拉曼光谱
Raman(拉曼)光谱原理和图解
光散射 - 瑞利散射
• 散射光中,弹性 (瑞利) 散射占主导 • 前… 后…
入射光 分子 分子
散射光
• 散射光与入射光有相同的频率
emission
excitation
光散射 - 拉曼
• 散射光中的1010光子之一是非弹性散射(拉曼) • 前… 后…
入射光 分子 分子振动
散射光
• 光损失能量,使分子振动
采用Leica显微镜 优势 4: 采用Leica显微镜
Ÿ 高热稳定性和机械稳定性 Ÿ 目镜:Leica 原配,符合欧洲及北美等安全标准。好处是 a. 高分辨,大视野,可方便、准确地寻找微米 级样品:如矿物包 裹体等,以及低反差样品;b. 可安全地观察激光焦点,以确认 激光焦点是否聚焦在微米颗粒上。 Ÿ 同时配有摄像机:彩色,高分辨,可观察激光焦点,不饱和 ,提供图像采集卡及软件,可在计算机上存储白光照片,无需 照相机。 Ÿ 照明光源:Leica原配,确保质量。
perpendicular
polarization of Raman peak
拉曼偏振
width of Raman peak
拉曼峰宽
quality of crystal
晶体质量
intensity of Raman peak
拉曼峰强度
amount of material
物质总量
拉曼光谱的特点和主要困难
高灵敏度
优势 1. 高灵敏度:
Ÿ 灵敏度远高于其它同类拉曼谱仪 检验标准:硅三阶峰(约在1440 cm-1)的信噪比≧10:1,检测 条件为:激光输出功率20mW,波长514.5nm,狭缝宽度50微米 ,曝光时间60秒,累加次数5次,binning为1或2,光栅为1800刻 线。显微镜头为 X50常规镜头。
拉曼光谱
受光学系统参数等因素的影响
◆荧光散射现象会对拉曼光谱造成很大
的背景干扰。
4. 拉曼光谱的应用——宝石研究与鉴定
红宝石
蓝宝石
天然宝石和合成宝石的鉴定:
644
天然红宝石
合成红宝石
本图谱采用的是MiniRam微型近红外激光拉曼光谱仪,型号是BTRI11一785
拉曼光谱在其他领域的应用:
(1)拉曼光谱在化学研究中的应用 (2)拉曼光谱在高分子材料中的应用 (3)拉曼光谱技术在材料科学研究中的应用 (4)拉曼光谱在生物学研究中的应用 (5)拉曼光谱在中草药研究中的应用 (6)拉曼光谱技术在宝石研究中的应用
谢 谢!
3.3 Raman散射产生的条件―拉曼活性
★拉曼活性振动
ⅰ诱导偶极矩 = E ⅱ非极性基团,对称分子; 拉曼活性振动—伴随有极化率变化的振动
★红外活性振动
ⅰ永久偶极矩;极性基团; ⅱ瞬间偶极矩;非对称分子; 红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带
CO2的振动:它有3n-5=4个基本振动
物质总量
拉曼光谱的优点和缺点:
◆拉曼散射信号弱 ►样品无需制备,不受样品形态限制; ►对样品无接触,无损伤;
(比荧光光谱平均小2-3数量级)
◆激光瑞利散射比拉曼信号强 (约1010-1014,对拉曼信号干扰很大) ◆不同振动峰重叠和拉曼散射强度容易
►能适合黑色和含水样品;
►光谱成像快速、简便,分辨率高;
O=C=O
对称伸缩
偶极距不变无红外活性
O=C=O
反对称伸缩
偶极距变有红外活性 极化率不变无拉曼活性
极化率变有拉曼活性
3.4.拉曼光谱提供的物质的信息 拉曼频率的确认 物质的组成
拉曼光谱
• 拉曼光谱在化学研究中的应用
拉曼光谱在有机化学方面主要是用作结构鉴定和分 子相互作用的手段,它与红外光谱互为补充,可以鉴别特 殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼 峰形状是鉴定化学键、官能团的重要依据。利用偏振特性, 拉曼光谱还可以作为分子异构体判断的依据。在无机化合 物中金属离子和配位体间的共价键常具有拉曼活性,由此 拉曼光谱可提供有关配位化合物的组成、结构和稳定性等 信息。另外,许多无机化合物具有多种晶型结构,它们具 有不同的拉曼活性,因此用拉曼光谱能测定和鉴别红外光 谱无法完成的无机化合物的晶型结构。
发展前景
• 激光技术 现在国际上推出的从事非线性光谱研究的超快(飞秒或皮 秒)激光器,技术上已经达到比较成熟地步,可以成套购 买,也较稳定。非线性拉曼光谱技术已经在生命科学领域 研究中发挥它的独特和重要作用。例如,美国哈佛大学的 谢晓亮教授在开拓并运用相干反斯托克斯拉曼光谱显微学 (CARS Microscopy)研究活细胞内部三维结构方面取得 一系列重要成果。高质量的超快激光器还推动了另一个极 具前途的表面光谱技术,就是合频(SFG)技术的发展, 它作为具有独特的界面选择性的非线性光谱方法,已经在 界面和表面科学、材料乃至生命领域研究中发挥着越来越 重要的作用。
拉曼光谱
• 拉曼光谱(Raman spectra),是一种散射 光谱。拉曼光谱分析法是基于印度科学家 C.V.拉曼(Raman)所发现的拉曼散射效 应,对与入射光频率不同的散射光谱进行 分析以得到分子振动、转动方面信息,并 应用于分子结构研究的一种分析方法。最 常用的红外及拉曼光谱区域波长是 2.5~25μm。(中红外区)
拉曼光谱的应用 • 拉曼光谱技术以其信息丰富,制样简单,水的干 扰小等独特的优点,在化学、材料、物理、高分 子、生物、医药、地质等领域有广泛的应用。 • 通过对拉曼光谱的分析可以知道物质的振动转动 能级情况,从而可以鉴别物质,分析物质的性质. 例如:天然鸡血石和仿造鸡血石的拉曼光谱有本 质的区别,前者主要是地开石和辰砂的拉曼光谱,后 者主要是有机物的拉曼光谱,利用拉曼光谱可以区 别二者;鉴别毒品;利用拉曼光谱可以监测物质 的制备;监测水果表面残留的农药。 • 激光拉曼光谱法的应用有以下几种:在有机化学 上的应用,在高聚物上的应用,在生物方面上的 应用,在表面和薄膜方子对光子的一种非弹性散射效应。当用一定 频率的激发光照射分子时,一部分散射光的频率和入射光 的频率相等。这种散射是分子对光子的一种弹性散射。只 有分子和光子间的碰撞为弹性碰撞,没有能量交换时,才 会出现这种散射。该散射称为瑞利散射。还有一部分散射 光的频率和激发光的频率不等,这种散射成为拉曼散射。 Raman散射的几率极小,最强的Raman散射也仅占整个 散射光的千分之几,而最弱的甚至小于万分之一。 • 处于振动基态的分子在光子的作用下,激发到较高的、不 稳定的能态(称为虚态),当分子离开不稳定的能态,回 到较低能量的振动激发态时,散射光的能量等于激发光的 能量减去两振动能级的能量差。
拉曼光谱
拉曼光谱(Raman spectra),是一种散射光谱。光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。
拉曼光谱-原理 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:
c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
.24H-SiC
图4为橙色区域(纵切片上边缘的三角形区域)SiC晶体的显微拉曼光谱图。分析得到各拉曼峰对应的声子模及其简约波矢、对称性分别为:205.8cm-1(FTA,x=0.5,E2),267.1cm-1(FTA,x=1,E1);612.0cm-1(FLA,x=1,A1);778.8cm-1(FTO,x=0.5,E2),796.3cm-1(FTO,x=0,E1);970.0cm-1(LOPC模)。4H-SiC的六方百分比为0.5。简约波矢x=0.5的FTA模(205.8cm-1)和FTO模(778.8cm-1)的强度分别大于其它简约波矢的FTA和FTO模的强度,且其它拉曼峰也与4H-SiC的文献报道值[5]相符,可以判断橙色区域为4H-SiC。值得注意的是,拉曼光谱中出现了187.5cm-1的拉曼峰,这是由于4H-SiC简约波矢x=0.5的FTA模峰形展宽造成的,说明4H-SiC的结晶质量一般[5]。实验测得橙色区域4H-SiC的导电类型也为n-型,说明载流子主要为自由电子。970.0cm-1的拉曼峰为4H-SiC的LOPC模,与本征4H-SiC的FLO模(964.0cm-1,x=0,A1)[Байду номын сангаас]相比较,其拉曼位移值仅仅增大了6.0cm-1;且LOPC模的强度仍可与778.8cm-1(FTO,x=0.5)的强度相比拟,这说明橙色区域4H-SiC晶体中的载流子(主要为自由电子)浓度不高[8]。这说明在掺氮6H-SiC单晶的生长条件下,4H-SiC与6H-SiC的掺氮效应存在明显差异。
拉曼光谱
24
拉曼光谱的应用
同种分子的非极性键S-S,C=C,N=N,C≡C产生强 拉曼谱带,随单键→双键→三键谱带强度增加。 红外光谱中,由C≡N,C=S,S-H伸缩振动产生的谱 带一般较弱或强度可变,而在拉曼光谱中则是强谱 带。
环状化合物的对称呼吸振动常常是最强的拉曼谱带。
25
拉曼光谱的应用
21
拉曼光谱仪使用注意事项
测量前要按照先开硬件再开软件的原则开机,以免 造成开机后的软件报错; 开机完成后,测量前需先进行单晶硅的测量,从而 对仪器进行矫正; 测量聚焦过程中要防止样品碰到物镜,以免造成物 镜损坏或污染; 测量完成后关机,关机顺序与开机相反,为先软件 后硬件的原则。同时务必保证激光器的关闭,以免 影响激光器寿命或发生火灾。
34
拉曼光谱在高分子中的应用
Liem等利用共焦显微拉曼光谱和极化拉曼光谱研究 了聚苯乙烯(PS)薄膜(50~180nm)的玻璃化转 变温度,研究表明当PS薄膜越薄,其玻璃化转变温 度越低,当厚度超过90nm时,其玻璃化转变温度与 本体聚合物相一致,这一测量结果与布里渊散射法 和椭圆偏光仪法一致.
32
拉曼光谱在高分子中的应用
研究聚合物链的构象结构; 研究聚合物的玻璃化转变和结晶; 研究聚合物的扩散界面; 研究聚合物共混体系的相态结构及其高分子多相体 系的相容性。 研究聚合物溶液的相转变。
33
拉曼光谱在高分子中的应用
高分子聚合物可以分为两大类———非晶聚合物和 结晶聚合物。对于非晶聚合物,玻璃化转变是一种 普遍现象,在高聚物发生玻璃化转变时,许多物理 性能发生急剧变化。如作为塑料使用的高聚物,当 温度升高至发生玻璃化转变温度以上时,便丧失了 塑料原有的坚固性,变成了橡胶;而作为橡胶使用 的材料,当温度降低至玻璃化转变温度以下时,便 失去橡胶的高弹性,变成硬而脆的塑料。
拉曼光谱
拉曼光谱(RAMAN SPECTRA)的原理(续)
Mid IR Stokes Raman Rayleigh Anti-Stokes Raman Fluorescence
红外 斯托克斯拉曼
瑞利散射 反斯托克斯拉曼
荧光
Real States 真实能级
Virtual State 虚能级
Vibrational States 振动能级 i
的研究员充满吸引力。
拉曼光谱仪的主要厂商及相关仪器
美国PerkinElmer公司的RamanStation 400系列拉曼光 谱仪
全球唯一的运用中阶梯光栅及二维面阵CCD 检测器组合成的二维色散型拉曼光谱仪,集 中了宽波段,高分辨率及检测速度快等特点, 摒弃了传统的获取高分辨率图谱所惯用的多 次测量不同谱带再进行拼接的方法,可在一 秒钟内获取覆盖整个波段的高分辨率拉曼图 谱。 分光系统采用中阶梯光栅技术,不含任何可 移动元件,保证系统的高度稳定性 高灵敏度二维CCD检测器,使得整个波段的 数据同时获取,避免了光谱失真 采用超稳定785nm的激光光源,减弱了荧光 背景的产生。
拉曼光谱(RAMAN SPECTRA)的原理(续)
设散射物分子原来处于基电子态,振动能级如图所示。 当受到入射光照射时,激发光与此分子的作用引起的 极化可以看作为虚的吸收,表述为电子跃迁到虚态 (Virtual state),虚能级上的电子立即跃迁到下能级而 发光,即为散射光。设仍回到初始的电子态,则有如 图所示的三种情况。因而散射光中既有与入射光频率 相同的谱线,也有与入射光频率不同的谱线,前者称 为瑞利线,后者称为拉曼线。在拉曼线中,又把频率 小于入射光频率的谱线称为斯托克斯线,而把频率大 于入射光频率的谱线称为反斯托克斯线。
拉 曼 光 谱
拉曼光谱1.1 引言拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。
红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。
拉曼光谱的突出优点是可以很容易地测量含水的样品,而且拉曼散射光可以在紫外和可见光波段量测。
由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。
拉曼光谱得名于印度物理学家拉曼(Raman)。
1928年,拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。
以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。
拉曼因此获得诺贝尔奖。
当一束入射光通过样品时,在各个方向上都发生散射。
拉曼光谱仪收集和检测与入射光成直角的散射光。
由于收集和检测的散射光强度非常低,因此拉曼光谱的应用和发展受到很大限制。
六十年代激光开始广泛应用,拉曼光谱仪以激光作光源,光的单色性和强度都大大提高,拉曼散射仪的信号强度因而大大提高,拉曼光谱技术得以迅速发展,应用领域遍及物理,材料,化学,生物等学科,并已成为光谱学的一个分支−拉曼光谱学。
2.1拉曼光谱原理2.1.1光的散射入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品,一小部分光则改变方向,发生散射。
一部分散射光的波长与入射光波长相同,这种散射称为瑞利散射(Rayleigh scattering)。
1899年,瑞利从实验中得出结论:晴天时天空呈兰色的原因是大气分子对阳光的散射。
瑞利还证实:散射光的强度与波长的四次方成反比。
这就是瑞利散射定律。
由于组成白光的各种颜色的光中,兰光的波长最短,因而散射光强度最大。
天空因而呈现兰色。
瑞利当时并没有考虑到散射光的频率变化。
他认为散射光与入射光的频率是相同的。
所以后来把与入射光波长相同的散射称为瑞利散射,而把波长与入射光不同的散射称为拉曼散射。
拉曼光谱
Raman 散射的产生:光电场 E 中,分子产生诱导
偶极距
= E
( 分子极化率)
3.红外活性和拉曼活性振动
①红外活性振动 ⅰ永久偶极矩;极性基团; ⅱ瞬间偶极矩;非对称分子; 红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带. ②拉曼活性振动
强度由分子偶极距决定 -OH, -C=O,-C-X 异:拉曼 分子对激光的散射 拉曼: 适用于研究同原子的非极性键振动
强度由分子极化率决定 -N - N-, -C-C-
互补
O=C=O
对称伸缩
偶极距不变无红外活性
O=C=O
反对称伸缩
偶极距变有红外活性
极化率变有拉曼活性 极化率不变无拉曼活性
二、拉曼光谱的应用
激光拉曼光谱
一、 拉曼光谱基本原理
二、拉曼光谱的应用 三、 激光拉曼光谱仪
概述 拉曼光谱得名于印度物理学家拉 曼(Raman)。1928年, 拉曼首先从 实验观察到单色的入射光投射到物质 中后产生的散射,通过对散射光进行 谱分析,首先发现散射光除了含有与 入射光相同频率的光外,还包含有与 入射光频率不同的光。以后人们将这 种散射光与入射光频率不同的现象称 为拉曼散射。拉曼因此获得诺贝尔奖。
●另一种是分子处于激发态振动能级,与光子碰撞后,分子跃迁回基态而
●两种情况,散射光子的频率发生变化了,减小或增加了,称为拉曼位移。
Stokes线与反Stokes线
●将负拉曼位移, 即ν0-ν1称为Stokes线(斯托克斯线)。 ●将正拉曼位移, 即ν0+ν1称为反Stokes线(反斯托克斯线)。 正负拉曼位移线的跃迁几率是相等 的,但由于反斯托克斯线起源于受激振 动能级,处于这种能级的粒子数很少, 因此反斯托克斯线的强度小,而斯托克 斯线强度较大,在拉曼光谱分析中主要 应用的谱线。
拉曼光谱原理+模型+常见应用
拉曼光谱原理+模型+常见应用拉曼光谱是一种非常重要的光谱分析方法,它利用分子振动能级的变化而发射或吸收光子,研究样品的分子结构和化学成分。
拉曼光谱具有独特的优势,可以应用于各种领域,包括化学、生物、材料科学等。
本文将重点介绍拉曼光谱的原理、模型和常见应用。
拉曼光谱的原理:拉曼光谱是一种分子振动光谱,其基本原理是分子在受到激发后,分子的振动状态会发生变化,从而导致入射光子的频率发生改变。
这个现象被称为拉曼散射,是由分子的振动引起的。
当分子受到光子激发,分子的振动能级发生变化,使得散射光子的频率发生变化,这种频率差被称为拉曼频移。
通过测量样品散射光的频率和强度,可以得到样品的拉曼光谱图谱,从而分析样品的分子结构和化学成分。
拉曼光谱的模型:拉曼光谱的模型主要是通过量子力学和分子振动理论来描述分子的振动状态和引起的拉曼频移。
在拉曼光谱分析中,通常采用谐振子模型和量子力学模型来模拟分子的振动模式和能级,从而推导出分子的振动能级和拉曼频移的数学表达式。
利用这些模型,可以计算出不同分子的拉曼频移和强度,从而分析样品的分子结构和化学成分。
拉曼光谱的常见应用:1.化学分析:拉曼光谱可以用于分析化学物质的结构和成分,包括有机分子、高分子材料、药物等。
通过拉曼光谱分析,可以辨识和鉴定不同化合物的结构和功能团,从而实现化学成分的快速检测和分析。
2.生物医学:拉曼光谱可以用于生物医学领域,包括生物分子的结构和功能分析、生物样本的快速检测和诊断等。
通过分析生物样本的拉曼光谱,可以实现对细胞、组织和生物分子的快速、无损检测和分析。
3.材料科学:拉曼光谱可以用于材料科学领域,包括材料表面、界面和纳米结构的表征、材料的结构、形貌和成分分析等。
通过拉曼光谱分析,可以实现对材料的微观结构和性质的表征和分析。
4.环境监测:拉曼光谱可以用于环境监测领域,包括大气、水体和土壤样品的化学成分和污染物的分析、环境污染的监测和评估等。
通过拉曼光谱分析,可以实现对环境样品的快速、准确的分析和监测。
拉曼(Raman)光谱
拉曼辐射理论是1923年由德国物理学 家A.Smekal首先预言的,1928年印度物理 学家C.V.Raman观察到苯和甲苯的效应, 在此基础上发展起了拉曼光谱学。60年代 激光被 用作拉曼光谱的激发光源之后, 由于激光的优越性,从而大大提高了拉曼 散射的强度,使拉曼光谱进入了一个新时 期,得到了日益广泛的应用。
聚对苯二甲酸乙二醇酯(PET)的红外及拉曼光谱
拉曼光谱与红外光谱分析方法比较
拉曼光谱
红外光谱
光谱范围40-4000Cm-1
光谱范围400-4000Cm-1
水可作为溶剂
样品可盛于玻璃瓶,毛细管等容器 中直接测定
固体样品可直接测定
水不能作为溶剂 不能用玻璃容器测定 需要研磨制成 KBR 压片
红外活性和拉曼活性振动
4)在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键 的对称伸缩振动是强谱带,反这类键的对称伸缩振 动是弱谱带。红外光谱与此相反。
5)C-C伸缩振动在拉曼光谱中是强谱带。
6)醇和烷烃的拉曼光谱是相似的:I. C-O键与C-C键的力常 数或键的强度没有很大差别。II. 羟基和甲基的质量仅相 差2单位。 III.与C-H和N-H谱带比较,O-H拉曼谱带较 弱。
红外与拉曼谱图对比
Raman and Infrared Spectra of H-C≡C-H
Asymmetric C-H Stretch
Symmetric C-H Stretch C≡C Stretch
463 cm-1
Vibrational modes of methane (CCl4)
219 cm-1
中红外区
中红外光区吸收带(3 ~ 30µm )是绝大多数有机化合物 和无机离子的基频吸收带(由基态振动能级(=0)跃迁 至第一振动激发态(=1)时,所产生的吸收峰称为基频 峰)。由于基频振动是红外光谱中吸收最强的振动,所 以该区最适于进行红外光谱的定性和定量分析。同时, 由于中红外光谱仪最为成熟、简单,而且目前已积累了 该区大量的数据资料,因此它是应用极为广泛的光谱区。
拉曼光谱拉曼光谱分析
引言概述:拉曼光谱是一种非侵入性的光谱分析技术,可以用来研究物质的化学成分、结构和分子间相互作用等信息。
通过测量样品与激发光相互作用后反散射光的频移,可以得到样品的拉曼光谱图谱。
拉曼光谱具有快速、灵敏和无需样品处理等优势,因此在化学、材料科学、生物医学和环境科学等领域被广泛应用。
正文内容:一、理论基础1. 拉曼散射原理:介绍拉曼光谱的基本原理,包括应力引起的拉曼散射和分子振动引起的拉曼散射。
2. 基本理论模型:介绍拉曼光谱的基本理论模型,包括简谐振动模型和谐振子模型等。
二、仪器设备1. 激发光源:介绍常用的激发光源,如激光器和光纤激光器等,以及它们的特点和选择。
2. 光谱仪:介绍常用的拉曼光谱仪,包括激光外差光谱仪和光纤光谱仪等,以及它们的原理和优缺点。
3. 采样系统:介绍拉曼光谱的采样系统,包括反射式、透射式和光纤探头等,以及它们的适用范围和操作注意事项。
三、数据处理与分析1. 光谱预处理:介绍光谱预处理的方法,包括光谱平滑、噪声抑制和基线校正等,以提高数据质量和减少干扰。
2. 谱图解析:介绍拉曼光谱谱图的解析方法,包括峰拟合、峰识别和谱图比较等,以确定样品的化学成分和结构信息。
3. 定量分析:介绍拉曼光谱的定量分析方法,包括多元线性回归和主成分分析等,以快速准确地测量样品的含量和浓度。
四、应用领域1. 化学分析:介绍拉曼光谱在化学分析中的应用,包括有机物和无机物的定性和定量分析,以及催化剂和原位反应研究等。
2. 材料科学:介绍拉曼光谱在材料科学中的应用,包括纳米材料、多晶材料和聚合物等的表征和结构分析。
3. 生物医学:介绍拉曼光谱在生物医学中的应用,包括体液中代谢产物和蛋白质的检测,以及癌症和药物代谢研究等。
4. 环境科学:介绍拉曼光谱在环境科学中的应用,包括土壤和水体中有机物和无机物的检测,以及大气污染和环境污染物的监测等。
五、发展前景与挑战1. 发展前景:介绍拉曼光谱在未来的发展前景,包括高灵敏度和高分辨率的光谱仪、纳米尺度的光学探针和超快激光技术等。
波谱学课件——拉曼光谱6Raman
(3)从光的波动性分析拉曼散射的产生
光是电磁波,即它是沿某一方向传播的交变 电磁场。其交变电场可用下式描述:
E=E0cos(2πν′t)
E —在任意t时刻的电场强度; E0—入射光的交变电场强度; ν′为交变电场的频率
样品分子的电子云在交变电场的作用下会诱 导出电偶极矩:
μ=αE
式中 μ—样品分子诱导的偶极矩 E—入射光的交变电场强度 α—分子的极化率(polarizability)
例:
有较大偶极矩 变化的as (-NO2) IR吸收强, Raman谱带弱; 而苯环的骨架 (C=C)极性很 小,出现较强的 Raman谱带和很 弱的IR吸收。
有些谱峰在 两图谱中同时 出现,有些谱 峰只在某一图 谱中出现,两 谱互补,明显 增加了识别和 解释图谱的信 息来源。
Raman光谱适合于研究水溶液体系 水对于红外辐射几乎是完全不透明的,但却是 弱的散射体。这使得拉曼光谱最宜用于研究生 物样品。例:多肽的结构及在水溶液中的构象 测定, Raman光谱可提供重要的信息。
位移是分子振动的特征,是分子振动时极化率发生改 变所致。
(2)从光的粒子性分析Raman散射的产生
光子具有的能量 E=hv h—普朗克常数 v —频率
雷利散射:弹性碰撞,方向改变,能量未变, 散射光的频率也未变; 拉曼散射:非弹性碰撞,方向改变,能量也改 变,光的频率改变;
从分子能级的角度来讨论光子与物质分子的作用
对于结构的变化, Raman有可能比IR更敏感 例如海洛因、吗啡和可待因,三者的主体骨架相 同,仅是环上的取代基有差别。三者的Raman在 600-700cm-1的谱带有明显的不同,1600-1700cm-1 的峰也不同。
FT-Raman光谱也适合做差示光谱 例如要测定片剂中的有效药物成分
拉曼光谱
拉曼散射拉曼散射(Raman scattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。
又称拉曼效应。
1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。
1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。
拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0±vi(i=1,2,3,…)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差vi 与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。
拉曼散射的强度比瑞利散射(可见光的散射)要弱得多。
以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。
频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。
拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。
拉曼散射为研究晶体或分子的结构提供了重要手段,在光谱学中形成了拉曼光谱学的一分支。
用拉曼散射的方法可迅速定出分子振动的固有频率,并可决定分子的对称性、分子内部的作用力等。
自激光问世以后,关于激光的拉曼散射的研究得到了迅速发展,强激光引起的非线性效应导致了新的拉曼散射现象[1]。
拉曼散射共分为两类型:1、共振拉曼散射(resonance Raman scattering):当一个化合物被入射光激发,激发线的频率处于该化合物的电子吸收谱带以内时,由于电子跃迁和分子振动的耦合,使某些拉曼谱线的强度陡然增加,这个效应被成为共振拉曼散射。
共振拉曼光谱是激发拉曼光谱中较活跃的一个领域,原因在于:(1)拉曼谱线强度显著增加,提高了检测的灵敏度,适合于稀溶液的研究,这对于浓度小的自由基和生物材料的考察特别有用;(2)可用于研究生物大分子中的某一部分,因为共振拉曼增强了那些拉曼谱线是属于产生电子吸收的集团,其他部分可能因为激光的吸收而被减弱;(3)从共振拉曼的退偏振度的测量中,可以得到正常拉曼光谱中得不到的分子对称性的信息。
普通拉曼光谱
11
拉曼光谱技术的优缺点及发展前景
影响拉曼光谱前景的因素:
1.市场动态—市场呈强势增长状态,成为科研机构的新“宠儿”。 最新研究报告表明,2014年,拉曼光谱市场价值超过1.3亿美元,显示出 高潜力的增长态势,2020年全球实验室和手持拉曼仪器的市场将达5.24亿 美元。 2.产品研发—机构、企业共同发力,创新成为拉曼光谱仪发展的第一动力。 为了打破进口仪器垄断国内市场的局面,国内科研机构加快研发脚步,以 创新的力量推动国产仪器发展。如屹谱仪器制造(上海)有限公司自主研 发制造出国内首款手持式拉曼光谱仪。 3.政府的相关政策—建立仪器行业规范,推动拉曼光谱仪器又好又快发展。 国家加大对仪器设备正规化的重视程度,国产仪器标准将走向正轨,同时 有效推动国产拉曼光谱仪稳步发展。
5
拉曼光谱仪工作原理
简而言之,不同的物质具有不同的特征光谱。这是拉曼光 谱可以作为分子结构定性分析的依据。 所以,当激光照射到不同样品后产生的散射光通过瑞利滤 光片进入到探测器中会产生不同的光谱。根据此实验原理, 可以定性分析该样品的成份。
6ቤተ መጻሕፍቲ ባይዱ
普通拉曼光谱的应用
拉曼光谱的分析方向有: 定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进 行定性分析。
4
拉曼光谱仪工作原理原理谱仪工作原理
• 当激光通过显微镜照射到样品上后, 样品分子使入射光发生散射。大部分 光只是改变传播方向而频率不变,产 生瑞利散射;极少数光不仅改变了传 播方向也改变了频率,产生拉曼散射。
• 拉曼散射是由于分子极化率的改变而 产生的。拉曼位移取决于分子振动能 级的变化,不同化学键或基团有特征 的分子振动,因此有特定的能级变化, 所以与之对应的拉曼位移也是特征的。
拉曼光谱原理及应用
1029cm-1 (C-C) 803 cm-1环呼吸
3060cm-1r-H) 1600,1587cm-1 c=c)苯环 1039, 1022cm-1单取代
1000 cm-1环呼吸 787 cm-1环变形
高分子材料鉴定
10000
8000
Nylon6 尼龙
6000
Kevlar 合成纤维
Pstyrene 聚苯乙烯
v′)。△v就是拉曼散射光谱的频率位移。反之发射光子频率高于原
入射光子频率,为反斯托克斯线(anti-Stokes)。
斯托克斯线和反斯托克斯线统称为拉曼谱线。由于在 通常情况下,分子绝大多数处于振动能级基态,所以斯 托克斯线的强度远远强于反斯托克斯线。 CCl4的
拉曼光谱
Rayleigh scattering
光照射到物质上时会发生非弹性散射,散射光中除有与激发 光波长相同的弹性成分(瑞利散射)外,还有比激发光波长长 的和短的成分,后一现象统称为拉曼(Raman)效应。
拉曼散射效应的进展
1928年,印度物理学家拉曼(C.V.Raman)首次发现曼散射效应,荣获 1930年的诺贝尔物理学奖。
1928-1940年,拉曼光谱成为研究分子结构的主要手段。因为拉曼光谱喇 曼频率及强度、偏振等标志着散射物质的性质。从这些资料可以导出物质结 构及物质组成成分的知识。这就是喇曼光谱具有广泛应用的原因。
波数表示 v vs v0 。其中vs 和 v0 分别为
Stokes位移和入射光波数。纵坐标为拉曼光强。 由于拉曼位移与激发光无关,一般仅用Stokes位 移部分。对发荧光的分子,有时用反Stokes位移。
Intensity (A.U.)
2000200000 1500150000 1000100000
拉曼光谱
拉曼光谱(RAMAN SPECTRA)的原理
拉曼效应起源于分子振动(和点阵振动)与转动,因此 从拉曼光谱中可以得到分子振动能级(点阵振动能级) 与转动能级结构的知识。用能级概念可以说明了拉曼 效应:
1960年以后,激发技术的发展使拉曼技术得以复兴。由于 激光束的高亮度、方向性和偏振性等优点,成为拉曼光谱 的理想光源。随探测技术的改进和对被测样品要求的降低, 目前在物理、化学、医药、工业等各个领域拉曼光谱得到 了广泛的应用,越来越受研究者的重视。
拉曼光谱与红外光谱的比较
相同点
产生机理
入射光 检测光 谱带范围
拉曼光谱 RAMAN SPECTRA
提纲
定义 原理 应用 拉曼光谱与红外光谱的比较 拉曼光谱的优、缺点 拉曼光谱仪结构 拉曼光谱仪主要厂商其相关仪器 拉曼光谱仪的基本参数 表面增强共振拉曼光谱 傅里叶变换技术
拉曼光谱(RAMAN SPECTRA)的定义
拉曼光谱(Raman spectra),是一种散射光谱。 光照射到物质上发生弹性散射和非弹性散射,
水 样品测试装置
制样 相互关系
解析要素
信号
检测定位
拉曼光谱
红外光谱
给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都 反映分子的结构信息。
电子云分布瞬间极化产生诱导偶极
振动引起偶极矩或电荷分布 变化
可见光
红外光
可见光的散射
红外光的吸收
40-4000cm-1 可做溶剂
400-4000cm-1 不能作为溶剂
拉曼光谱分析
进一步,由于拉曼光谱的一些特点,如水和玻璃的散射 光谱极弱,因而在水溶液、气体、同位素、单晶等方面的应用 具有突出的优点。
生物大分子的拉曼光谱研究
生物大分子中,蛋白质、核酸、磷脂等是重要额生命基础物质,研 究它们的结构、构像等化学问题以阐明生命的奥秘是当今极为重要的研 究课题。应用激光拉曼光谱除能获得有关组分的信息外,更主要的是它 能反映与正常生理条件(如水溶液、温度、酸碱度等)相似的情况下的 生物大分子分结构变化信息,同时还能比较在各相中的结构差异,这是 其他仪器难以得到的成果。
去偏振度) 表征分子对称性振动模式的高低。
I
I∥
(6-17)
式中I⊥和 I// ——分别代表与激光电矢量相垂直和相平行的谱线的强度。
<3/4的谱带称为偏振谱带,表示分子有较高的对称振动模式; =
3/4的谱带称为退偏振谱带,表示分子的对称振动模式较低,即分子是不对称 的。
激光拉曼散射光谱法
激光拉曼光谱与红外光谱比较
分子结构模型的对称因素决定了选择原则。比较理论结果与实际测量的 光谱,可以判别所提出的结构模型是否准确。这种方法在研究小分子的结构 及大分子的构象方面起着很重要的作用。
拉曼光谱在材料研究中的应用
高分子的红外二向色性及拉曼去偏振度
激光拉曼散射光谱法
NH 伸 缩 振 动 (3300cm-1)
垂直于拉伸方 向取向
CH2伸缩振动 (3000~ 2800cm-1),垂 直于拉伸方向 取向
Raman拉曼光谱
于瑞利线旳位移表达旳拉曼光谱
h0
波数与红外光谱旳波数相一致。
入射
散射
h
h
E1
红外吸收 拉曼散射
E0
拉曼光谱与红外光谱
同
同属分子振(转)动光谱
异红:外红:外合用于分研子究对不同红原外子光旳旳极性吸键收振动 -O强H,度-由C分=子O,偶-极C距-决X定
拉异曼::拉合曼用于分研子究同对原激子光旳非旳极散性射键振动 -N-强N度-由, -分C子-C极-化,率C决=定C
瑞利散射: 弹性碰撞;无能量互换,仅变化方向;频率不发生变化 旳辐射散射(u=u0);强度与l0旳四次方成反比
拉曼散射:非弹性碰撞;方向变化且有能量互换; 频率发生变化旳辐射散射(u=u0△u)
光旳 散射
光旳散射
样 透过光λ不变
品 池
拉曼散射λ变
λ减小 λ增大
瑞利散射λ不变
二、拉曼散射旳产生
样品分子中旳电子首先被一
激光器示意图
工作2物质
产生激光振荡旳一种主 要条件:两个反射镜之间旳 光必须是驻波,波节在两个 反射镜处。
全反1 射镜
部分4反射镜
激光器旳选频作用
鼓励3 能源
激光旳特征: 单色性好,相位一致,方向性好,亮度高
第三节 激光拉曼光谱原理
一、光旳散射
光散射是自然界常见旳现象.当一束光照射介质时,除被吸收之外, 大部分被反射或透过,另一部分光被介质向四面八方散射.在散射光 中,大部分是瑞利散射,小部分是拉曼散射.
110 ℃干燥
500 ℃焙烧
Mo/Al2O3旳拉曼光谱
成果表白,在低负载 量时即有汇集态Mo物种 存在。随负载量提升,其 汇集度逐渐增大。
Mo/Al2O3催化剂旳Raman表征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.斯托克斯线强度比反斯托克斯线强;
拉曼光谱仪
拉曼光谱仪的基本结构
1.光源 它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。 2.外光路 外光路部分包括聚光、集光、样品架、滤光和偏振等部件。 3.色散系统 色散系统使拉曼散射光按波长在空间分开,通常使用单色仪。 4.接收系统 拉曼散射信号的接收类型分单通道和多通道接收两种。光电倍增管 接收就是单通道接收。 5.信息处理与显示 为了提取拉曼散射信息,常用的电子学处理方法是直流放大、选频 和光子计数,然后用记录仪或计算机接口软件画出图谱。
拉曼光谱图
拉曼光谱的横坐标为拉曼位移,以波数 表示纵坐标为拉曼光强。由于拉曼位移与 激发光无关,一般仅用Stokes位移部分。对 发荧光的分子,有时用反Stokes位移。
拉曼光谱的信息
拉曼频率 的确认 物质的组成
parallel
拉曼偏振
perpendicular
晶体对称性和取 向
拉曼峰宽晶体质量好 坏 Nhomakorabea拉曼峰强 度
物质总量
拉曼光谱的特征
1. 对不同物质Raman 位移不同; 2.对同一物质 (
v v s v0 , v s 和 v0分别为斯托克斯
位移和入射光波数) 与入射光频率无关;是表征分子振-转能级 的特征物理量;是定性与结构分析的依据;
3.拉曼线对称地发布在瑞利线两侧,长波一侧为斯托克斯线,
拉曼光谱法优势
对样品无接触,无损伤;样品无需 制备 适合黑色和含水样品,试样量少
光谱成像快速、简便,分辨率高
一次可同时覆盖50-4000cm-1波数的 区间 仪器稳固,维护成本低,使用简单
拉曼光谱法的不足
拉曼散射信号弱
拉曼信号频率离激光频率很近
激光瑞利散射比拉曼信号强1010-1014, 对拉曼信号干扰很大
与入射光频率相同的散射:Rayleigh 散射
与入射光频率不同的散射:Raman 散射
频率减小 频率增大
斯托克斯散射
反斯托克散射
斯托克斯线或反斯托克斯线与入射光频率之差称为拉 曼位移。 拉曼位移与入射光频率无关,它只与散射分子本身的 结构有关,其范围为25-4000cm-1 。拉曼位移取决于分子 振动能及的变化,不同化学键或基团有特征的分子振动, 与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为 分子结构定性分析的依据。
——拉曼光谱法
有机化学 高聚物 应用 生物 表面和薄膜 有机化学:拉曼光谱是结构鉴定的手段,拉曼位移的大小、强度及拉曼峰 形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作 为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。 生 物:拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、 谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物 大分子的结构及其变化。 表面和薄膜:拉曼光谱应用在材料科学领域:相组成界面、晶界等课题中, 在金刚石和类金刚石薄膜的研究工作中,CVD(化学气相沉积法)制备薄 膜的检测和鉴定中。目前,LB膜、二氧化硅薄膜氮化的拉曼光谱研究都已 见报道。共振或表面增强拉曼技术大大加强拉曼光谱的灵敏度,使其成为 研究中活跃的一个领域。
拉曼光谱
简 介
拉曼光谱(Raman spectra),是一种散射光 谱。拉曼光谱分析法是基于印度科学家C.V.拉曼 (Raman)所发现的拉曼散射效应,对与入射光 频率不同的散射光谱进行分析以得到分子振动、 转动方面信息,并应用于分子结构研究的一种分 析方法。
拉曼光谱产生的基本原理
当一束频率为v0的单色光照射到样品上后,分子可以使 入射光发生散射。散射光的频率大部分与入射光相同,少部 分不同。
卟啉-石墨烯非共价复合材料的制备及性质测定
南京大学,2012
氧化石墨烯粉末在1330 cm-1(D band)和1576 cm-1(G band)有 两个特征峰(D带是由于分子C-C sp3的无序震动引起的;G带是 由于C-C sp2杂化引起的),而ZnP-t-P(py)4/G0复合材料的D带 和G带分别向短波长移动V =11和15 cm-1,这表明ZnP-t-P(py)4 与氧化石墨烯间有π-π相互作用。值得注意的是拉曼光谱还能 够通过2D峰的位置和形状来测定石墨烯或者氧化石墨烯的层 数,因为在石墨烯或者氧化石墨煤中2D峰是由于在最高的光品 分支动量相反的两个声子的对冲造成的。ZnP-t-P(py)4/G0的 2D峰出现在2709 cm-1处,与氧化石墨烯(GO)对比向高波数移动 了 35 cm-1,这是因为相对比于单层氧化石墨烯(2D:2674cm-1), ZnP-t-P(py)4/G0的层数的增加了,导致2D峰向高波数移动。而 其在2924 cm-1的D+G峰是由于两个不同动量的声子混合产生的 缺陷造成的。