开关电源欠压保护电路的设计
欠压保护电路原理
欠压保护电路原理1.传感器:欠压保护电路的传感器用于检测输入电压是否低于设定的阈值。
传感器通常使用电压变压器或电压分压器来提供稳定的参考电压。
当输入电压低于设定的阈值时,传感器将发出相应的信号。
2.比较器:比较器是欠压保护电路的核心部分,用于比较传感器输出的信号与设定的阈值信号。
比较器将两个电压信号进行比较,当输入电压低于设定阈值时,比较器将输出一个低电平信号。
3.输出控制:一旦比较器输出低电平信号,输出控制部分将接收到此信号,并根据需要执行相应的操作。
最常见的输出控制方式是通过继电器来切断电路,从而实现对设备的保护。
当电路被切断时,设备将与电源分离,避免了过低电压对设备的损坏。
除了上述核心原理,欠压保护电路还可以加入一些增强功能,以提高其可靠性和灵活性,如延时保护、复位功能等。
1.延时保护:欠压保护电路可以添加延时保护功能,以防止因瞬时电压波动而误触发保护。
延时保护功能使电路在检测到输入电压低于阈值后,在设定的延时时间内继续工作,而不立即切断电路。
只有当低电压持续超过延时时间,才会触发欠压保护。
2.复位功能:复位功能可以使欠压保护电路在输入电压恢复正常后自动恢复连接。
通过添加复位电路,在输入电压恢复到设定阈值以上时,可以自动重置保护电路,使设备得以正常运行。
这样,一旦欠压保护触发,电路将在输入电压恢复正常后自动复位,而无需额外干预。
总的来说,欠压保护电路通过传感器检测输入电压是否低于设定阈值,并通过比较器进行比较,最后通过输出控制切断电路来保护设备。
在此基础上,还可以添加延时保护和复位功能,以提高其可靠性和灵活性。
欠压保护电路在电气设备中起着重要的作用,能够保障设备的安全运行。
基于M51995A开关电源保护电路的设计
基于M51995A开关电源保护电路的设计作者:张健刘晓杰俞洋崔渊王云松季威志张正烨张文晔来源:《物联网技术》2016年第11期摘要:为了解决开关电源电路运行中的安全问题,基于M51995A电源芯片设计了开关电源的过压和过流保护电路。
通过实验仿真表明,保护电路在开关电源电路过压、过流等特殊情况下,能够起到有效的保护作用,该电路具有结构简单、可靠性高等优点。
关键词:开关电源;过压保护;过流保护;M51995A电源芯片中图分类号:TM13 文献标识码:A 文章编号:2095-1302(2016)11-0-020 引言随着时代的前进与社会的发展,开关电源已逐渐代替传统的铁心变压器电源。
开关电源的集成化与小型化正逐步成为发展趋势[1-3],开关电源更是在计算机、通信、电器等领域得到广泛应用[4]。
但开关电源系统若无性能良好的保护电路便很容易导致仪器寿命的缩短甚至使仪器受到损坏。
由此可见,为了能够让开关电源在恶劣环境以及突发故障的情况下安全稳定的工作,保护电路的设计就显得尤为重要。
开关电源的基本结构框图如图1所示。
1 M51935AFP开关稳压芯片简介M51995A是一款开关电源初级PWM 控制芯片,专为AC/DC变换设计,芯片功能如表1所列。
它主要包括振荡器、PWM比较、反馈电压检测变换、PWM锁存、过压锁存、欠压锁存、断续工作电路、断续方式和振荡控制电路、驱动输出及内部基准电压等。
M51995A既具有快速输出和高频振荡能力,又具有快速响应的电流限制功能[5]。
此外,过流时采用断续方式工作可以有效保护二次电路。
该芯片的主要特征如下:(1)工作频率低于500 kHz;(2)输出电流能够达到±2 A;(3)输出上升时间为60 s,下降时间为40 s;(4)起动电流比较小,典型值为90 A;(5)起动电压为16 V,关闭电压为10 V;(6)起动电压和关闭电压的压差大;(7)过流保护采用断续方式工作;(7)用脉冲方法快速限制电流;(8)欠压、过压锁存电路。
uvlo欠压保护电路原理
UVLO欠压保护电路原理1. UVLO(欠压锁定)概述- 定义与基本原理:UVLO是一种欠压保护技术,用于防止电路在输入电压低于某个阈值时正常工作。
它通过监测输入电压,当电压降至设定值以下时,触发保护机制,防止设备损坏。
- 应用领域:UVLO广泛应用于各种电子设备,如电源管理模块、电源适配器、DC-DC转换器等。
它确保这些设备在不稳定或低电压条件下能够正常工作,提高系统的可靠性。
- 工作原理:UVLO工作原理基于一个比较器,监测输入电压并将其与设定的阈值进行比较。
当输入电压低于阈值时,UVLO触发,切断电源或启动相应的保护机制。
2. UVLO的设计要点- 阈值设定:UVLO的有效性取决于准确的阈值设定。
设计师需根据特定应用的电源要求选择适当的阈值,确保在低电压条件下及时触发保护。
- 滞回特性:UVLO通常设计具有一定的滞回特性,以防止在边缘电压处于临界值时发生不稳定的切换。
滞回确保在电压上升时,设备不会过早地恢复正常工作。
- 延时机制:为防止瞬态干扰触发误报,UVLO常常包含延时机制。
通过延时,可以确保输入电压在一段时间内稳定在低电压区域,而不是由于瞬时波动导致误报。
- 精准度与灵敏度:UVLO的精准度和灵敏度对系统性能至关重要。
高精度和灵敏的UVLO能够更精确地监测电压变化,并在必要时迅速作出响应。
3. UVLO与系统稳定性- 防止欠压故障:UVLO通过防止系统在欠压状态下工作,有效地防止了由于电压不足而导致的系统故障。
这对于电源管理至关重要,特别是对于一些对电压要求较高的敏感设备。
- 稳定电源输出:UVLO有助于维持电源输出的稳定性。
在低电压条件下,电源可能无法提供足够的电流和功率,从而导致系统不稳定。
UVLO的作用在于及时发现并避免这种情况。
- 降低热损耗:在欠压状态下工作可能导致电源电路大量电流通过,产生过多的热损耗。
UVLO通过阻止在不稳定条件下的运行,有助于减少这种热损耗。
4. UVLO的实际应用案例- 电源管理芯片:UVLO广泛嵌入在各种电源管理芯片中,如稳压器、开关电源控制器等。
基于UC3845芯片的开关稳压电源设计方案
基于UC3845芯片的开关稳压电源设计方案本文介绍了一种基于UC3845芯片的开关稳压电源设计方案。
该开关电源通过单片机控制数/模电路进行输出电压调节,采用合理有效的滤波和稳压元件配合UC3845芯片工作。
该电源产品的DC—DC 转换效率高达91%,输出纹波电压小于0.45V。
在该设计中,修改并确认了UC3845芯片的振荡频率系数的计算方法,提出了改善输出信号波形的具体有效措施。
其低成本、高效高质的电路设计以及产品的调试方法具有一定的推广价值。
开关电源具有功耗小,效率高,稳压范围宽,体积小等优点,在通信设备、家用电器、仪器仪表等电子电路中应用广泛。
本文设计的开关电源要求只有一组输出电压,输出电压调节范围在25~36V之间,输出电压纹波不超过0.8V,输出最大功率不低于70W。
在开关电源的各种典型结构中,反激式开关电源硬件电路简单,输出电压既可高于输入电压,又可低于输入电压,非常适合用于输出功率在200W以下的开关电路。
因此设计方案采用了非隔离式反激变换器构成开关电路,选用电流模式控制芯片UC3845为功率开关管提供驱动电流,实现宽幅稳压和高效转换的功能。
1非隔离反激式变换器电路原理反激式变换器有两种不同形式,非隔离反激式变换器(见图1)和隔离反激式变换器(见图2)。
非隔离反激式变换器只有一个输出电压,适合于只有一组输出且不用隔离的电源,变换器只需要处理一个绕组电感。
隔离反激式变换器可以在变压器次级有多个绕组,方便地输出多组与输入电压隔离的输出电压,并且可以通过调节变压器的变比得到大小不同的输出电压。
但与非隔离反激式变换器相比,多个绕组的变压器磁芯元件将是电源设计中的一大关键。
对于非隔离反激式变换器,输出电压和输入电压没有隔离,输出电压不低于输入电压。
在一个开关周期内,开关导通时,电压加在电感上,电流以某斜率上升,并储存能量在电感中;当开关关断的时候,电感电流经过二极管放电。
2 UC3845工作原理介绍UC3845是安森美半导体公司的高性能固定频率电流模式控制器。
开关电源制作设计(电路原理图+PCB)
一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。
1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。
这样对开机时的浪涌电流起到有效的缓冲作用。
电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。
采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。
图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。
3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。
一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。
C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。
开关电源原理及各功能电路详解
开关电源原理及各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路[:1、AC输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
(整理)开关电源的设计与制作
开关电源的设计与制作第一章开关电源概述一. 什幺是开关电源(Switching Power Supply)所谓开关电源是指以高频变压器取代工频变压器,采用脉冲调制技术的直流直流变换器型稳压电源.开关晶体管,开关二级管和开关变压器是组成开关电源的三个关键组件.二. 隔离式高频开关电源.图标说明:1)交流线路电压无论是来自电纲的,还是经过变压器降压的,首先要经过电纲滤波,以消除电磁干扰和射频干扰;2)经电纲滤波后的电流首先要经过整流,滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分;3)高频变换器具有多种形式,主要分为半桥式,全桥式,推挽式,单端正激式,单端反激式等;高频变换部分的核心是一个高频功率开关组件,比如开关晶体管,场效应管(MDSFET)等组件,高频变换器产生高频(20KHZ以上)高压方波,所得到的高压方波送给高频隔离变压器的初级,在变压器的次级感应出的电压被整流,滤波后就产生了低压直流.4)脉冲宽度调制器(P WM)主要用于调节输出电压,使得在输入交流和输出直流负载发生变化时,输出电压能保持稳定,运作过程是P WM电路通过输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压作比较,根据比较结果来控制高频功率开关组件的开关时间比例(占空比),达到调整输出电压的目的.(注:控制电路还有调频方式的)5)为了使整个电路安全可靠地工作,必须设置过压,过流保护电路等辅助电路.三.开关电源常用术语.1.效率(dfficiency):电源的输出功率与输入功率的百分比(测量条件为满负载,输入交流电压为标准值)2.ESR: 等效串联电阻,它表示电解电容呈现的电阻值的总和. ESR值越低的电容,性能越好.3.输出电压保持时间: 在开关电源的输入电压撤离后,依然保持其额定输出电压的时间;4.激活浪涌电流限制电路: 属保护电路,它对电源激活时产生的尖峰电流起限制作用.5.隔离电压: 电源电路中的任何一部分与电源基板地之间的最大电压.或者能够加在开关电源的输入端与输出端之间的最大直流电压.6.线性调整率: 输出电压随输入线性电压在指定范转内变化的百分率,条件是线电压和环境温度保持不变.7.负载调整率: 输出电压随负载在指定范围内变化的百分率,条件是线电压和环境温度保持不变.8.噪音和纹波: 附加在直流输出信号上的交流电压和高频兴峰信号的峰值.通常是以mV度量.9.隔离式开关电源: 一般指高频开关电源,它从输入的交流电源直接进行整流和滤波,不使用低频隔离变压器.10.输出瞬态响应时间: 从输出负载电流产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间.11.过载或过流保护: 防因负载过重,使电流超过原设计的额定值而造成电源损坏的电路.12.远程检测: 为了补赏电源输出的电压降,直接从负载上检测输出电压的方法.13.软激活: 在系流激活时,一种延长开关波形的工作周期的方法,工作周期是从零到它的正常工作点所用的时间.14.电磁干扰无线频率干扰(EMI一RFI):那些由开关电源的开关组件引起的,不希望传输和发射的高频能量频谱.15.快速短路保护电路:一种用于电源输出端的保护电路,当出现过压现象时,保护电路激活,将电源输出端电压快速短路.16.占空比:在高频开关电源中,开关组件的导通时间和变换器的工作周期之比.即:δ=Ton /Τ(T= Ton+Toff)开关电源的设计与制作第二章输入电路一.电压倍压整流技术世界范围内的交流输入电压,通常是交流90~130V和180~260V的范围,为了适应不同电源输入环境的需要,实现两种输入电源的转换,要利用倍压整流技术.如下图2一1所示.2一15可用于110V和220V交流的开关电源输入电路电路工作过程为:1)当开关S1闭合时,电路在115V交流输入电压下工作,在交流电的正半周,通过二极管VD1和电容器C1被充电到交流电压的峰值,即115×1.4=160V,在交流电的负半周,电容器C2通过二极管VD4也被冲电到160V, 这样,电路输出的直流电压应该是电容器C1和C2上充电电压之和(160+160V=320V) 注意:不同的用电环境电压选择开关位置一定要选择正确.否则,会导致直流变换器中的开关功率管损坏,或因为输入电压太低而使开关电源进入欠压输入自动保护状态.二.抗电磁干扰和射频干扰电路考虑输入滤波电路(电纲滤波)1.开关电源的设计,生产,一定要将其辐射和传导干扰降低到可接受的程度.在美国,权威的指导性文件是F CCD ocket20780,在国际上,德国的Verband Deutscher Elektronotechniker(VDE)安全标准则得到了广泛的采用.2.开关电源中的RFI产生源:开关噪声的主要来源是开关晶体管,主回路整流器,输出二极管,晶体三极管的保护二极管以及控制单元本身.反激式变换器,由于设计的原因,其输入电流波形呈现三角形,较之输入波形为矩形的变换器,如正激式,桥式变换器等将产生较少的传导RFI噪声.(付里叶分析表明,一个三角形电流波形的高频谐波幅度是以40dB每倍频程进行跌落的,而对一个差不多的矩形电流波形,则只呈现20dB每倍频程的跌落)3.交流输入线路噪声滤波器对RFI的抑制.通常在开关电源中采用的噪声抑制方法是在主交流输入回路接入一个LC组成的滤波器,用于差模一共模方式的RFI抑制,通常是交流线路上串入一对电感L1, , 其两端并联二只电容器(X电容器),并在交流线二端对大地各接一只电容器(Y电容器),如图2一2(低通滤波纲络)2一2开关电源输入线路滤波器结构1)上图中电容电感的值可以采用下列的数值:C (X): 0.1~2UF;C(Y): 2200PF~ 0.033uF;L: 在25A时, 为1.8mH; 0.3A时, 为47mH注意:在选择滤波器的组件时,重要的是要使输入滤波器的谐振频率远低于电源的工作频率;另一方面,滤波器使得电源的工作频率增加时,会使噪声的传导变得更容易.2)上图中并联在交流输入线的电阻R是X电容的放电电阻,这是由VDE一0806和IEC一380两个标准中的有关安全的规范条款推荐应用的.IEC一380的8.8节阐明:若线路滤波器的X电容器的值大于0.1UF,则放电电阻的数值应由下式确定:R=t /2.21c (2一1)式中,t=ls, c为l电容器的总和值3)为进一步减少对称和不对称的干扰电压的措施是在交流线路中另外再接入一对电感L2,从而使得电容C4(X)的充电电流得到限制,于是降低了干扰,如图2一32一3改进的线路滤波器上图中L1与C3.C4组成常模抗干扰回路,L1与C1.C2组成共模,抗干扰回路,L2用于C4的充电电流的限制,因此,整个组合对各种高频干扰信号的抑制作用较好.三.输入整流器及整流后滤波电路.一)输入整流器如图2一1中,此整流电路由VD1~VD4组成(桥式或倍压整流)在选择组合组件或分立组件的整流器时,必须要查对下面的一些重要参数:1.最大正向整流电流,这个参数主要根据开关电源设计的输出功率决定.所选择的整流二极管的稳态电流容量至少应是计算值的2倍.2.峰值反向截止电压(PIV).由于整流器工作在高电压的环境,所以它们必须有较高的PIV值,一般应为600V以上.3.要有能承受高的浪涌电流的能力.二.输入滤波电容.由于滤波电容的选择将会影响到:电源输出端的低频交流波及电压和输出电压保护时间.一般情况下,高质量的电解电容所具有的滤除交流波纹电压的能力越强,它的ESR值越低.其工作电压的额定值至少应达到200V.在图2一1中,C1,C2 为滤波电容,电阻R4,R5与之并联以便在电源关闭时,给电容提拱一个放电通路.计算滤波电容的公式为:C=It /ΔV (2一2)式中C: 电容量, F;I: 负载电流 At: 电容提供电流的时间, s;ΔV: 所允许的峰一峰值纹波电压v .例:计算50w开关电源的输入滤波电容器的值.设输入交流电压为115V,60HZ,允许30V峰一峰值的纹波电压,且电容可维持电压电平的时间为半周期.解:1)计算直流负载电流假定一个最坏的情况,电源的效率为70%,那幺,输出功率为50W的电源其输入功率应该是:Pin=Pout/η=50 / 0.7=71.5(w)利用电压倍压技术(图2一1),在输入交流为115V时,直流输出电压将是2×(115×1∙4)=320(V),则负载直流电流应为I=P/E=7105/320=0.22(A)2)因半周期的线性频率或者说对于60HZ的交流电压大约是8ms,即t=1/2×1/60=8.33ms,故根据式2一2有.C=0.22(8×10 –3) /30=58×10 _6 =58(uF)选择标称值为50 uF的电容器.3)因为在倍压结构中,C4C5为串联,故有1/C=1/C1+1/C2,有C1=C2=100uF,即50W的开关电源,其滤波电容C4,C5为100uF.四.输入保护电路一).浪涌电流1.浪涌,一般情况下,只是电容的ESR值,如果不采取任何保护措施,浪涌电流可接近几百安培.2.控制电流主要是由滤波电容充电引起的,在开关管开始导通的瞬间,电容对交流电呈现出很低的阻抗浪涌电流的方法:广泛采用的措施有两种,一种是利用电阻 双向可控硅并联纲络;另一种是采用负温度系数(NTC)的热敏电阻,用以增加对交流线路的阻抗.1) 如图2一1,R 1,VS 组成此电路,R 1与VS 并联,当输入滤波电容充满电后,由于双向可控硅和电阻是并联的,可以把电阻短路,对其进行分流.这种电路结构需要一个触发电路,当某些预定的条件满足后,触发电路把双向可控硅触发导通,如图2一4 所示.1 T 2可控硅VS 的工作过程为:当电源接通后,C 6两端的电压逐渐升高,电流相应稳定.在C 6两端的电压稳定之前,浪涌电流被与之串联的电阻R 1(6.8Ω)所抑制,当输入交流为115V 时,C6两端的电压V C =115×1∙4=160(V).当电容器C 6充电时,电压加到高频变压器T 1的绕组LB 上,则在绕组LP 4端上产生感应电压,当感应电压达到1.5V 时,电流I G 开启可控硅.即当IG 流过可控硅的控制极G 时,触发T 1与T 2短接,可控硅导通,电阻R 1被VS 短路,使其温度下降,于是实现了R 1抑制浪涌电流的目的 .注:设计时要认真地选择双向可控硅的参数,并加上足够的散热片,因为在它导通时,要流过全部的输入电流.2)热敏电阻技术:这种方法是把负温度系数(NTC)的热敏电阻串联在交流输入或者串联在经过桥式整流后的直流线上,如2一1图中的RT 1和RT 2,其工作原理为:当开关电源接通后,热敏电阻的阻值基本上是电阻的标称值,这样,由于阻值较大,它就限制了浪涌电流,当电容开始充电时,充电电流流过热敏电阻开始对其加热.由于其具有负温度系数,随着电阻的加热,其电阻值开始下降,如果热敏电阻选择得合适,在负载电流达到稳定状态时,其阻值应该是最小,这样,就不会影响整个开关电源的效率..二) 输入瞬间电压保护一般情况下,交流电纲上的电压比较稳定,但由于电纲附近电感性开关,暴风雨天气雷电等现象的存在,都会产生高压的尖峰(如受严重的雷电影响,电纲上的高压尖峰可达5KV;而电感性开关产生的电压尖峰的能量公式W=1/2L.I2.式中L是电感器的漏感:I是通过线圈的电流)可是,虽然电压尖峰持续的时间很短,但是它有足够的能量使开关电源的输入滤波器,开关晶体管等造成致命的损坏,故必须采取措施加以干扰.最通用的抑制干扰器件是金属氧化物物压敏电阻(MOV)瞬态电压抑制器.如图2一1中的RV 把压敏电阻RV连在交流电压的输入端,起到一个可变阻抗的作用.即,当高压尖峰瞬间出现在压敏电阻两端时,它的阻抗急剧减小到一个低消值,消除了尖峰电压使输入电压达到安全值.其瞬能量消耗在压敏电阻上,选择压敏电阻时应按下述步骤进行.(1)选择压敏电阻的电压额定值,应比最大的电路电压稳定值大10%~20%;(2)计算或估计出电路所要承受的最大瞬间能量的焦耳数.(3)查明器件所需要承受的最大尖峰电流开 关 电 源 的 设 计第三章 高频电源变换器的基本类型一. 高频电源变换器的基本类型高频电源变换器的基本类型有五种:单端反激式,单端正激式,推挽式.半桥式和全桥式变换器,而半桥式和全桥式变换器电路实际上是推挽式变换器电路的改进型,所以,有人把这三种电路形式统称为推挽式变换器.高频电源变换器从激励方式上可分为单端(单极性)激励和双极性激励变换器,双极性变换器包括推挽式,半桥式,桥式等,其工作原理的实质是两个单端正激式变换器电路,从其耦合方式可分为直接耦合和变压器隔离两种,其中直接耦合形式为其基本形式.近年来出现的新型的变换器为C U K 变换器.1.单端反激式变换器的模型图: (3一1)(a) (b) 3 一1单端反激式变换器模型图单端反激式变换器的工作原理为:1) 当开关s 闭合时,电流I 流过电感L,在L 中储存能量,由于电压的作用,使二极VD 处于反向偏置,因此,在负载电阻R L 上无电压;2) 当开关S 打开时(上b 图),电感上的感应电压极性相反,则二极管VD 处于正向偏置,并产生电流Iv,这样,在负载电阻R L 上就出现一个与输入电压极性相反的电压.由于开关S 不断地开关动作,电路中的电流就以及脉的形式出现,因此,在单端反激式变换器中,当开关闭合时,能量存储在电感L 中,在开关打开时,能量被传递到负载RL 上.3. 单端正激式变换器的电路模式图(3一2)单端正激式变换器的工作原理为:Vin Ic------------- 1) 当开关S 闭合时,电流I 流过电感L,系,二极管VD 处于反向偏置; 2) 当开关S 打开时,电感L 中的磁场极性发生变化,,b2单端正激式变换器模型图,无脉动现象,恰恰与其相反,输入电流则是不连续的,. 3.(3一3)推挽式变换器的工作原理为:1)当S 1闭合S 2打开时,电源电流流过方向为 a Lp 1 b s1 d V in,那幺此时,在变压器次级绕组中咸应出电压并形成感应电流Is 1.2)当S 2闭 合S 1打工时,电源电流方向为 a f e d vin,那幺此时在变压器次级绕组LS 2中感应出电压形成感应电流IS 2二. 隔离式单端反激式变换器电路.概述 :一般情况下,隔离式开关电源都是用高频变压器作为主要隔离器件.在单端反激式隔离L-------------电路中,高频变压器是以变压器的形成出现的,但实际上它起的作用是扼流圈,所以应称之为变压器 扼流圈.如图3一4中,由于隔离变压器T 除了具有初次级间安全隔离的作用外,它还有变压器和扼流圈的作用,所以在反激式变换器的输出部分一般不需要加电感,但在实际应用中,往往在整流器和滤波电容之间加一个小的电感线圈,用以降低高频开关噪声的峰值.单端隔离激式变换器的工作过程为:1) 当晶体管VT1导通时,它在变压器初 级电感线圈中储存能量,与变压器次 级相连的二极管VD 处于反偏压状 态而截止,故在变压器次级回路无电 流流过,即没有能量传给负截. 2) 当晶体管VT 1截止时,变压器次级电 感感线圈中的电压极性反转过来,使得二极管VD 导通,给输出电容C 充电,同时在负载L 年也有了电流I L 3 一4隔离单端反激式变换器电路注:图3一4中C 为输出滤波电容.1.单端反激式变换器电路中的开关晶体管在单端反激式变换器电路中,所使用的开关晶体管必须具备两个条件:1)在晶体管截止时,要能承受集电极尖峰电压; 2)在晶体管导通时,要能承受集电极的尖峰电流.1) 晶体管截止时尖峰电压的计算公式:V CE max =Vin / 1一δmax式中Vin 是输入电路整流滤波后的直流电压, δmax 是晶体管最大工作占空比(注意:为了限制限晶体管的集电板安全电压,工作占空比应保持在相对地低一些,一般要低于50%,δmax<0.5,在实际设计时, δmax 一般取0.4左右,这样就限制集电极峰值电压: V CE max ≦2.2Vin,因此,在单端反激式变换器电路设计中,晶体管的工作电压一般在800V 通常接900V 计算可安全可靠地工作.)2) 晶体管导通时的集电极电流计算式:I C = I L / n式中,I L 是变压器初级绕组的峰值电流,而n 是变压器初级与次级间的匝数比.注: 为了导出用变压器输出功率和输入电压表达集电极峰值工作电流的公式.变压器绕组传递的能量Pout =可用下式表示:Pout = L . I L 2 / 2T ·η (3 一 3 )式中,η是变换器的效率.则有: Ic= 2Pout / η·Vin ·δmax ( 3 一 4 )假定变器的效率η是0.8,最大占空比δmax=0.4(即40%),那幺Ic = 6. 2Pout / Vin ( 3 一 5 )2. 单端反激式变换电路中的变压器绕组.在单端反激式变换器电路中,在设计时要汪意不要使磁芯饱和,所选的磁芯一定要有足够大+ RL 一的有效体积,通常应用空气隙来扩大其有效体积:V=Uo ·Ue · I L max ·L / B 2max ( 3一6 )中,Ilmax: 最大负载电流;L :变压器次级绕组的电感量; Uo : 空气的导磁率,其值为1;Ue: 所选磁芯的磁性材料的相对导磁率Bmax:磁芯的最大磁通密度;(具体见第五章)3一53.基本的单端反激式变换器的变形.1)如图3一5中,由于考虑到单只晶体管有时承受不了过高的输入电压,(一般商甲晶体管达不到指针),故利用两只晶体管工作.图中VD 1和VD 2同时导通或截止,二管起箝位作用,它们把晶体管的最大集电板电压限制在Vin,这样耐压低的晶体管就可以使用了.2单端反激式变换器电路的优点是:电路结构简单,可以实现多路电压输出.如图3一6,在电路中隔离变压器对各路输出电压起到公共扼流圈的作用变压器的次级可以有多个绕组,故可以实现多路输出 .每个次级绕组只需一个整流二极管和一个滤波电容,就可以得到一组直流输出电压.3一6有多路输出的单端反激式变换器电路+ R L 一1 1 out 1 out2 + V out3 一 L L3一7隔离单端正激式变换器电路图三.隔离单端正激式变换器电路1.概述:如图3一7所示1)在单端正激式变换器电路中,隔离组件是一个纯粹的变压器,为了有效地传递能量,,在输出电路中, 必须有储能组件电感线圈Lo同时,初次级绕组的极性是相同的.其电路工作过程为:当VT1导通时,在变压器的初级产生了电流,并储存了能量,由于变压器的次级极性与初级同相,这个能量也传到了变压器的次级并处在偏正的二极管VD2把能量储存到了电感L中.此时,二极管VD3是处在反向偏压状态,为截止状态,当三极管VT1截止时,二极管VD2是反向偏压,变压器绕组中的电压反向,续流二级管VD3处于正向偏压,在输出回路中,储存在电感中的能量通过电感L 继续传负载R L .2)变压器的第三绕组称为箝位绕组(或回授绕组)LP2,它与二极管VD1串联,其作用是用来限制晶体管C一E结上的电压尖峰,在晶体管截止时,还能使高频变压器的磁通复位, 这是因为:A.在VT1导通时,变压器初级绕组LP 1中会储存能理,当VT1截止时,变压器次级侧二极管VD2截止,那幺储存在LP1中的能量再不能传递到次级绕组了,此时必须要通过一种途径释放出来,否则,必然在线圈两端产生过高的电压,解决的办法是增加箝位绕组和二极管VD1,并使箝位绕组的匝数与初级绕组的匝数相同,二者紧密耦合,这样,当箝位绕组上的感应电超过电源电压时,二极管VD1导通,将磁能送回电源中,就可以把初级绕组的电压限制在电源电压上,所以,开关晶体管VT1的C一E极间的最高电压就被限制在二倍电源电压上.B.为满足磁芯复位的条件,使磁通建立和复位的时间相等,所以这种把电路的占空比不能超过50%.3)磁化电流Imag的计算公司为:Ima= Tδmax·Vin∕N ( 3一7)式中, T·δmax是VT时向,L是输出电感Ho4))单端正激式变换器是在晶体管导通时通过变压向负载传输能量,故运用的输出功率范转较大,一般情况下可达50~200W,其高频变压器要起变压器隔离和传输能量的作用,又起电感线圈储存能量的作用.2单端正激式变换器电路中的开关晶体管1)晶体管截止峰值电压:在单端正激式变换器电路中,由于有第三绕组和续流二极管VD1的作用,所以其截止时降在VT1上的最大电压VCEmax应为2Vin,且只要二极管VD1处于导通状态,即在Tδmax这个时间内,降在VT铁C 一E间的2Vin的峰值电压就维持不变.2)晶体管导通时集电极电流的峰值:为正激式变换器的电流值加上磁化电流Imag.Ic= Ic / n + Tδmax Vin / L =6.2Pout / Uin式中.n: 变压器初次级匝数比;IL : 输出电感电流. A;Tδmax: 晶体管导通时间L: 输出电感, H.3.单端正激式变换器电路的传输变压器在设计正激式变换器的传输变压器时,应十分注意选择适当的磁芯有效体积,并选择空气隙,以避免磁芯的饱和,其有效体积V为:V= UoUe I2mag L / B2max注意:A.这种电源的最大工作占空比应保持低于50%,以便通过第三绕组将变压器的电压进行箝位,将总电限制在2倍输入电压之内.这样,当VT1导通时,为箝位电平:当VT停止时,使该总电压接近于0值.如果最大工作占空比大于50%,即δmax > 0.5,将打破这种2倍于电源电压的平衡,导致变压器发生饱和,反过来会产生很高的集电峰位电流,这可能会损坏开关晶体管.B.尽管有第三绕组以及箝位二极管可将开关晶体管的峰值集电极电压限制在2倍直流输入电压之内,但在制作变压器时,还要严格注意初级绕组和第三绕组间的紧密耦合,以消除由于漏感引起的致命的电压尖峰.4.单端正激式变换器电路的变形.1)如同单端反激式变换器电路一样,也可用两个晶体管代替一个晶体管工作,它们同时导通或同时截止,但每个晶体管所承受的电压不会高于Vin.2)此电路也可以产生多路的出电压,但是需增加二极管和扼流圈应指出的是,续流二极管的容量至少要与主回路中的整流二极管相同,因为在晶体管VT1截止时,它要提供输出电路中的全部电流.四. 推挽式变换器电路概述:如图3一8所示,推挽式变换器电路实际上是由两个正激式变换器电路组成,只是它们工作时相位相反,在每个周期里,,两个晶体管交替导通和截止,在各自导通的半个周期内,分别把能量传递给负载,所以称之为”推挽”电路.故在推挽式变换器电路中,两组开关三极管和输出整流二极管因流过每一组组件的平均电流比同等的单端正激式变换器电路减少35%以上,其设计计算可接单端正激式变换器.还应看到,在只开关晶体管导通间隙,二极管VD1和VD2同时导通,它们把高频变压器的次级给短路了,与此同时,把能量传递到了输出回路,实质上,它们起到了续流二极管的作用.推挽式变换器电路的输出电压可用下式计算:V out= 2δmax·Vin / n (3一10)注意:为了避免两只开关晶体管同时导通而引起损坏,公式中δmax的值必须得持在0.5以下.假定δmax=0.4则有:Vout = 0.8Vin / n (3一11 )式中n是高频变压器的初级对次级的匝数比.1)每只开关管的峰值集电极电流Ic=Ic / n (3一12)Ic = Pout / η. (3一13)设η=0.8 δmax=0.8则Ic= 1.6Pout / Vin (3一14)2)每只管所承受的峰值电压限制在2Vin以内.3.推挽式变换器电路中的高频变压器在推挽式变换器电路中,两只晶体管导通时间相等(或者说强制两管导通时间相等),高频变压器的。
电路中的开关电源欠压保护电路有什么作用
电路中的开关电源欠压保护电路有什么作用开关电源是电路中常用的电源类型之一,它具有稳定的输出电压和较高的效率,被广泛应用于各个领域。
然而,在使用开关电源的过程中,有时会遇到电源输入电压不稳定或者下降的情况,这时就需要采取相应的保护措施来保证电路的正常运行。
欠压保护电路便是为此而设计的一种保护电路,它的作用是在电源输入电压低于预设值时,及时切断电路的负载,以避免电路损坏或者不稳定工作。
本文将从欠压保护电路的原理、应用和选取等方面进行介绍。
一、欠压保护电路的原理欠压保护电路的主要原理是通过监测电源输入电压的大小,当输入电压低于设定的电压阈值时,通过控制开关器件的导通或者断开,来实现对电路负载的保护。
欠压保护电路一般由电压检测电路、比较器和控制电路等部分组成。
电压检测电路用于检测电源输入电压的大小,并将其转换为对应的电压信号;比较器用于与设定的阈值进行比较,并输出控制信号;控制电路用于接收比较器的信号,并控制开关器件的导通或者断开。
二、欠压保护电路的应用欠压保护电路广泛应用于各个领域,特别是对于对电源电压稳定性要求较高的设备或者系统来说,欠压保护电路显得尤为重要。
以下是一些常见的应用场景:1. 工业自动化控制系统:在工业生产中,对于各种关键设备的保护至关重要。
欠压保护电路可以保护各种电机、传感器和控制开关等设备,确保其正常运行,并避免因电源电压不稳定而引起的故障。
2. 电子设备:诸如计算机、服务器、通信设备等电子设备对于电源电压的稳定性要求较高,欠压保护电路可以有效保护这些设备免受电源输入电压异常波动的影响,提高设备的可靠性和稳定性。
3. 照明系统:在室内和室外照明系统中,欠压保护电路可以避免电源电压下降引起的灯具光强减弱或者熄灭的问题,确保照明系统长时间稳定工作。
4. 电力系统:在电力输送和分配过程中,欠压保护电路可用于保护变电站、电力变压器和电力线路等设备,确保电力系统可靠运行。
三、欠压保护电路的选取选取适合的欠压保护电路需要考虑以下几个方面:1. 保护电路的响应时间:欠压保护电路需要具备较快的响应速度,能够在电源电压降低到危险阈值以下时迅速切断负载,以避免造成设备损坏。
36v欠压保护电路图大全(六款模拟电路设计原理图详解)
36v欠压保护电路图大全(六款模拟电路设计原理图详解)36v欠压保护电路图(一)电路工作原理:输出电压低于规定值时,反映了输入直流电源、开关稳压器内部或者输出负载发生了异常。
输入直流电源电压下降到规定值之下时,会导致开关稳压器的输出电压跌落,输入电流增大,既危及开关三极管,也危及输入电源。
因此,要设欠电压保护。
简单的欠电压保护如图1所示。
当未稳压输入的电压值正常时,稳压管ZD击穿,晶体管V导通,继电器动作,触点吸合,开关稳压器加电。
当输入低于所允许的最低电压值时,稳压管ZD不通,V截止,触点跳开,开关稳压器不能工作。
开关稳压器内部,由于控制电路失常或者开关三极管失效会使输出电压下降;负载发生短路也会使输出电压下降。
特别在升压型或反相升压型的直流开关稳压器中欠电压的保护是跟过电流保护紧密相关的,因而更加重要。
实现方法是在开关稳压器的输出端接电压比较器,如图2所示。
正常时,比较器没有输出,一旦电压跌落在允许值之下比较器就翻转,驱动告警电路;同时反馈到开关稳压器的控制电路,使开关三极管截止或切断输入电源。
36v欠压保护电路图(二)电路工作原理:本电路由11个元件组成,电路简洁,反应灵敏,其应用范围也比较宽广,电压范围和功率容量可以通过使用不同的器件而改变,并且可采用贴片元件,使体积进一步减小。
电路如上图所示。
在电压正常的情况下,b点电位较高,故a点电位相应也较高;晶闸管导通,所以Ql导通,输出端的负载正常1工作。
当输入电压降低到一定程度时.b点电位相应下降,Q2导通程度减弱使a点电位降低,可控硅关断,使Ql截止,切断了对负载的供电。
当外部电压正常或电池充足电后,对其手动复位即可。
若需安装指示电路可按下图所示安装,采用三色发光二极管进行指示即可。
本电路可用于电动车、充电灯、矿灯等对铅酸电池进行过放电保护,也可接入低压直流供电回路中保护负载。
在此,在应用铅酸电池的场合中,应尽量加装欠压保护器,并能在单格电压降至1.9V左右时实行保护,以延长电池的使用寿命。
开关电源保护电路原理
开关电源保护电路原理开关电源保护电路是一种用于保护开关电源的电路设计,能够保证开关电源在异常情况下正常工作,提高其稳定性和可靠性。
本文将从开关电源的工作原理、保护电路的分类和常见保护电路的原理等方面进行介绍。
开关电源是一种将电能转换为稳定输出电压或电流的电源装置。
其工作原理是通过控制开关管的导通和截止,使得输入电压以一定的频率和占空比转换为脉冲信号,再经过滤波电路和稳压电路,最终输出稳定的直流电压或电流。
开关电源具有高效率、体积小、重量轻和可调性好等优点,因此被广泛应用于电子设备中。
然而,开关电源在工作过程中可能会遇到多种异常情况,如输入电压过高或过低、输出短路、过载和过温等。
这些异常情况可能会导致开关管损坏、输出电压波动或无输出等问题,严重影响开关电源的稳定性和可靠性。
因此,保护电路的设计就显得尤为重要。
根据保护电路的功能和作用方式,可以将保护电路分为输入保护电路、输出保护电路和过温保护电路等。
输入保护电路主要用于对开关电源的输入电压进行监测和保护,防止过高或过低的输入电压对开关电源产生不利影响。
常见的输入保护电路包括过压保护电路和欠压保护电路。
过压保护电路通过检测输入电压是否超过设定值来进行保护。
当输入电压超过设定值时,保护电路会迅速切断开关管的导通,以防止过高的电压损坏开关管和其他电路元件。
欠压保护电路则是在输入电压低于设定值时进行保护,避免开关电源在低电压下无法正常工作。
输出保护电路主要用于对开关电源的输出电流和电压进行监测和保护。
过载保护电路是其中一种常见的输出保护电路。
它通过检测输出电流是否超过设定值来进行保护。
当输出电流超过设定值时,保护电路会迅速切断开关管的导通,以防止过大的电流对开关管和其他电路元件造成损坏。
另外,还有短路保护电路用于对输出短路情况进行保护。
过温保护电路是为了防止开关电源在长时间高负载工作或环境温度过高时产生过热而设计的。
该保护电路通过检测开关电源的温度来进行保护。
开关电源欠压保护电路的设计
开关电源欠压保护电路的设计保护电路的设计,无疑是电源设计中一个非常重要的环节,它对于提高电源工作的安全可靠性、延长电源的使用寿命都起着十分重要的作用。
在设计保护电路时,一方面要保证其功能完善,工作稳定可靠;另一方面应力求简单明了,避免繁复。
本文介绍的开关电源欠压保护电路,欠压检测与反馈控制合用同一只光耦,可以对电源输出欠压作出准确灵敏的反应并充分利用了3842自身的电路特点,使用简单的阻容元件实现了欠压保护电路的自动恢复功能。
2 3842的内部结构及其控制电路3842的工作原理已为大家所熟知,本文在此不作重复介绍。
值得注意的是3842误差放大器的输出结构,在2脚接地时,误差放大器会完全截止,不再吸入电流,这就使3842的应用具有了一定的灵活性。
图1、图2是两种常用的3842控制电路。
图1是标准的3842控制电路,误差放大器的图1 3842控制电路一补偿电路Zi和Zf可以为控制回路提供必要的零极点补偿,通过对控制回路传递函数的校正,使电源的动态响应得到改善。
在图2所示的控制电路中,由于2脚接地,3842的误差放大器始终处于截止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免图2 3842控制电路二止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免因误差放大器补偿不当造成的电源工作不稳定,在电源设计中也获得了广泛应用。
本文所介绍的开关电源欠压保护电路就是基于这种控制模式设计的。
3 单光耦自恢复欠压保护电路以3842单端反激电源为例,当电源供电电压过低或电源输出端过载、短路时,电源的初级电流都会大幅度增加,由于采样电阻Rs的限流作用,使得电源的工作占空比缩小,输出电压下降,电源处于非正常工作状态。
特别是当输出端短路时,变压器中磁通的释放能力近似为零,随着磁通的积累,变压器将处于磁饱和状态。
在初级功率管导通时,供电电压几乎全部加在功率管上,虽然采样电阻Rs可以为功率管提供短时间的保护,但长时间的短路必然会导致功率管严重发热乃至损坏,所以在电源设计时必须增加欠压检测和保护电路,当检测到电源输出端出现欠压现象时,应及时关闭电源控制器,以防电源损坏。
ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解
---------------------------------------------------------------最新资料推荐------------------------------------------------------ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解用 TL494 制作的 ATX 开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用 TL494(有的电源采用 KA7500B,其管脚功能与 TL494 相同,可互换)及 LM339 集成电路(以下简称494 和 339)?494 是双排 16 脚集成电路,工作电压 7~40V?它含有由{14}脚输出的+5V 基准电源,输出电压为+5V(± 0.05V),最大输出电流 250mA;一个频率可调的锯齿波产生电路ATX 电源的控制电路见图 1?控制电路采用 TL494(有的电源采用 KA7500B,其管脚功能与TL494 相同,可互换)及LM339 集成电路(以下简称494 和339)?494 是双排 16 脚集成电路,工作电压 7~40V?它含有由{14}脚输出的+5V 基准电源,输出电压为+5V(± 0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定?{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号?本例为此种工作方式,故将{13}脚与{14}脚相连接?比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端? 比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平?494 内的比较放大器有四个, 为叙述方便,在图 1 中用小写字母 a?b?c?d 来表示?其中 a 是死区时间比较器?因两个作逆变工作的三极管串联后接到+310V 的直流电源上,若两个三极1/ 12管同时导通,就会形成对直流电源的短路?两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候?因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路? 为防止这样的事情发生,494 设置了死区时间比较器 a?从图 1 可以看出,在比较器 a 的反相输入端串联了一个“电源”,正极接反相端,负极接 494 的{4}脚?A 比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494 没有脉冲输出,避免了对直流电源的短路?死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494 输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494 就进入了保护状态,{8}脚和{11}脚就不输出脉冲了?494 内部还有 3 个二输入端与门(用1?2?3 表示)?两个二输入端与非门?反相器?T 触发器等电路?与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平?反相器的作用是把输入信号隔离放大后反相输出?与非门则相当于一个与门和一个反相器的组合?T 触发器的作用是:每输入一个脉冲,输出端的电平就变化一次?如输出端 Q 为低电平,输入一个脉冲后,Q 变为高电平,再输入一个脉冲,Q 又回到低电平?比较器?与门?反相器?T 触发器以及锯齿波振荡器及{8}脚?{11}脚输出的波形见图 2?339 是四比较器---------------------------------------------------------------最新资料推荐------------------------------------------------------ 集成电路?按管脚的顺序把内部四个比较器设为 A?B ?C ?D 比较器?494 和 339 再配合其他电路,共同完成 ATX 电源的稳压,产生PW-OK 信号及各种保护功能?过流保护过压保护一?产生 PW-OK 信号PC 主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了 PW-OK 信号(约 +5V),主机在获得此信号后才开始工作?接通电源时,要求 PW-OK 信号比± 5V?± 12V?+3.3V 电源延迟数百毫秒才产生,关机时 PW-OK 信号应比直流电源先消失数百毫秒,以便主机先停止工作,硬盘的磁头回复到着陆区,以保护硬盘? ATX 电源接通市电后,辅助电源立即工作?一方面输出+5VSB 电源,同时向 494 的{12}脚提供十几伏到二十多伏的直流电源?494 从{14}脚输出+5V 基准电源,锯齿波振荡器也开始起振工作?若主机未开机,PS-ON 信号为高电平,经 R37 使 339 的 B 比较器{6}脚亦为高电平,因电阻 R37 小于 R44,{6}脚电平高于{7}脚电平,B 比较器输出端{1}脚输出低电平,经 D36 的钳位作用,A 比较器的反相端{4}脚亦为低电平,其电平低于同相端{5}脚的电平,输出端{2}脚呈高电平,经 R41 使 494 的{4}脚为高电平,故 494 内部的死区时间比较器 a 输出低电平,与门 1 也因此输出低电平并进而使与门 2 和与门 3 输出低电平,封锁了振荡器的输出,{8}脚?{11}脚无脉冲输出,ATX 电源无± 5V?± 12V?+3.3V 电源输出,主机处于待机状态?因+5V?+12V 电源输出为零,经电阻 R15?R16 使 494 的{1} 脚电平亦为零,494 的 c 比较器的输出端{3}脚输出亦为零,经 R48 使 339 的{9}脚亦3/ 12为零电平,故 339 的 C 比较---------------------------------------------------------------最新资料推荐------------------------------------------------------器的输出端{14}脚为零电平?另外,339 的{1}脚低电平信号因 D34 的钳位作用,也使{14}脚为低电平,经 R50 和 R63 使{11}脚亦为低电平?因此 D 比较器的输出端{13}脚为低电平,也就是 PW-OK 信号为低电平,主机不会工作?开启主机时,通过人工或遥控操作闭合了与 PS-ON 相关的开关,PS-ON 呈低电平,经 R37 使 339 的反相端{6} 脚为低电平,B 比较器{1}脚输出高电平,D35?D36 反偏截止,A 比较器的输出电平则由{5}脚与{4}脚的电平决定? 正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经 R41 送到 494 的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器 a 输出脉冲信号,另一方面,振荡信号送到了 PWM 比较器 b 的同相输入端,PWM 比较器输出的脉冲信号的宽度,则是由 494 的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定 ?PWM 比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}?{11}脚输出脉冲信号,ATX 电源向主机输出± 5V ?± 12V?+3.3V 电源?此过程因 C35 的充电有数百毫秒的延时,但对主机开机并无影响?494 的{1}脚从+5V?+12V 经取样电阻 R15?R16 得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经 R48 使 339 的{9}脚得到高电平, 其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经 R50 与基准+5V 电源经 R64 共同对 C39 充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D 比较器{13}脚输出高电平,此电平经 R49 反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平5/ 12PW-OK 信号,主机检测到此信号后即开始正常工作? 关机时,主机内开关使 PS-ON 呈高电平,此时 339 的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管 D34 的钳位作用,{14}脚呈低电平,C39 对 C 比较器及 B 比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK 信号呈低电平?在 339 的{1}脚为低电平时,经 D36 使{4}臆脚为低电平,{2}脚输出高电平,经 R41 传送到 494 的{4}脚,但因C35 电位不能突变,经数百毫秒的放电后方使 494 的{4}脚转为高电平,从而封锁正负脉冲的输出 ,主机进入待机状态?上述的过程中,关机时 C39 和 C35 都要放电,但因放电时间常数不同,C39 放电较快,故 PW-OK 信号先于各电源变成低电平,满足了主机关机的需要?此外,关机时因各路输出电源的电解电容放电需要时间,也使 PW-OK 信号先于各电源回到低电平? 二?稳压 494 的{2}脚经 R47 与基准电压+5V 相连,维持较好的稳定电压,而{1}脚则与取样电阻 R15?R16 与+5V? +12V 相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高?当输出电压升高时(无论+5V 或+12V),{1}脚电平高于{2}脚电平,c 比较器输出误差电压与锯齿波振荡脉冲在 PWM 比较器 b 进行比较使输出脉冲宽度变窄, 输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升?由于 494 内的放大器增益很高,故稳压精度很好?从稳压的原理,我们可以得到 ATX 电源输出电压偏高或偏低的维修方法?如果输出电压偏低,可在 494 的{1}脚对地并联电阻,或是把 R47 的电阻增大?要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大 R33 或取下 R69?R35 来降低输出电压?---------------------------------------------------------------最新资料推荐------------------------------------------------------ 三?过流保护过流保护的原理是基于负载愈大,Q3?Q4 集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14 整流和 C36 滤波,再经 R54?R55 并联电阻与 R51?R56?R58 等组成的分压电路送到 494 的{16} 脚?随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小?另外,从 R56?R58 并联电阻获得的分压再经 R52 送到 339 的{5}脚,当{5} 脚的电平超过{4}脚时,{2}脚即输出高电平送到 494 的{4}脚,494 停止输出脉冲信号,终止± 5V?± 12V?+3.3V 电源的输出,达到过流及短路保护的目的?需要说明的是:494 的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响 494 的{4}脚电平状态,而 339 的{5}脚电平一旦超过{4}脚的电平,339 的{2}脚就送出高电平去封锁 449 的脉冲输出,终止± 5V?± 12V?+3.3V 电源的输出,同时{2}脚的高电平经R59 和二极管 D39 反馈到{5}脚,维持{5}脚处7/ 12于高电平状态,此时若过载或短路状态消失,494 的{4}脚仍维持高电平,± 与± 5V 12V?+3.3V 电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机? 四?过压保护过电压保护由R17 和稳压管 Z02 并联电路从+5V 采样,经 D37 送到 339 的{5}脚?若+5V 电源由于某种原因升高,339 的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去 494 的{4}脚,封锁± 5V?± 12V? +3.3V 电源的输出,达到过电压保护的目的?正常工作时,R17 上的压降不大,Z02 截止送到{5}脚的电压较低,若 +5V 电源的电压上升,使 R17 上的压降超过 Z02 的稳压值,Z02 导通,+5V 电源上升后的电压值全部加到 339 的 {5}脚上,促使其快速封锁 494 脉冲的输出,以保护电源五?欠压保护欠压保护从-5V 的 D32 及-12V 处的 R14 取样,经 R34 和 D37 送到 339 的{5}脚?若因某种原因使输出电压过低时,-12V 及-5V 电压的负值也会随之减小,也就是电压值上升,经R34 及D37 送往339 的{5}脚使电平上升,339 的{2}脚送出高电平到 494 的{4}脚,从而封锁 449 脉冲的输出,实现欠压保护?二极管 D32 在导通时,其电压降与通过的电流基本无关,保持在 0.6V~0.7V,于是-5V 电压的减少量会全部传送到D32 的负端,提高了欠压保护的灵敏度?六?电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339 的{5}脚电平来控制 494 的{4}脚电平实现的?正常工作时,339 的{5}脚电平低于 339 的{4}脚电平,339 的{2}脚输出低电平,使494 的{4}脚呈低电平状态 (约为 0.25V)?若 339 的{5}脚电平高于---------------------------------------------------------------最新资料推荐------------------------------------------------------ 339 的{4}脚电平,339 的{2}脚输出高电平,于是 494 的{4}脚变为高电平, 电源就进入了保护状态,终止各路电源的输出?因此 ATX 电源出了故障,若电源的整流?滤波?逆变以及辅助电源均完好,则要检查 339 的{4}?{5}脚的电平?若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态?下一步则找出是什么原因使电源进入了保护状态?可检查与 339 的{5}脚相连各支路另一端的电压是不是比{5}脚电压高, 高出{5}脚电压的支路就是故障所在的支路?另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上?再沿着这条支路往下查,很快就可以把故障排除?下面通过两个实例来加以说明? 1.一台SLPS-250ATXC 电源的输出电压偏低?空载下,+5V 电源的电压只有+1.8V,其他各路电压也按比例同样下降?电源是采用 TL494 及LM339 集成电路的典型 ATX 电路?检查 494 的{4}脚电压为+2.6V?电路似乎处于保9/ 12护状态?但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解?试着把 494 的第{4} 脚接地,电源立即输出正常?{4}脚接地就正常工作,说明 494 并未损坏,问题可能出在339 以及有关的电路?用万用表查 339 管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了?甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作?这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40 厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到 1 米左右时,输出电压就正常了,494 的{4}脚电压也恢复到0V?但电源要用“天线”才能工作,说明还有故障未找到?再检查 339 的{4}脚与{5} 脚的电压,{5}脚电压为 2.4V,{4}脚的电压为 1.2V,输出端{2}脚的电压为 2.9V?(这部分电路见图 3)?但是 339 的 {2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试?在断开 c 支路以后,电源就正常了?沿着 D2 往下找,最后在+3.3V 电源处对地接一个1000μF 的电容时,电源就正常了?再检查+3.3V 电源原来的滤波电容,发现已经失效?更换电容后?494 的{4}脚电压恢复正常,用表笔去碰触 339 的{4}脚或{7}脚也不起作用,问题得到了解决?为什么+3.3V 电源的滤波电容失效会造成输出电压偏低?+3.3V 电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过 D3 及 D2 送到 LM339 的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态?从+20V 电源经---------------------------------------------------------------最新资料推荐------------------------------------------------------R3?D1 ?R2 和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是 2.43kΩ,再略去其他支路的影响,可以估算出 {5}脚的电压大约是 2.3V,因二极管 D1 的钳位作用,{2}脚输出电压只能在 2.9V 左右,经 R1 送到 TL494 的{4}脚, 减去电阻 R1 的降压,494 的{4}脚电压就是 2.6V 了?在此电压下,494 会输出较窄的脉冲,于是在空载下,+5V 电源有约 1.8V 的电压输出?解决的办法可在 d 支路中串联一个47kΩ 的电阻,并把 R2 由 3.9kΩ 换成100kΩ 就行了?经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了?而 R2 电阻的改动,也不会影响电源的过载保护性能?至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC 电源,可参考此例加一个47kΩ 电阻以提高电源的保护性能)? 为什么 339 的{4}脚加了天线会正常工作呢?这是{2}脚经D1 反馈到{5}脚后,产生了轻微的高频寄生振荡?{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出 0V 的低电平信号到 494 的{4}脚,电源就工作正常了?同样,在 D1 支路中串联了47kΩ 电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了?此时若取下+3.3V 电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出?2.一台新时代 HY-ATX300 电源,空载时输出电压正常,但不能带动负载?检查 494 各个管脚的电压,发现{12}脚的电压只有 10V,这是造成不能带动负载的原因?在辅助电源逆变变压器 T311/ 12的初级线圈 1 加上 16.5V 的高频电压,测得次级+5VSB 挡线圈 3 的电压是 0.9V,向 494 集成电路{12}脚供电线圈 4 的电压为 1.5V,约是+5VSB 挡线圈电压的 1.7 倍?电源的+5VSB 电源是直接从线圈3 经整流和滤波后得到,+5VSB 电源的稳压则是借助 WD431 稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图 4 所示?由此可以算出线圈 4 的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是 10V 左右了?由此说明 T3 脉冲变压器线圈 4 的匝数少了? 拆开 T3 变压器,得到各绕组的匝数为:初级2×110 匝;反馈绕组10 匝;+5VSB 绕组 12 匝;绕组 4 的匝数是 8 匝? 重新绕制绕组 4,把匝数由原来的 8 匝增加到 20 匝,其余绕组的匝数不变?绕好后上机实验,494 集成电路{12} 脚的电压上升到 17V,电源的输入功率可达 130W,故障排除?从故障现象看,可能是工厂生产时将变压器装错了 ?。
开关电源欠压保护电路的设计
开关电源欠压保护电路的设计保护电路的设计,无疑是电源设计中一个非常重要的环节,它对于提高电源工作的安全可靠性、延长电源的使用寿命都起着十分重要的作用。
在设计保护电路时,一方面要保证其功能完善,工作稳定可靠;另一方面应力求简单明了,避免繁复。
本文介绍的开关电源欠压保护电路,欠压检测与反馈控制合用同一只光耦,可以对电源输出欠压作出准确灵敏的反应并充分利用了3842自身的电路特点,使用简单的阻容元件实现了欠压保护电路的自动恢复功能。
2 3842的内部结构及其控制电路3842的工作原理已为大家所熟知,本文在此不作重复介绍。
值得注意的是3842误差放大器的输出结构,在2脚接地时,误差放大器会完全截止,不再吸入电流,这就使3842的应用具有了一定的灵活性。
图1、图2是两种常用的3842控制电路。
图1是标准的3842控制电路,误差放大器的图1 3842控制电路一补偿电路Zi和Zf可以为控制回路提供必要的零极点补偿,通过对控制回路传递函数的校正,使电源的动态响应得到改善。
在图2所示的控制电路中,由于2脚接地,3842的误差放大器始终处于截止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免图2 3842控制电路二止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免因误差放大器补偿不当造成的电源工作不稳定,在电源设计中也获得了广泛应用。
本文所介绍的开关电源欠压保护电路就是基于这种控制模式设计的。
3 单光耦自恢复欠压保护电路以3842单端反激电源为例,当电源供电电压过低或电源输出端过载、短路时,电源的初级电流都会大幅度增加,由于采样电阻Rs的限流作用,使得电源的工作占空比缩小,输出电压下降,电源处于非正常工作状态。
特别是当输出端短路时,变压器中磁通的释放能力近似为零,随着磁通的积累,变压器将处于磁饱和状态。
在初级功率管导通时,供电电压几乎全部加在功率管上,虽然采样电阻Rs可以为功率管提供短时间的保护,但长时间的短路必然会导致功率管严重发热乃至损坏,所以在电源设计时必须增加欠压检测和保护电路,当检测到电源输出端出现欠压现象时,应及时关闭电源控制器,以防电源损坏。
开关电源各组成部分电路设计方案详细分析
一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器<EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1<热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小<RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源电路设计与实现
开关电源电路设计与实现目录1 绪论 (3)1.1 课题研究的背景 (3)1.2 研究的目的及意义 (5)1.2.1课题研究的目的 (5)1.2.2课题研究的意义 (5)1.3 高频开关电源的发展情况 (5)1.3.1开关电源的发展情况 (5)1.3.2高频开关电源的主要新技术标志 (6)1.4 隔离式高频开关电源简介 (8)2 高频开关电源的总体设计 (9)2.1 主电路的选择 (9)2.2 控制电路的选择 (10)2.2.1单片机控制电路分析 (10)2.2.2芯片控制电路分析 (10)2.3 电流工作模式的方案选择 (11)2.3.1电流连续模式分析 (11)2.3.2电流断续模式分析 (11)2.4 综合结构电路图 (12)3 开关电源输入电路设计 (13)3.1 电压倍压整流技术 (13)3.1.1 交流输入整流滤波电路原理 (13)3.1.2倍压整流技术 (14)3.2 输入保护器件保护 (15)3.2.1浪涌电流的抑制 (15)3.2.2热敏电阻技术分析 (16)4 开关电源主电路设计 (17)4.1 单端反激式变换器电路的工作原理 (17)4.2 开关晶体管的设计 (19)4.3 变压器绕组的设计 (21)4.4 输入整流器的选择 (23)整流器的额定电压应该为最高输入电压的效值的3倍以上,其原因是电网中存在瞬态过电压,通常输入电压220*(1±20%)V或是85——265V应该选择600V 以上电压的整流器和二极管, (24)5 开关电源控制电路设计 (24)5.1 芯片简介 (24)5.1.1芯片原理 (24)5.1.2 UC3842 内部工作原理简介 (24)5.2 工作描述 (26)5.3 UC3842常用的电压反馈电路 (29)6 结论 (32)6.1 成果与结论 (32)6.1.1开关变换器的设计 (32)6.1.2 PWM集成控制器的设计 (33)6.1.3电压电流反馈闭环电路的设计 (33)6.2 进一步工作设想 (33)1 绪论1.1 课题研究的背景随着大规模和超大规模集成电路的快速发展,特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。
电源电路设计方案
电源电路设计方案电源电路设计方案一、设计目标本电源电路设计的目标是为了满足以下要求:1. 提供稳定可靠的直流电源,能够满足设备工作的电源电压和电流需求。
2. 具备过压、欠压和过载保护功能,能够对输入电压和电流进行监控并及时进行处理。
3. 具备高效率和低能耗的特点,能够最大限度地减少能源的浪费。
二、方案描述1. 输入电源输入电源采用交流电源,经过整流电路变成直流电源。
在输入电源的前端添加滤波电路,以减少输入电源的纹波电压和噪音。
2. 正确选择电源的输出电压和电流根据所需应用的电压和电流要求,选择合适的电源输出电压和电流。
同时,考虑电源的容量和稳定性,确保能够满足设备的工作电压和电流需求。
3. 电源稳定性设计为了保证电源的稳定性,在电源电路中使用稳压器件,例如稳压二极管或稳压模块,来提供稳定的输出电压。
此外,还可以使用反馈电路来监测并调整输出电压。
同时,添加适当的滤波电路来减少输出电压的纹波和噪音。
4. 过压、欠压和过载保护设计在电源电路中添加相应的保护电路,用来监测输入电压和电流的变化情况,并在超出设定范围时触发保护措施。
例如,可以使用过压保护电路、欠压保护电路和过载保护电路来保护电源和设备的安全运行。
5. 高效率和低能耗设计为了提高电源的效率和减少能源的浪费,可以采用高效率的开关电源设计。
同时,优化整个电源电路的结构和参数,减少各个部件的功耗和损耗。
三、方案实施1. 根据设计需求,选择合适的电源和元器件,并进行相应的电路布局和连接。
2. 确保电源电路的接地良好,减少接地回路的干扰和噪音。
3. 进行电源电路的测试和调试,保证其稳定性和可靠性。
4. 对电源电路进行保护措施的测试和验证,确保其能够满足设备的安全运行要求。
四、方案总结本电源电路设计方案能够有效满足设备对电源的电压和电流要求,并具备过压、欠压和过载保护功能。
通过优化设计,能够提高电源的效率和降低能源的浪费。
同时,良好的电源稳定性和可靠性能够保证设备的正常工作。
开关电源芯片各种保护原理
开关电源芯片通常具有多种保护功能,以确保电路和设备的安全稳定运行。
以下是一些常见的保护原理:
1. 过压保护(OVP,Over Voltage Protection):当输入电压超过设定阈值时,OVP 保护会立即切断输出,以防止输出端电压过高损坏负载或其他部件。
2. 欠压保护(UVP,Under Voltage Protection):当输入电压低于设定阈值时,UVP 保护可以防止电路因供电不足而无法正常工作,保护设备免受损坏。
3. 过流保护(OCP,Over Current Protection):OCP 保护能够监测输出电流,当输出电流超过设定阈值时,会迅速切断输出,以防止过载损坏电路或负载。
4. 短路保护(SCP,Short Circuit Protection):SCP 保护会在检测到输出短路时迅速切断输出,以防止电路、负载或电源本身受到损坏。
5. 过温保护(OTP,Over Temperature Protection):当芯片内部温度超出安全范围时,OTP 保护会主动降低输出功率或直接切断输出,以避免因过热而导致芯片损坏。
这些保护原理结合在一起,可以使开关电源芯片在各种异常情况下及时做出反应,保护设备和电路免受损害。
这些保护功能的设计和实现对于确保开关电源系统的可靠性和安全性至关重要。
开关电源控制器欠压锁定电路的研究
和 偏 置 电流 , 提 高 了模 块 电路 的 可 靠 性 , 而且 电路 具 有 结 构 简单 、 功耗 低 、 电压 精 确 、 温度 敏 感 性 低 等
优 点 。在 B C D 工 艺 下 ,采 用 C a d e n c eห้องสมุดไป่ตู้ S p e c t r e软 件 对 电 路 进 行 仿 真 验 证 。 仿 真 结 果 证 明 了 所 设 计
( S c h o o l o f E l e c t r i c a l a n d C o n t r o l E n g i n e e r i n g ,Xi a n Un i v e r s i t y o f S c i e n c e& T e c h n o l o g y ,Xi a n 7 1 0 0 5 4, C h i n a )
l o w t e mp e r a t u r e s e n s i t i v i t y.I n a s t a n d a r d BC D p r o c e s s ,t h e d e s i g n e d c i r c u i t i s s i mu l a t e d b y u s i n g S p e c t r e o f C a d e n c e .T h e s i mu l a — t i o n r e s u l t s p r o v e d t h e f e a s i b i l i t y a n d c o re c t n e s s o f t h e d e s i g n e d UVL O.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源欠压保护电路的设计
保护电路的设计,无疑是电源设计中一个非常重要的环节,它对于提高电源工作的安全可靠性、延长电源的使用寿命都起着十分重要的作用。
在设计保护电路时,一方面要保证其功能完善,工作稳定可靠;另一方面应力求简单明了,避免繁复。
本文介绍的开关电源欠压保护
电路,欠压检测与反馈控制合用同一只光耦,可以对电源输出欠压作出准确灵敏的反应并充
分利用了3842自身的电路特点,使用简单的阻容元件实现了欠压保护电路的自动恢复功能。
2 3842的内部结构及其控制电路
3842的工作原理已为大家所熟知,本文在此不作重复介绍。
值得注意的是3842误差放大器的输出结构,在2脚接地时,误差放大器会完全截止,不再吸入电流,这就使3842的应用具有了一定的灵活性。
图1、图2是两种常用的3842控制电路。
图1是标准的3842控制电路,误差放大器的
图1 3842控制电路一
补偿电路Zi和Zf可以为控制回路提供必要的零极点补偿,通过对控制回路传递函数的
校正,使电源的动态响应得到改善。
在图2所示的控制电路中,由于2脚接地,3842的误差放大器始终处于截止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简
单易行,也可避免
图2 3842控制电路二
止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免因
误差放大器补偿不当造成的电源工作不稳定,在电源设计中也获得了广泛应用。
本文所介绍的开关电源欠压保护电路就是基于这种控制模式设计的。
3 单光耦自恢复欠压保护电路
以3842单端反激电源为例,当电源供电电压过低或电源输出端过载、短路时,电源的
初级电流都会大幅度增加,由于采样电阻Rs的限流作用,使得电源的工作占空比缩小,输
出电压下降,电源处于非正常工作状态。
特别是当输出端短路时,变压器中磁通的释放能力
近似为零,随着磁通的积累,变压器将处于磁饱和状态。
在初级功率管导通时,供电电压几乎全部加在功率管上,虽然采样电阻Rs可以为功率管提供短时间的保护,但长时间的短路
必然会导致功率管严重发热乃至损坏,所以在电源设计时必须增加欠压检测和保护电路,当检测到电源输出端出现欠压现象时,应及时关闭电源控制器,以防电源损坏。
输出端欠压检测,可以采用初级间接检测和次级直接检测两种方法,一般来说次级直接检测更迅速准确,因而在电源设计中采用较多。
最普通的次级直接检测方法是在控制回路中
额外增加光耦等元件(如图3所示),当输出端出现欠压时,光耦截止,触发初级的附加控
制电路迫使3842关闭。
这种欠压检测方法存在着检测精度不高,使用元件较多等缺陷。
另
外,在一些特定应
图3 带有光耦的次级直接检测电路
用场合,要求电源在出现过载或短路欠压时电源控制器不能完全锁死,当欠压故障消除后,
电源控制器应具有无须重新上电即可自动恢复工作的功能。
自恢复功能的加入会使控制电路
的元件数进一步增加,也使控制电路的设计变得复杂化。
如何能用较少的元件、较简单的方法、更有效地完成电源的欠压检测、欠压保护及自恢复功能,是本文所介绍的欠压保护电路
的设计重点。
图4是单光耦自恢复欠压保护电路的基本应用电路。
在电源上电后,电容E1开始充电,当E1电压充至16V时,3842开始工作。
3842的8脚出现5V电压,并通过电阻R2对电容C1进行充电。
此时,由于2脚电压低于 2.5V,3842的误差放大器会完全截止,而且在电源输出电压达到正常值以前,光耦中也不会有If流过,
所以PWM比较器的比较电压为高电平(1V),电源开始工作,次级电容E2开始被充电。
在
C1被充电至 2.5V前,由于次级输出电压已达到正常值
,反馈控制回路开始起作用,采样比较放大器TL431开始下拉电流,光耦中有电流If流过,三极管Q1饱和导通,C1通过R3放电,2脚电压最终被稳定在R2和R3的分压值上(
<2.5V),PWM比较器的比较电压完全由反馈光耦调节控制,电源进入了稳定工作状态。
图4 单光耦自恢复欠压保护电路的基本应用电路
在电源输出端出现微弱欠压时,采样比较放大器TL431会立即停止下拉电流,反馈控制光耦迅速关断,光耦中不再流过电流If,三极管Q1截止,电阻R3失去了分压作用,电容
C1上的电压很快由
充至 2.5V以上。
3842误差放大器开始输出低电平,PWM比较器的比较电压也变为低电平,3842的6脚停止输出驱动脉冲后,电源停止了工作,从而实现了快速灵敏的欠压检测及保
护功能。
电压值越接近于 2.5V,电源的欠压保护动作也就越灵敏。
在电源的欠压保护开始后,D2不再向E1供电,E1电压开始下降,当E1电压下降到10V 时,3842停止工作,3842的8脚变为零电压。
C1通过R2、D1、R4放电,以保证在下周期
工作开始时,能获得必要的保护延时时间(加入D1、R4的目的是为了加快C1的放电速度,这两个元件也可以不要)。
此后,由于R1的充电作用,E1电压开始回升,当E1的电压再次充至16V时,电源开始新一周期的工作,若欠压故障仍未消除,电源很快又会关闭,即在出现欠压故障时电源将以间歇启动的方式工作,在欠压故障消除后,电源会自动恢复正常工
作状态,从而实现了欠压保护电路的自恢复功能。
本电路在设计时尽量避免了各阻容元件间有过多的关联,因而使得电路计算非常明确简单,这也为电源调试和维修带来很大的方便。
R1和E1决定了欠压保护时电源的关闭时间
,E1的电压从10V上升到16V所用的时间即为电源关闭时间,
一般取为1秒左右。
在输入电压
较高时(例如300Vdc),流过R1的电流
近似为恒流,即
式中为3842的启动电流,典型值为0.5mA。
另外,在输入
较低时(例如48Vdc),流过R1的电流
已不能再近似为恒流,此时可选用小功率恒流管取代R1,相应的
为恒流管的恒流值。
R2和C1主要为电源起动时提供必要的保护延时时间
,C1的电压从0V上升到 2.5V所用的时间即为保护延时时间,
应大于电源的电压上升时间
,因而应满足
其中是三极管Q1的饱和管压降。
R5的作用主要是防止在光耦截止时,三极管Q1的基极浮空,一般取为几十千欧。
三极管Q1选用高频、高b值、低管压降的小功率锗开关管。
4 结束语
3842峰值电流控制芯片在单端开关电源中的应用极为普遍,其应用技术也非常成熟,
但出于新的设计需要,电源设计者们至今仍需不断地去探索尝试它的新的应用方法。
本文所介绍的单光耦自恢复欠压保护电路的设计简洁、功能完善,在实际电源设计中已多次使用,
实践证明使用效果良好,有关它的设计思路也可用于其它电源控制芯片的欠压保护电路设计
中。