简(本小题满分10分)分)(1)(2)24.(2011?舟山)计算:.25.先化简,再求值:,其中a2﹣4=0.26..27.(本小题满分5分)分)先化简,再求值:(1-)÷,其中=sin60°=sin60°. . 28.计算:.29.先化简,再求值:,其中x=2x=2..30.计算:31.已知a2=19=19,求,求的值.的值.32.计算:|2﹣|+2sin45°﹣()0.33.先化简,再求值:,其中m=+1.34.计算:35.先化简,再求值:.先化简,再求值:36.计算:37.先化简,再求值:,其中a是方程a2+a﹣6=0的解.的解.38.化简:39.计算:(-3-3))2+2017- ×sin45°.×sin45°.40.化简:.41.计算:.42.化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)43.(1)计算:︱-)计算:︱-22︱+( + 1)0-()-1+tan60°+tan60°(2)解分式方程:+ 1)解分式方程: =+ 144.(题文)先化简,再求值:(a﹣)÷,其中a=,b=1.45.计算:46.先化简,再求值:,其中x=2,y=3.47.Ⅰ.解不等式组,并把解集在数轴上表示出来.,并把解集在数轴上表示出来.Ⅱ.计算:(π﹣3)0+﹣2sin45°﹣()﹣1.48.(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?都成立?中选取合适的整数代入求值. (2)化简:()÷,并从0≤x≤4中选取合适的整数代入求值.49.先化简,再求值:,其中.50.算:51.先化简,再求值:,其中.52.计算:53.先化简,再求值:,其中x=﹣.54.计算:+(﹣)﹣1+|1﹣|﹣4sin45°.55.化简:56.计算:57.先化简,再求值:,其中a=+1.58.(1)计算:2﹣11+(2018﹣π)00﹣sin30°;(2)化简:(a+1)22﹣a(a+1)﹣1.59.计算:.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).60.已知=2,请先化简÷,再求该式子的值.,再求该式子的值.61.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.62.计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣163.解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.从上述整数解中选择一个合适的数,求此代数式的值.64.计算:﹣25÷23+|﹣1|×1|×55﹣(π﹣3.14)065.计算:.计算:);(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷66.先化简,再求值:(1﹣x+)÷,其中x=tan45°x=tan45°++()﹣1.67.(1)求不等式组的整数解;的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.68.计算:(﹣1)2018+|﹣|﹣(﹣π)0﹣2sin60°.69.(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.70.计算.计算 (1)计算:)计算:22﹣2+(3)÷﹣3sin45°;(2)解方程:+1=. 71.化简:72.计算:|﹣|﹣2﹣1+73.先化简,再求值:(﹣)÷,其中a=3﹣1+2sin30°.74.计算:(+2)22﹣+2﹣275.先化简,再求值:(2m+1)(2m ﹣1)﹣(m ﹣1)2+(2m )3÷(﹣8m ),其中m 是方程x 2+x ﹣2=0的根的根76.计算:4cos45°4cos45°++(π﹣2018)0﹣77.计算:2tan45°﹣|﹣3|+()﹣2﹣(4﹣π)0.78.先化简,再求值:(1﹣)÷,其中a=2+.79.先化简,再求值:÷(a ﹣1﹣),并从﹣1,0,1,2四个数中,选一个合适的数代入求值数代入求值80.计算:()﹣2+|﹣2|﹣+6cos30°+6cos30°++(π﹣3.14)0.81.先化简(1﹣)÷,然后从不等式2x﹣6<0的非负整数解中选取一个合适的解代入求值.的解代入求值.82.计算:﹣|4﹣|﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2.2cos45°++()﹣1﹣(π﹣1)083.计算:﹣2cos45°84.(1)计算:+|﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).85.先化简,再求值:(﹣1)÷,其中x=+1.86.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长的小正方形纸板后,将剩下的三块拼成新的矩形.为n的小正方形纸板后,将剩下的三块拼成新的矩形.的代数式表示拼成矩形的周长;(1)用含m或n的代数式表示拼成矩形的周长;,求拼成矩形的面积.(2)m=7,n=4,求拼成矩形的面积.87.先化简,再求值:÷(﹣a),其中a=﹣1,b=1.88.先化简,再求值:(1﹣)÷,其中a=sin30°.89.(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.90.(题文)已知:x2﹣y2=12,x+y=3,求2x2﹣2xy的值.的值.91.求值:(﹣1)2018+|1﹣|﹣92.先化简再求值:(a﹣)÷,其中a=1+,b=1﹣.93.计算:|2﹣|+(π﹣1)0+﹣()﹣1194.(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.95.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣196.先化简,再求值:(﹣)÷,其中a=.97.先化简,再求值:,其中x=﹣1.98.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣.99.计算:(﹣1)2018﹣+(π﹣3)0+4cos45°100.计算:+(π﹣2018)0﹣2tan45°101.计算|1﹣|﹣2sin45°2sin45°+2+2﹣1﹣(﹣1)2018.102.(1)计算:|2﹣|+(+1)0﹣3tan30°3tan30°++(﹣1)2018﹣()﹣1; (2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.103.先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.104.先化简,再求代数式(1﹣)÷的值,其中a=4cos30°a=4cos30°+3tan45°+3tan45°. 105.计算:|﹣4|+3tan60°﹣﹣()﹣1106.计算:|﹣2|+(﹣1)×(﹣3)107.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.,且任意相邻四个台阶上数的和都相等. 尝试尝试 (1)求前4个台阶上数的和是多少?个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?是多少? 应用应用 求从下到上前31个台阶上数的和.个台阶上数的和.发现发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.所在的台阶数.108.嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2););(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?是几? 109.已知x=+1,求x 2﹣2x ﹣3的值.的值.110.计算:(﹣1)2008+π0﹣()﹣1+.111.先化简,再求值:,其中.112.先化简,再求值:(x+2+)÷,其中x=2.113.计算.114.化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.合适的整数值代入,求出代数式的值.115.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=.116.计算:(﹣1)2+(π﹣3.14)0﹣|﹣2| 117.先化简,再求值:,其中x 为整数且满足不等式组.118.先化简,再求值:(1+)÷,其中x 满足x 2﹣2x ﹣5=0.119.计算:(1)(﹣2)2×|﹣3|﹣()00;(2)(x+1)22﹣(x 22﹣x )120.先化简,再求值:a (a +2b )﹣(a +1)2+2a ,其中.121.先化简,再求值:(1﹣)÷,其中a=﹣3.122.(1)计算:|﹣2|﹣2cos60°2cos60°++()﹣1﹣(2018﹣)0(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.中选取一个适当的数代入求值.123.计算:.124.(1)化简÷(x ﹣).(2)解方程:=3.125.先化简,再求值:.其中x=sin60°.126.计算:()﹣2+(π2﹣π)0+cos60°+cos60°+|+|﹣2|127.先化简,再求值:,其中,其中.128.计算:129.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中x=2+,y=2﹣.130.计算:﹣|﹣|+(﹣2)2﹣(π﹣3.14)0×()﹣2.131.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:解决问题:(1)填空:,如果,如果,则的取值范围为的取值范围为 ;; (2)如果,求的值;的值; (3)如果,求的值的值..132.计算:133.阅读下列题目的解题过程:.阅读下列题目的解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.的形状. 解:∵a 2c 2﹣b 2c 2=a 4﹣b 4 (A )∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2) (B ) ∴c 2=a 2+b 2 (C ) ∴△∴△ABC ABC 是直角三角形是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ; (2)错误的原因为:)错误的原因为: ; (3)本题正确的结论为:)本题正确的结论为: .134.先化简,再求值:,其中x=2﹣1.135.先化简,再求值:x (x+1)+(2+x )(2﹣x ),其中x=﹣4.136.+-+137.先化简,再求值:(+1)÷,其中x 是方程x 2+3x=0的根.的根.138.计算:﹣2sin45°2sin45°++()﹣1﹣|2﹣|.139.先化简,再求值:.先化简,再求值:,其中.140.先化简,再求值:,其中x 满足x 2-2x -2=0.141.计算:(π-2)°-2)°+4cos30°+4cos30°--(-)-2.142.先化简,再求值:,其中.143.计算:.144.先化简,再求值:(1+)÷.其中x =3.145.计算:|﹣5|+(﹣1)2﹣()﹣1﹣.146.先化简,再求值:,其中,.147.计算:.148.计算:(﹣6)2×(﹣).).149.(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.150.化简:151.计算:(-)×)×((-)+|-1|+(5-2π)0152.先化简,再求值:其中153.计算:154.计算:.计算:155.计算:(﹣2)2+20180﹣156.(1)计算:;(2)化简:(m+2)2 +4(2-m)157.先化简,再求值:,其中.158.计算:.159.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么等于十进制中的哪个数?二进制中的数101011等于十进制中的哪个数?160.(1).(2)化简161.先化简,再求值:,其中.162.计算:.sin30°++(2018﹣)0﹣2﹣1+|﹣4|;163.(1)计算:sin30°(2)化简:(1﹣)÷.164.(1)计算:;(2)解不等式:165.先化简,再求值:(xy2+x2y)×,其中x=π0﹣()﹣1,y=2sin45°﹣.166.对于任意实数、,定义关于“”的一种运算如下:.例如.的值;(1)求的值;(2)若,且,求的值.167.计算或化简.(1);(2).168.如图,在数轴上,点、分别表示数、(1)求的取值范围.的点应落在( )(2)数轴上表示数的点应落在(A.点的左边的右边的左边 B.线段上C.点的右边169.计算.170.先化简,再求值: ,其中171.计算: .172.(1)计算:;(2)化简并求值:,其中,.173.先化简,再求值:,其中是不等式组的整数解.174.(1)计算:.(2)解方程:.175.观察以下等式:.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:按照以上规律,解决下列问题:个等式: ;(1)写出第6个等式:个等式: (用含n的等式表示),并证明(2)写出你猜想的第n个等式:176.计算:177.先化简,再求值:,其中.178.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.请你根据方案二、方案三,写出公式的验证过程.方案二:方案二:方案三:方案三:179.计算:|﹣2|﹣+23﹣(1﹣π)0.180.(题文)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.的倍数,请说明理由; (1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.181.计算:.计算:))计算:;)计算:..=.先化简,再求值:,其中a=..计算: ()()20212017323p -æö--+---ç÷èø..先化简,再求值: 221x y x y x yæö-¸ç÷--èø,其中=32-,=112-æöç÷èø.211--=1321-- 4312--=3…再求值: 22214244a a a a a a a a +--æö+¸ç÷--+èø,=()10132p -æö-+ç÷èø.(221x x -++)÷21x x x -+ (12)191.先化简,再求值:(m+2m+2﹣﹣52m -)• 243m m --,其中m=m=﹣﹣12. 192.(1)计算:)计算:||﹣4|4|﹣(﹣﹣(﹣﹣(﹣22)2+9﹣(12)0(2)解不等式组32{ 1213x x xx -³+>-.193.计算:.计算:(1)2(1)2-1+sin30°+sin30°-|-2|-|-2|-|-2|;; (2)(2)((-1-1))0-|3-π|+()23p -.。
七年级数学计算题500道
有理数计算 1使用说明:本题集的制作初衷是为学生提供计算题目以便强化计算能力。
此题集共 500 道,1-445 题为基本四则运算,建议每天做 10 道,如能保证答题准确率在 80%以上,说明计算能力比较过关。
446-500 题为能力计算题目,涉及等差数列,等比数列,裂项等技巧,建议学完计算技巧后再作题进行巩固。
要相信坚持总有回报,祝愿每位同学取得优异的成绩。
由于时间有限,后面所附答案如有错漏之处,请批评指正。
1. ⨯--÷5324()61152. ÷--⨯-÷7571234(2)525553. ⨯+⨯--÷+⨯1177110.8 4.8() 2.20.822394. --+-⨯-⨯620512)(154)(13475. -⨯⨯-187()( 2.4)736. ÷-⨯÷-7772()(5)3417. -+⨯÷-24528[15(13)](1)113118. ⨯-÷-⨯55(5)()5112021初一年级有理数计算题集9.11321 ()() 32114742 --+-÷-10.2215 130.34(13)0.34 3737-⨯-⨯+⨯--⨯11.11 (13)(134)()1367 -⨯-⨯⨯-12.7111 (4)(5)(4)38248 ---+--13.(16503)(2)--+÷-14.110.53 6.75542+(-)-(-)-15.219 17887.21435312.792121-++-16.(6)(4)(32)(8)3-⨯-+-÷--17.211()|1| 722+----18.(9)(4) (60)12-⨯-+-÷有理数计算23有理数计算 19. 9581[()1]()1472142--+÷-20. 1|3|10(15)3--÷--⨯21. 375112532162-⨯-÷()22. 11171(231)(1)(7)32186+÷-⨯--23. 31(820.04)43-⨯--24. []551(0.4)( 2.5)---⨯-25. 251(1)(10.5)3---⨯26.575(7)(243)(246)--+---+-+-27. 213(2)(1)8()312--⨯--÷-⨯-+28. 912311(27)9()(24)1123412-÷-+--⨯-有理数计算430.()()1120.12533110.25483⎛⎫⎛⎫⎛⎫+++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31. 211(455)365455211545545365⨯-+⨯-⨯+⨯32. 102131111()[9(3)]314122---⨯--+÷ 33. 8221211(1)()()[2(3)]0.52368---÷-⨯-----34. 25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦35. ()131170.125 1.213213⎛⎫⎛⎫-⨯-÷-⨯- ⎪ ⎪⎝⎭⎝⎭36. ()2342()()0.2534⨯-+-÷-37. ()7511[30()36]59612-+-⨯-÷-()5有理数计算 38. 23155(1)()()()74148+÷-÷-⨯-39. 31315(1)(1) ()()42424-÷--+÷-40. 8)3(4)2(323+-⨯--⨯41. 2)2(2)1(3210÷-+⨯-42. 2)2(2)2(23322--+----43. ])3(2[61124--⨯--44. ]2)33()4[()10(222⨯+--+-45. ])2(2[31)5.01()1(24--⨯⨯---46. 20022003)2()2(-+-47. 20052004(0.25)4-⨯48. 94)211(42415.0322⨯-----+-有理数计算6 49. )2()3(]2)4[(3)2(223-÷--+-⨯--50. 32(4)(75)÷-⨯-+-51. 2)2(2)1(3210÷-+⨯-52. ()()574283+-⨯-÷-53. 2225(3)[()](6)439⨯+÷-----54. 31[2(10.54)]⨯-----55. 312123)2122(3)543(31512⨯-÷++÷+-⨯-56. 295(3)(2)4⨯--÷+-57. 3(5)[2(6)]3005-⨯---÷ 58. 2211(1)1339⨯-÷-59. [124(310)]4⨯-÷-7有理数计算 60. 32(3)4(3)15⨯-⨯--+61. 4211[2(3)]6―⨯---62. 213502()15÷⨯-+-63. 421632()94÷⨯--64. ()1003212181215.20-⨯⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-÷-65. 21002212(1)1221|132|----÷-+--⨯()66. 3483(1)(4)--⨯---67. 3145()2⨯--68. 2)3121(36-⨯69. 24)23(942-⨯÷-有理数计算8 70. 5434361832411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+- 71. )12()4332125(-⨯-+72. )4()81()2(163-⨯---÷ 73. 2111()()(2)(14)236--÷--⨯-+ 74. 33[5(10.2)(2)]5---+-⨯÷- 75. 111122399100++⋅⋅⋅+⨯⨯⨯76. 911321321÷⎪⎭⎫ ⎝⎛-⨯-77. ()124310(49)-⨯-÷-⎡⎤⎣⎦78. 4435222-+--÷-()()79. 32416210+÷-÷-()()9有理数计算 80. 2153233+÷÷-+-()()()81. 3342331---÷-()() 82. 232[3323]43-⨯-⨯--()83. 1293123223-÷+-⨯+()84. )6(23517235)34()235(-⨯-⨯--⨯- 85. 15511512277227⎛⎫⎛⎫⨯--⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭86. 23(2)(1)31(2)-⨯--⨯---[] 87. 3223(4)(9)0---⨯-⨯ 88. 31452-⨯-()89. 348311--⨯---()()有理数计算 10 90. 32422()93-÷⨯-91. 211[123]6--⨯--() 92. 759015-⨯--÷-()()()93. 23420.2534⨯-+-÷-()()() 94. ()11731348126424⎛⎫-+-⨯- ⎪⎝⎭95. ()113700.2524.5525%42⎛⎫⎛⎫-⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭96. 333145⎛⎫⨯- ⎪⎝⎭97. ()()()525306⎛⎫-⨯-⨯+⨯- ⎪⎝⎭98. ()5411.5112153⎛⎫-⨯⨯-⨯ ⎪⎝⎭99. 13810.0434⎛⎫⎛⎫-+-⨯- ⎪ ⎪⎝⎭⎝⎭100. ()()3338878158777⎛⎫⎛⎫-⨯-+-⨯--⨯ ⎪ ⎪⎝⎭⎝⎭101. 1799918⎛⎫⨯- ⎪⎝⎭102. ()17.984⎛⎫-⨯- ⎪⎝⎭103. ()()()450.258-⨯⨯-⨯-104. 130.570445⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭105. 7213.2329213⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯--⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦106. ()74948⨯-107. 157556⎛⎫⨯- ⎪⎝⎭108. ()24912525⎛⎫-⨯- ⎪⎝⎭109. ()200420062005-⨯110. ()231243412⎛⎫-++⨯- ⎪⎝⎭111. 2211613325⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112. 173********⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭113. 1173332127⎛⎫-⨯⨯ ⎪⎝⎭114. 15511521214142214⎛⎫⎛⎫-⨯--⨯+⨯ ⎪ ⎪⎝⎭⎝⎭115. 4555542792793⎛⎫⨯+⨯+⨯- ⎪⎝⎭116. ()7 1.7516⎛⎫+÷- ⎪⎝⎭117. 31231527⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭118. ()()148121549-÷⨯÷-119. ()()()1084-÷-⨯-120. ()()1177-÷⨯-121. 294.558-⨯÷122. 121311234⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭123. 141315432251518⎛⎫⎛⎫⎛⎫⎛⎫+÷-⨯-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭124. ()1347415620512⎛⎫⨯-⨯--+- ⎪⎝⎭125. 111111111111357357357357⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+-⨯-⨯-+-⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭126. 25(8)(1)--⨯-127. 11()128--+128. 4(6)(3)-⨯-129. 12()( 3.25)5---130. 313.5(0.7)(5)5-⨯-÷-131. 112167342⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭132. ()1230.1434⎛⎫⎛⎫÷---÷- ⎪ ⎪⎝⎭⎝⎭133. 2212162()2-÷⨯-134. 344411117777⎛⎫⎛⎫-⨯÷--+ ⎪ ⎪⎝⎭⎝⎭135. 211110.5210.5100.5323⎛⎫⎛⎫⎛⎫-÷--÷-+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭136. 21.8( 1.8)3--+137. 114254-+138. 1348(1)124-⨯-+139. 220.52(3)⨯--140. 113()1234÷-+141. 322322(2)()(2)2()833-⨯---÷⨯-142. 4327221()()1727173⎡⎤----+-⎢⎥⎣⎦143. 3777(1)()48128--÷-144. 241(7)(30)3 3.25134-÷--⨯+145. 868635.28.642⨯-⨯-+146. 200720092008-⨯147. 199279-⨯148. 762()(1.5)3-⨯149. 201020111()33-⨯150. 201120102009(7)147(49)(7)-+⨯--⨯-151. 214.732(2.631)33⎡⎤---⎢⎥⎣⎦152. 421(3)(1)()7315-÷-⨯-153. 812763189--+-÷-()() 154. 13122(3)2523-⨯--+÷--- 155. ()28[710.63]3⎛⎫-⨯-+-⨯÷- ⎪⎝⎭156. 151()46-+-157. 2(0.8)15-+-158. 15631218⎛⎫+- ⎪⎝⎭159. ()(){}1.5 1.80.80.9+-++-⎡⎤⎣⎦160. 112133[2357]32324⎛⎫⎛⎫-++-++- ⎪ ⎪⎝⎭⎝⎭161. 222115[1344]33155⎛⎫-+--+- ⎪⎝⎭162. ()43510.712150.7(15)9494⨯+⨯-+⨯+⨯-163. 45812605615⎛⎫--⨯ ⎪⎝⎭164. ()15154232918⎛⎫-÷-÷- ⎪⎝⎭165. 142 81614 9÷÷--⨯()166. 1211 4.43.1830+++++-())(167. 41889365036.25525323+-++--()168. 53145119(20)(302.5)(151)119197131717132⎛⎫⎛⎫+-+-+-+-+- ⎪ ⎪⎝⎭⎝⎭169. ()5113(3[(2) 5.1753 6.325]3714837⎛⎫-+-++++-+ ⎪⎝⎭) 170. 53124(3)(3)(1)6565--+---+171. 3511(114662+--+)172. 224411()(0.6)33535⎛⎫-+----- ⎪⎝⎭173. 7131441232555555---++-+174.1116 3253 5.252 3477⎡⎤⎛⎫--+---⎪⎢⎥⎝⎭⎣⎦175.275315 (3(2)(3)5(1)5 58125812⎛⎫++--+--+--⎪⎝⎭)176.21 1(1) 35⨯-177.()56.5()6 -⨯-178.314 ()(1)() 429 -⨯-⨯-179.50.25(4)9 6-⨯⨯-⨯180.51 ()(3) 63 -÷-181.421 (3)(1)(1)7314 -÷-÷-182.12114 ()()(1)(1)(1) 23435 -⨯-⨯-⨯-⨯-183. 31123.8 2.4799.6()(339)8873-⨯⨯⨯-⨯-⨯⨯184. ()8[3.6(0.2)(0.4)1]-----⨯-⨯-185. 2231356(8)2(2)4⎡⎤⨯-+--⨯-⨯⎢⎥⎣⎦186. 5.7215.8-+()187. 0.47()50347--- 188. 11(3)(5)24--+ 189. 1111(()()()6432-+---+--)190. ()23632(2)3482(2)-⨯+-⨯-÷-+-191. 232111(32)4(0.5)(1)325⎡⎤--÷-⨯-⨯-⎣⎦192. 54()(3)(1)(2)65-÷-⨯-⨯-193. 283256(1)(0.5)81477⨯-÷-+-194. 3311112(2)332--⨯-+-195. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-196. 2(3)2--⨯197. 12411()()()23523+-++-+-198. 11( 1.5)4 2.75(5)42-+++-199. 8(5)63-⨯--200. 3145()2-⨯-201. 25()()( 4.9)0.656-+----202. 22(10)5()5-÷⨯-203. 323(5)()5-⨯-204. 25(6)(4)(8)⨯---÷-205. 1612()(2)472⨯-÷-206. 67()()51313-+--207. 211()1722---+-208. 737()()848-÷- 209. 21(50)()510-⨯+ 210. 2(16503)(2)5--+÷-211. 32(6)8(2)(4)5-⨯----⨯ 212. 21122()(2)2233-+⨯--213. 199711(10.5)3---⨯214. 2232[3()2]23-⨯-⨯--215. 232()(1)043-+-+⨯216. 4211(10.5)[2(3)]3---⨯⨯--217. 4(81)( 2.25)()169-÷+⨯-÷218. 215[4(10.2)(2)]5---+-⨯÷-219. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-220. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-221. 23122(3)(1)6293--⨯-÷-222. 32323(2)()()32-⨯-⨯-223. 13812711()3(2)()23-⨯⨯-⨯-224. 222172(3)(6)()3+⨯-+÷---225.()43212(8)()(2)2-÷---⨯- 226. 81)4(2833--÷-227. 22100(2)(2)()3÷---÷-228. 22(3)(4)-÷-229. 22312()(0.8)2-⨯-÷-230. 2232113()(2)()32-⨯---÷-231. 232()(1)043-⨯-+⨯232. 2162()5+⨯-233. 2108(2)43-+÷--⨯234. []551(0.4)( 2.5)---⨯-235. 251(1)(10.5)3---⨯236. (14)26(14)(16)8-++-+-+ 237. ( 5.5)( 3.2)( 2.5) 4.8-+---- 238. (8)(25)(0.02)-⨯-⨯- 239. 1557()(72)29612-+-⨯-240. 11(2)()32-÷-241. 211(4)()22+-⨯-242. 51552040.65(31)112280.52-÷⨯+÷--÷243. 2212113()12( 4.53)()233⎡⎤⎡⎤⨯⨯---⨯---+⎣⎦⎢⎥⎣⎦244. 23242341()()()(1)32232-⨯-÷-⨯--+-245. 111512255()()16(1)44543⎧⎫⎡⎤÷-+⨯÷--⨯-⎨⎬⎢⎥⎣⎦⎩⎭246. 20(15)(28)17-+---- 247. 6523157-+-+248. 2113()(1)3838---+-249. ( 5.54)( 3.2)( 2.5) 4.8-+---- 250. 295(3)(2)4+⨯---÷ 251. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦252. 32432(2)(1)(2)(2)-+-⨯---÷-253. []3(5)2(6)3005-⨯---÷ 254. 222221()32()4(1)3332-⨯-⨯-+-⨯-255. 221313(5)()240(4)2354⎡⎤-⨯--⨯--÷-⨯-⎢⎥⎣⎦256. 1347()(154)620512--+-⨯-⨯257. 3412()(5)777÷-⨯÷-258. ( 5.5) 3.2 4.5 6.8-⨯+⨯ 259. 2238()(4)()(8)595⨯---⨯-+-⨯260. 11(13)(134)()1367-⨯-⨯⨯-261. ()()()224275543()7811⎡⎤----⨯÷⨯-⎣⎦262. ()()23210022()(2)3÷---÷-+-263. 222172(3)(6)()3-+⨯-+-÷-264. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦265. 201023)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--266. )145()2(52825-⨯-÷+-267. 7111(4)(5)(4)38248---+--268. 11(0.5)(3) 6.75542---+-269. (6)(4)(32)(8)3-⨯-+-÷-- 270. 1(5)(16)(2)3-÷-÷- 271. 4321(2)(8)()(2)2-÷---⨯-272. 322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--273. 111117(113)(2)92844⨯-+⨯-274. 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭275. 1113|16|2(4)()448⎡⎤⎡⎤---⨯-÷--⎢⎥⎢⎥⎣⎦⎣⎦276. (9)(4)(60)12-⨯-+-÷ 277. 230(3)3(2)--÷⨯-278. 22312()(0.8)2-⨯-÷-279. 37511()2532162-⨯-÷280. 2232113()(2)()32-⨯---÷-281. 2333(2)(3)(1)(3)---⨯---282. 3233112()()(2)33-÷---⨯-283. 22131(2)2[()3]245--⨯--⨯÷284. 13611754136227231++-285. 22)36()33(24)12581(÷-÷---⨯-286. 2132()5+⨯-287. 222172(3)(6)()3-+⨯-+-÷-288. 225(3)[()]39-⨯-+- 289. 28(3)(2)+-⨯- 290. 22100(2)(2)()3÷÷----291. 421232()33÷⨯--292. 24(3)2(3)4--⨯--⨯293. 12411()()()23523+-++-+-294. 11( 1.5)4 2.75(5)42-+++-295. 200612(1)(24)(2 2.75)83-+-⨯+-296. 103(1)2(2)4-⨯+-÷297. 422(10)[(4)(33)2]-+--+⨯298. 33422()93-÷⨯-299. 2310110.25(0.5)()(1)82-÷-+-⨯-300. 4321(2)(8)()(2)2-÷---⨯-301. 222475(5)4(3)()(7)811⎡⎤----⨯÷⨯-⎣⎦302. 31{(3)[30.4(1)(2)]}2---+⨯-÷- 303. 421110.52(3)3-+-⨯⨯⨯-()[] 304. 3334[(17)6][(5)3](2)⨯-÷+--÷--305. 332313[8(2)1](3)(2)0.25--÷--+-⨯-÷306. 9.538(2|11.64 1.53 1.36|)----+-307. 73.17(812.03|219.83518|)--+308. 1112(398)-+--309. 95(945)----310. 5.6 4.7| 3.8 3.8-+---|311. 1213521(36)(16)(45)(10)27277+-+-+-++ 312.5211()(2)(4)319152⨯-⨯-⨯-313. 555()83()(13)()28666-⨯+-⨯---⨯314. 23181920222...222-----+315. 111 (133519971999)+++⨯⨯⨯316. 3145()2-⨯-317. 25()()( 4.9)0.656-+----318. 22(10)5()5-÷⨯-319. 323(5)()5-⨯-320. 25(6)(4)(8)⨯---÷-321. 1612()(2)472⨯-÷-322. 2(16503)(2)5--+÷-323. 32(6)8(2)(4)5-⨯----⨯324. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-325. 23122(3)(1)6293--⨯-÷-326. 21122()(2)2233-+⨯--327. 19971(1)(10.5)3----⨯328. 2232[3()2]23-⨯-⨯-- 329. 232()(1)043-+-+⨯330. 4211(10.5)[2(3)]3---⨯⨯-- 331. 215[4(10.2)(2)]5---+-⨯÷- 332. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-333. 42311[ 2(3)]6--⨯--- 334. 7574.037127.5371236)9618-+-⨯-+(335. 2212[3()0.8](2)35-⨯--÷-336. --+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪---+3825583521()337. [(3)(4)5][82(6)]4-⨯--⨯--⨯-÷338. -÷--÷-824134()()339. ()[()()]-÷-⨯⨯-11551135340. 42991310.25(1)12 3.7524283⎛⎫⎛⎫-÷-⨯-++-⨯ ⎪ ⎪⎝⎭⎝⎭341. 1311143343411-÷⨯÷342. ---⎛⎝ ⎫⎭⎪----⎛⎝ ⎫⎭⎪1133411334343. ()()------22222233344. 1235342123341822--÷-⎛⎝ ⎫⎭⎪+⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪345. -----÷-+--÷--22331349722232()|()()||||| 346. 13525(2)2514⎛⎫--÷-⨯- ⎪⎝⎭347. 234( 1.5)1243⎛⎫-÷-⨯- ⎪⎝⎭348. 34311(1)2⎡⎤⎛⎫-----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦349. 210.2343 5.35⎡⎤⎛⎫-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦350. 222243(3)(5)(0.3)0.95⎛⎫---+-⨯---÷- ⎪⎝⎭351. ()11232311412243⨯⨯-⎛⎝ ⎫⎭⎪--⎡⎣⎢⎢⎤⎦⎥⎥+÷-⎛⎝ ⎫⎭⎪352. 71957180251411313..-⎛⎝ ⎫⎭⎪÷-÷⨯⎛⎝ ⎫⎭⎪353. ()-÷⨯-⨯÷⨯-⎛⎝ ⎫⎭⎪11234021341435..354. ()()11160752116340534+--⎡⎣⎢⎤⎦⎥⨯-⎧⎨⎩⎫⎬⎭÷---⎛⎝ ⎫⎭⎪..355. ()-⨯-⎛⎝ ⎫⎭⎪-⨯--⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥212341351499113192222356. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦357. 33423(1)(1)--⨯---358. 33510.2(2)5⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦359. 12(17)1(0.6)4⎡⎤---÷-+-⎢⎥⎣⎦360. 2311(10.6432)⎡⎤----÷⎣⎦361. 3213322.2512853⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦362. []261(0.4)( 2.5)---⨯-363. 362211362⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭364. 1448551836615335175123192155⨯÷-+⨯⎛⎝ ⎫⎭⎪-⨯+⎛⎝ ⎫⎭⎪-⎡⎣⎢⎤⎦⎥.....365. ()()()222410.4 3.1 2.610.30.15⎧⎫⎡⎤⎛⎫-⨯---+⨯---÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭366. 513113(50)217348⎛⎫⎛⎫⎛⎫⨯-÷-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭367. ()11572348126824⎛⎫-+-⨯- ⎪⎝⎭368. 4535522723723237⎛⎫⎛⎫⎛⎫⨯---⨯--⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369. ()199719996661998⎛⎫-⨯- ⎪⎝⎭370. 33371. 4946111(3)20.24911235⎡⎤⎛⎫⎛⎫-÷⨯-⨯-⨯-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦372. 2782411813318833⨯÷⎪⎭⎫ ⎝⎛-⨯373. )2()2(2123322-+--⎪⎭⎫ ⎝⎛-+-374. ⎪⎭⎫⎝⎛----÷⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2135322132213122375. ()87216543313113)1(61)5.4(187********÷⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛---⨯⎪⎭⎫⎝⎛--⨯+-⨯⎪⎭⎫ ⎝⎛-376. )57(5857-⨯377. ()4443145-÷-378.(379. ()3330037÷-380. ()()()199084481990199014181990-⨯--⨯--⨯-⨯381. ()()999999999999999999+-⨯-+-382. ()()()()()149297483149297483-÷-⨯-÷-⨯-÷-383. ()()()⎭⎬⎫⎩⎨⎧-⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷⨯-2314.0411432417384. ()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+÷-⨯⨯-⎪⎭⎫ ⎝⎛-÷-12122211341125.0221132322385. ()41611143125.1012112310013+--⎪⎭⎫ ⎝⎛-÷+386. 199519953(0.125)[(2)]⨯-387. 25413()(0.612)()651010⨯+-÷-388. 322333342(-)⨯(-0.6)-(-)⨯1.5-2÷(-)253389. 232006333...3++++390. 199720002000200019971997⨯-⨯391. 22222221949195019511952...199719981999-+-++-+392. 22221111(1)(1)...(1)(1)23910---- 393. 1111 (12123123100)++++++++++394. 987654321987654324987654323987654322⨯-⨯395.1121231299()()...(...)233444100100100++++++++++396. 32)65()43(21--+---397. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭398.111135()532114⨯-⨯÷399. 34153()2--⨯-()400. 42223721-+--⨯-()()401. 1031224-⨯+-÷()()402. 2395525-⨯-÷-()()() 403. 333(125)()62187()777-÷-+÷+÷- 404.2725.0)431(218)522(52⨯÷--⨯--÷405. 311252525424⨯--⨯-⨯()406. 38(4)23--÷⨯407. 22733(3)⨯÷+-408. 4435(2)2(2)-+--÷-409. (28)(64)(1)5-÷-++-⨯410. 2(2)07(8)(2)÷-+÷--⨯-411. 13131()24524864⎡⎤-+-⨯÷⎢⎥⎣⎦412. 2332312(3)(2)(9)3÷-÷---÷413. 222122(1)33-÷⨯-414. 32432(2)(1)(2)(2)-+-⨯---÷-415. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦416. 75.61258)431(121-----417. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦418. 75)21(212)75(75211⨯-+⨯--⨯419. 4)2(51232⨯--÷-420. 50)3(15)3(42--÷--⨯421. 3211(10.5)2(3)7⎡⎤---⨯⨯--⎣⎦422. 22)7()6(6112119750-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛+--423. []3521325.06.05.2)1(⎪⎭⎫⎝⎛-⨯+--÷-424. 111117(113)(2)92844⨯-+⨯-425. 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦426. 33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦427. 2375(2)(10.8)114⎡⎤----+-⨯÷--⎢⎥⎣⎦428. 151623-÷-÷-()()() 429. 42(3)60.25-+⨯--÷430. 3(5)[1.85(21)7]4-÷--⨯431. []18{10.4 (10.4)0.4}÷-+-⨯432. 1111()636÷-⨯433. –3[4(4 3.51)][2(3)]---⨯⨯-+-434. ()3.57.75 4.25 1.1--÷435. 321612115()|(2)|(2)(|()|)2114332⎡⎤----+-⨯-÷---⎢⎥⎣⎦436. 1110.125(3)(3)()(0.25)488+++-+++-437. 5215[(9)]317.75632-----+438. 1211[3()1](8)8233⨯⨯---⨯--439. 7211()(4)9353-÷--⨯-440. 78(0.125)8-⨯441. 4010(0.25)256⨯442. 12(3)(4)56(7)(8)(23)(24)++-+-+++-+-+⋯+-+-443.1111111142648620102008-+-+-+⋯+-444. 1111(1)(1)(1)(1)2009200820071000-⨯-⨯-⨯⋯⨯- 445. 19(7)128(7)33(7)÷--÷-+÷-446.111111223344556++++⨯⨯⨯⨯⨯447.111 (101111125960)+++⨯⨯⨯448.2222 109985443 ++++⨯⨯⨯⨯449.1111 11212312100 ++++++++++450.1111 133******** ++++⨯⨯⨯⨯451.1111251335572325⎛⎫⨯++++⎪⨯⨯⨯⨯⎝⎭452.251251251251251 4881212162000200420042008 +++++⨯⨯⨯⨯⨯453.3245671 255771111161622222929 ++++++⨯⨯⨯⨯⨯⨯454.11111111()128 8244880120168224288+++++++⨯455.11111111 612203042567290 +++++++456.111111 13610152128 ++++++457.111111111 2612203042567290 --------458.11111 104088154238 ++++459.1111 135357579200120032005 ++++⨯⨯⨯⨯⨯⨯⨯⨯460.74.50.161111 1813153563 13 3.75 3.23⨯+⎛⎫⨯+++⎪⎝⎭-⨯461.11111 123420 261220420 +++++462.11111 20082009201020112012 1854108180270 ++++463.11224 26153577 ++++464.1111111 315356399143195 ++++++465.1511192997019899 2612203097029900 +++++++466.111 123234789 +++⨯⨯⨯⨯⨯⨯467.111 1232349899100 +++⨯⨯⨯⨯⨯⨯468.1111 135246357202224 ++++⨯⨯⨯⨯⨯⨯⨯⨯469.4444...... 135357939597959799 ++++⨯⨯⨯⨯⨯⨯⨯⨯470.9998971 12323434599100101 ++++⨯⨯⨯⨯⨯⨯⨯⨯471.11111 123423453456678978910 +++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯472.333...... 1234234517181920 +++⨯⨯⨯⨯⨯⨯⨯⨯⨯473.5719 1232348910 +++⨯⨯⨯⨯⨯⨯474.571719 1155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()475.34512 12452356346710111314 ++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯476.12349 223234234523410 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯477.123456 121231234123451234561234567 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯478.23993!4!100!+++ 479.234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++ 480.2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++ 481. 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++ ()482.22222211111131517191111131+++++------483. 222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯- 484.222222223571512233478++++⨯⨯⨯⨯ 485. 222222222231517119931199513151711993119951++++++++++-----。
初中数学计算题库
初中数学计算题库一、有理数运算1. 加法运算- 题目:计算(+3)+( - 5)。
- 解析:这就像是在数轴上玩游戏,正数是向右走,负数是向左走。
先向右走3步,再向左走5步,那最后就到了 - 2这个位置啦,所以(+3)+( - 5)= - 2。
- 题目:( - 2)+( - 3)。
- 解析:两个负数相加,就像两个倒霉蛋凑一块儿了。
向左走2步,再向左走3步,总共向左走了5步,所以( - 2)+( - 3)= - 5。
2. 减法运算- 题目:计算5-(+3)。
- 解析:减一个正数呢,就相当于加上它的相反数。
所以5-(+3)=5+( - 3),在数轴上就是从5这个位置向左走3步,结果就是2啦。
- 题目:( - 3)-(-5)。
- 解析:减一个负数就相当于加上它的正数哦。
那( - 3)-(-5)=(-3)+5,从 - 3这个点向右走5步,就到了2这个位置,所以结果是2。
3. 乘法运算- 题目:计算( - 2)×3。
- 解析:正数乘以负数,结果是负数。
就像你有3个负债2元的账单,那总共就负债6元啦,所以( - 2)×3=-6。
- 题目:( - 2)×(-3)。
- 解析:两个负数相乘就变成正数啦。
可以想象成欠了2次 - 3元,那就是得到了6元,所以( - 2)×(-3)=6。
4. 除法运算- 题目:计算( - 6)÷3。
- 解析:除法和乘法是反着来的。
负数除以正数结果是负数,就像把 - 6元平均分给3个人,每人负债2元,所以( - 6)÷3=-2。
- 题目:( - 8)÷(-2)。
- 解析:两个负数相除结果是正数。
把 - 8元的债务平均分给 - 2个人,那每人就得到4元啦,所以( - 8)÷(-2)=4。
二、整式运算1. 合并同类项- 题目:化简3x + 2x。
- 解析:这就好比3个苹果加上2个苹果,那就是5个苹果啦。
这里x就像苹果,所以3x+2x = 5x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学计算题强化训练一、有理数的加、减混和运算1.(-0.7)+(-0.4)+(-0.3)+0.5 2.( -3.2)+(-65)+(451)+(-65)3.(+15)+(-20)+(+28)+(-10)+(-5)+(-7)4.(-3.25)+3.75-41+2.5+343+(-421)5.-2.6+[-1.4+853-(-332)]+4326.(-253)+(+341)+(-352)+(+243)+(-121)+(+131)7.(-31)-(-143)-(-132)-(+1.75) 8.243-(-821)+(-241)+0.25-1.5-2.759.(-31)-(-2)-(+35)-(-31) 10. -1-(-21)-(+23)11.-3231-[541+(-371)+(-541)+(-271)]12.2-125-1513-(-153)-(-121)-3201913.2-125-11-{21-[31-(41+61)]}-4 14.581-3.7-(-7)-(-487)+3+3.715.|-0.25|+(-341)-(-0.75)+|-0.125|+8716.-(+0.5)-(-341)+2.75-(+721) 17.-|-31-(+32)|-|-41|-|-43|18.(-121)-(25.85)-(+143)-(-7.2)-(+25.85)-(-0.25)19.|3-4|+(-5-8)-|-1+5|-(5-20) 20.132-152+34-(-0.6)-(-353)21.1-[-1-(-73)-5+74]+|4| 22、3571()491236--+÷23、27211()9353---÷×(-4) 24、23212(10.5)3(3)3⎡⎤⎡⎤--⨯⨯÷-⎣⎦⎢⎥⎣⎦-1-25. )127(65)43(6513--+-- 26.4122)75.0()218()25.6()4317(-+---+-+二、有理数的乘、除、乘方混和运算1.(-3)2 2.-32 3.(-3)3 4.-33 5.(-32)2 6.(-32)3 7.-3×428.(-3×4)29.-32×2310.(-3)2×(-2)311.-32412.-0.1×(-0.1)3 13.-2×(-0.1)3-(-0.2)2+(-0.8)14.-62×(-121)2-32÷(-121)3×(-3)15.(-2)2-(-52)×(-1)5-24÷(-3)×(-21)416.-2{[-3+(1-1.2×65)÷(-2)]÷2} 17.-32+(-221)2-(-2)3+|(-2)2|18.-23-[(-3)2-22×41-8.5]÷(-21)2 19.-32×23 20.(-3)2·(-2)321.-2×3222.(-2×3)223.(-32)3 24.-(32)2 25.-322 26.23)3(227.|-2|3 28.-0.2×(-0.1)3 29.(-2)2(-1)5-(-2)230.-43÷(-43)×(-34) 31.17-8÷(-2)+4·(-2) 32.-23-3·(-1)3-(-1)35、0.8×(-1) 8、(-)÷(-) 36、(-4)÷(-12)× 37、4×(-2)3-(-3)238、(-3)×(+2)÷(-3) 39、(-)2·(-2)3÷(-1)540、71×(-8) 14、(-2)3×(-4)×1.25 41、(-75%)×(-21)+(-125)×-75×(-0.24)42. 323-; 17. ()524--; 43. ()()2332---; 44. -(-2)3(-0.5)4.45. 23-32-(-2)×(-7); 46. -14-61[2-(-3)2].(三)有理数加、减、乘、除、乘方混和运算1.-36032÷|-24| 2.(-121)-(-31)-(+41)3.-32×(-32)2+0.254×(-4)3+2019 4.-3-{3[)3(3--+0.4×(-121)]÷(-2)}5.(21-31+41-61+101-121)×(-60)-2216.(4x 2-7x -3)-(-5x 2-5x +5) 7.25a -{})27()]13(65[3-----+-a a a a8.-32-[(-5)3+(1-0.2×53)÷(-0.2)] 9.2-⎭⎬⎫⎩⎨⎧-⨯+-÷⨯---+)]6(65)2(2)4[()1(8210.(-2)2-(-52)×(-1)5-24÷(-3)×(-21)411.-62×(-121)2-32÷(-121)3×(-3)12.-2×(0.1)3-(-0.2)2+(-0.8) 13.-2-⎭⎬⎫⎩⎨⎧÷-÷⨯-+-2)]2()652.11(3[14.-1081÷49×91÷(-2)×(-64) 15.-85÷161-0.25×(-5)16.-121÷[121+31×(-2)] ÷41] 17.-121-1+121×[-(-31) 18.(-301)÷(32-101+61-52) 19.(-3)2×(-2)320.-32+(-221)2-(-2)2+|-22| 21.-23-[(-3)2-22×41-8.5]÷(-21)222. 143°29′47″+36°30′13″ 23. 91°4″+57°27′49″24. 15°27′34″×3 25. 147°37′46″÷4(四)代数式混和运算整 式 的 乘 除 法公式:(a m )N =a mn (a ·b )N =a N b N a -9=91a 1.)165(52232xyz y x -• 2.(-4x 2y )·(-x 2y 2)·(321y )3.(-2a n+1b N )2·(-3a N b )2·(-a 2c ) 4.(-21ab 2c )2·(-231abc )3·(12a 3b )5.(-ab 21)(1342322++-b ab ab ) 6.2(3x-2y )(x+5y )-6(x-y )(3x+2y )7.23×17 8.(a+b-c )(a-b+c ) 9.100.5×99.510.[2x 2-(x+y )(x -y )][(z-x )(z+x )+(y-z )(y+z )]11.(y+2x )(2x-y )-2(3x-2y )(-2y-3x )-(31x-3y )(2x-3y ) 12.(1-221)(1-231)(1-241)……(1-291)(1-2101)=201113.(2a+2b+1)(2a+2b-1)=63,求a+b 14.(2+1)(22+1)(24+1)(28+1)(216+1)15.20192-2019×2019 16.20192-20192+20192-20192+……+22-1217.(a+b+c )2 18.(9951)2 19. 100·2220.(x+1)(x+2)(x+3)(x+4) 21.a 2+b 2+c 2-2a+4b-6c+14=0,求c-a+b 的值22.已知a+b =5,ab=3,求a 2+b 2与 a-b 的值23.已知x+x1=3,求x 2+21x 的值,x 4+41x 的值。
24.(a+b )2(a-b )2 25.已知a-b =5,ab =-3,求(a+b )226.9x 2-mxy +16y 2,求m 27.已知(a+b )2=1,(a-b )2=25,求a 2+b 2+ab 的值。
有理数混和运算(四)整式的加减、 化简、求值。
1.6a+7a 2-5a-6a 2(其中a=-3) 2.5x 2-3x 3-x-4+3x 3+2x-x 2-9(其中x=121)3.(3a 3-2a 2+a-1)-(4a 3-2a 2-3a+2)(其中a=-1)4.21x-2(x-231y )+(231y -23x ) (x=-2,y=32)5.3xy 2-[xy-2(2x-23x 2y+2xy 2)]+3x 2y 6.2(m 3-2n 2)-2[m 3-2(2m 2-1)] (x=3,y=-31) (m=11-=n)7.7ab-{4a-3[6ab+5(ab+a-b )-7a]-2}(a=1,b=1)8.(2x 2y-2xy 2)-[(-3x 2y 2+3x 2y )+(3x 2y 2-3xy 2)(x=-1,y=2)9.xy+2y 2+(x 2-3xy-2y 2)-(x 2-xy )(x=-52,25=y )10.(2x-3y-2xy ))-(x-4y+xy )(x+y=5,xy=-3)11.2(2a+b )2-3(2a+b )+8(2a+b )2-6(2a+b )(a=23,41-=b )12.2(3a-1)-3(2-5a+3a 2)(a=-31)13.3x 2-8x+x 2-12x 2-3x 2+1(x=2) 14.4x 2+2xy+9y 2-2x 2-3xy+y 2(x=2,y=1)15.若(x+1)2+|y+2|=0,求5xy-23x 3y 2-4xy+21x 3y 2-21xy-3x 3y 2-x 3y 2的值16.21x-(2x-232y )+(-23x+31y 2)(x=-2,y=-21)17.81(3y-3)-[41(y-1)-83(1-y )](y=1)18.已知:代数式3-2x 2+3x+3x 2-5x-x 2-7求①当x=-21时,求这个多项式的值; ②当x 为何值时,这个多项式的值为2。
解一元一次方程1.815622+--x x =1 2.6110312+-+x x =1 3.y-23-y =2136+y 4.2.08.055.05.14---x x =1.02.1x- 5.5.032.04--+x x =-1.6 6.23-x +36x -=)4211(32x++7.|x-1|=5 8.2[)]2132(34--x x =x 439.3x-2(x-1)=-1-5x 10.2x-)1(61)1(87-++x x =8 11.33223+-+x x =613+x 12.x x -+232=1359++x13.-25(x-1)=1-x 43- 14.|x-5|=3 15.423163xx --=+16.3(2y+1)=2(1+y ) 17.3823---x x =1 18.621x -+31+x =1-412+x 19.2(y-3)-6(2y-1)=-3(2-5y )20.-(x-5)+22-x =5433+-+x x 21.x-)]21(21[21--x x =2 22.103.002.0+x =235.112.018.018.0x x --+- 23.3.027.17.0xx --=1 24.83243x x --+=x -21 25.x x x =-+-)]53(2121[21二元一次方程组1.⎩⎨⎧=+=043x y y x 2.⎩⎨⎧=+=-2.252553x y x y 3.⎩⎨⎧=+=-521y x y x4.⎩⎨⎧=+=17235y x y x 5.⎩⎨⎧=-=-22534y x y x 6.⎩⎨⎧=+-=-672953y x y x7.⎩⎨⎧=-=+422822y x y x 8.⎩⎨⎧=-=+1827173y x y x 9.⎪⎩⎪⎨⎧=+=+8.23.02.0232n m nm 10.⎩⎨⎧-=+=-176853y x y x 11.⎩⎨⎧=+=+4.01.04.025.02.0y x y x 12.⎩⎨⎧=-=+32823y x y x13.⎩⎨⎧-=-=-+)2(3)9(4103)(2y x y y x 14.⎩⎨⎧=-=13253q p q p 15.⎩⎨⎧=-=1325y x x16.⎨⎧=-42y x 17.⎨⎧=-1523y x 18.⎨⎧=-332y x19.⎩⎨⎧=-=+763132y x y x 20.⎩⎨⎧-=+=-154653y x y x 21.⎩⎨⎧=--=--023256017154y x y x22.⎩⎨⎧=-=-723532y x y x 23.⎩⎨⎧=+--+=+5)53(4)52(3)2(51y x y x 24.⎪⎩⎪⎨⎧=--+=-++28)(2)(3623y x y x yx y x25.⎪⎪⎩⎪⎪⎨⎧+=+=-21376565y x y x 26.⎪⎪⎩⎪⎪⎨⎧=---=-++04235132423512y x y x 27.⎪⎩⎪⎨⎧=--+=-++2)(5)(4632y x y x y x y x28.⎪⎩⎪⎨⎧=+=-123222n m n m 29.⎩⎨⎧+=++=+711)23(22523x y x x y x 30.⎩⎨⎧=+=+673317831735y x y x31.⎪⎩⎪⎨⎧=--+=-++2)(5)(4632y x y x y x y x 32.⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x yx y x33.⎪⎪⎩⎪⎪⎨⎧=-+-+=--634151)2(3.01y x y x y 34.⎩⎨⎧=-++=--+15)(3)(43)(3)(2y x y x y x y x35.⎪⎪⎩⎪⎪⎨⎧+=-=--)18(3)2(256113x y x y y x 36.⎪⎩⎪⎨⎧=---=+43)1(3)43(2023y x y x37.⎪⎩⎪⎨⎧=+=+8.23.02.0232n m n m 38.⎩⎨⎧=+=+4.01.04.02.05.02.0y x y x39.⎩⎨⎧-=-=-+)2(3)9(473)(2y x y y x 40.⎪⎩⎪⎨⎧=-++=--+1624)(4)(3yx y x y x y x41.⎩⎨⎧⨯=+=+%922800%64%962800y x y x 42.⎪⎪⎩⎪⎪⎨⎧=+=+23846055912y x y x43.⎪⎪⎩⎪⎪⎨⎧=+=-400)(6040400)(313y x y x 44.⎪⎩⎪⎨⎧=+=+15166140yx y x45.⎩⎨⎧=+=+90002600150050y x y x 46.⎪⎩⎪⎨⎧=+=--+950500%101%151y x y x47.⎩⎨⎧=+--+=+5)43(4)52(3)2(51y x y x 48.⎪⎪⎩⎪⎪⎨⎧=+=+2123232y x yx49.⎪⎩⎪⎨⎧=+--=--2322)1(3)1(4y x y y x 50.⎩⎨⎧=++-=++-14)3()8(8)2()4(x y y x x y y x51.⎪⎪⎩⎪⎪⎨⎧-=++=+1)(233218)(59y x x y x 52.⎩⎨⎧=-+--=-5)1()2(2)1(22y x y x53.⎪⎪⎩⎪⎪⎨⎧=----=++-646373222y x y x yx y x 54.⎩⎨⎧=+=+20815142211715y x y x55.⎪⎪⎩⎪⎪⎨⎧=+=-232143y x y x 56.⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x yx y x57.⎪⎪⎩⎪⎪⎨⎧=+=+113319331x y y x 58.⎪⎪⎩⎪⎪⎨⎧=-=-1537452y x yx.59.⎩⎨⎧=-+=+92.43%)201%)(1000%2000(%24.3%%y x y x 60. ⎩⎨⎧⨯=+=+50%20%15%3050y x y x61.⎩⎨⎧=-++=--+85)5()1(136)3()4(x y y x x y y x 62.⎪⎩⎪⎨⎧++-+=+--=++1))((310)4(222y y x Y x x y x yx x x63.⎪⎪⎩⎪⎪⎨⎧-=--+=-++11063106y x y x yx y x 64.⎩⎨⎧=-+=--082043y x z y x 求zx yz xy z y x 222++++的值65.⎪⎪⎩⎪⎪⎨⎧=-++=-++2-213222132y x y x 66. 810766734462+--=--=++y x y x y x67.⎪⎩⎪⎨⎧-=+---=+--1)2(4)2(512232y x y x yx y x 68.⎩⎨⎧⨯=+=+%20100%30%15100y x y x一元一次不等式的解法与应用1.把不等式的解 x <3,x ≥27表示在数轴表示2.求不等式x ≤5的非负整数解。