八年级数学下册第一章三角形的证明1.1等腰三角形导学案无答案新版北师大版
北师大版八年级下册数学 第一章 三角形的证明 等腰三角形(第4课时)
课堂小结
等腰三角形 的拓展
等边三角形 的判定
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角等于60°的等腰三角形是等边三角形
特殊的直角三 角形的性质
在直角三角形中, 如果有一个锐角等于30°,那 么它所对的直角边等于斜边的一半
探究新知
方法总结 选用等边三角形判定方法的技巧 (1)如果已知三边关系,则选用等边三角形定义来判定. (2)若已知三角关系,则选用三角相等的三角形是等边三 角形来判定. (3)若已知是等腰三角形,则选用有一个角是60°的等腰 三角形是等边三角形来判定.
巩固练习
变式训练
在△ABC中,∠A=60°,要使△ABC是等边三角形, 则需添加的一个条件是 AB=AC或∠B=∠C .
证明:∵△ABC为等边三角形, ∴∠BAC=∠ABC=60°,AB=AC=BC, ∴∠EAF=∠EBD=120°, ∵BE=CD,∴BE+AB=BC+CD,即AE=BD,
课堂检测
BE = AF, 在△AEF和△BDE中, ∠EBD =∠EAF, ∴△AEF≌△BDE(SASB),D∴=EFA=EE,D,
证明:∵AD∥BC,∠A=120°,∴∠A+∠ABC=180°. 即∠ABC=180°-∠A=180°-120°=60°, ∴∠ABD=∠DBC=30°. ∴△BDC是直角三角形(∠又BD∵C∠=9C0=°60).°, 又∵CD=4 cm,∴BC=2CD=2×4=8(cm).
课堂检测
拓广探索题
如图:△ABC是等边三角形,点D,E,F分别在BC,AB,CA边延 长线上,且BE=AF=CD. 求证:△DEF是等边三角形.
北师大版八年级数学(下) 第一章 三角形的证明 第3节 等腰三角形的判定与反证法
图⑤中,∵AB∥DE,∴∠A=∠D=30°,∵∠BCD=∠A+∠B=60°,
∴∠B=60°﹣∠A=30°,∴∠B=∠A,∴△ABC 是等腰三角形;
能判定△ABC 是等腰三角形的有 4 个,故选:C.
例 2:如图,在△ABC 中,AB=AC,∠BAC=108°,BD=AD=AE,则图中等腰三角形的个数为( )
CBE 是等腰三角形.∴图中的等腰三角形有 8 个.故选:D.
B.6
C.7
D.8
例 3:已知:如图△ABC 中,∠B=50°,∠C=90°,在射线 BA 上找一点 D,使△ACD 为等腰三角
形,则∠ACD 的度数为
.
解:如图,有三种情形:
①当 AC=AD 时,∠ACD=70°. ②当 CD′=AD′时,∠ACD′=40°. ③当 AC=AD″时,∠ACD″=20°, 故答案为 70°或 40°或 20°
C.50°、60°
D.100°、30°
解:A、∵三角形中已知两个内角为30°、60°,∴第三个内角为 180°﹣30°﹣60°=90°,
∴这个三角形是直角三角形,不是等腰三角形,故选项 A 不符合题意;
B、∵三角形中已知两个内角为 40°、70°,∴第三个内角为 180°﹣40°﹣70°=70°,
∴这个三角形由两个内角相等,∴这个三角形是等腰三角形,故选项 B 符合题意;
反证法
在证明时,先假设命题的结论不成立,然后 由此推导出与定义、基本事实、已有定理或已知 条件相矛盾的结果,从而证明命题的结论一定成 立.这种证明方法称为反证法.
用反证法证题的一般步骤:
1. 假设: 先假设命题的结论不成立; 2. 归谬: 从这个假设出发进行推理,得出与定义、基本事实、 已有定理或已知条件相矛盾的结果;
最新北师大版八年级下册数学 第1讲:等腰三角形与直角三角形-学案
一、提请学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。
二、等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?三、顶角是60°的等腰三角形是等边三角形;底角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形;三条边都相等的三角形是等边三角形。
二、1、定理斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.2、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半3、课堂练习:考点一:等腰三角形【例题】1.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20° B.30° C.40° D.50°2.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°3.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个4.(2014秋•西城区校级期中)已知:AD既是△ABC的角平分线又是BC边上的中线,DE⊥AB于E,DF ⊥AC于F,求证:BE=CF.5.(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.6.(2015•应城市二模)如图,点D、E在△ABC的BC边上,AB=AC,BD=CE.求证:AD=AE.7.如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹);(2)求证:BM=EM .8.(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,判断BE 与CD 的大小关系为:BE_____CD .(不需说明理由)(2)如图2,已知△ABC ,以AB 、AC 为边向外作等腰△ABD 和等腰△ACE ,且顶角∠BAD =∠CAE ,连接BE 、CD ,BE 与CD 有什么数量关系?请说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B 、E 的距离.已经测得∠ABC =45°,∠CAE =90°,AB =BC =100米,AC =AE ,求BE 的长.9.如图,在ABC △中,AC =AB ,120=B AC ∠°,B E =A E ,D 为EC 中点.C D E B A(1)求CAE ∠的度数;(2)求证:A DE △是等边三角形【习题】1.(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .求证:AD=BE .(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE边DE上的高,连接BE.①求证:2CM+BE=AE;②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.2.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.3.(2014秋•嘉鱼县校级月考)如图所示,∠1=∠2,BD=CD,试证明△ABC是等腰三角形.4(2014秋•衡阳县校级月考)已知:如图所示,AD是△ABC的高,E为AD上一点,且BE=EC,求证:△ABC是等腰三角形.5.(2013秋•滨湖区校级期中)把一张对边平行的纸条,如图所示折叠,重合部分是什么形状?说明理由.6.(2012•温州模拟)在下列四个条件中:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE.请选出两个作为条件,得出△AED是等腰三角形(写出一个即可),并加以证明.已知:;求证:△AED是等腰三角形.7.(2012秋•文登市校级期中)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点,CP=CD.求证:△DBP是等腰三角形.8.(2011秋•西城区校级期中)如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD 延长线于E,BA、CE延长线相交于F点.求证:(1)△BCF是等腰三角形;(2)BD=2CE.9.(2010春•福安市期末)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.10.(2009春•东山县校级期末)△ABC是等腰直角三角形,∠BAC=90°,BE是角平分线,ED⊥BC.①请你写出图中所有的等腰三角形;②若BC=10,求AB+AE的长.11.(2015春•龙口市期末)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.考点二:直角三角形【例题】1.(2007春•南阳期末)如图:△ABC中,AD⊥BC于D,点E在AD上,△ADC和△BDE是等腰三角形,EC=5cm,求AB的长.2.(2002•呼和浩特)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.3.如图,△ABC的高BD与CE相交于点O,OD=OE,AO的延长线交BC于点M,请你从图中找出几对全等的直角三角形,并说明理由.4.(2014•南岗区模拟)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE中点,连接MD,若BD=2,CD=1.则MD的长为.5.(2015春•白城校级期中)在Rt△ABC中,∠C=90°,D是BC边上一点,且BD=AD=10,∠ADC=60°,求△ABC的面积.6.(2015秋•岳池县期中)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.【习题】1.(2010•大连校级自主招生)在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于点P,若∠A=50°,则∠BPC的度数是度.2.(2007•包头)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为.3.(2015春•秦淮区期末)如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.4.(2015秋•武威校级月考)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.5.(2015秋•周口校级月考)如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.6.如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠EDF.7.(2015秋•威海期中)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,求BE的长.8.(2013秋•龙口市期末)如图,Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,若AD=6cm,求DC 的长.9.(2012•淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.10.(2015秋•建湖县期中)如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点(1)求证:MN⊥AC;(2)若∠ADC=120°,求∠1的度数.11.(2015秋•东台市期中)如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.12.(2015秋•绍兴校级期中)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)若∠EMD=40°,求∠DAC的度数.13.(2014秋•无锡校级期末)已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.14.(2014秋•黄浦区期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.11。
第一章 三角形的证明 1.1等腰三角形 2课时 导学案(最新北师大版)
1.1 等腰三角形第一课时一、课前准备:1、有 的三角形叫做等腰三角形,相等的两边叫做 ,腰与底边的夹角叫做 ; 的三角形是等边三角形。
2、公理、定理、证明公理:公认的 称为公理。
定理:经过证明的 称为定理。
证明: 的过程称为证明。
3、证明的一般步骤是:根据题意 ;根据条件、结论,结合图形 ;经过分析,找出由已知推出求证的途径, 。
对假命题的判断,只要举 来证明即可。
二、学习目标:1、了解作为证明基础的几条公理、定理的内容,掌握证明的基本步骤和书写格式。
2、掌握等腰三角形的性质。
3、结合实例体会反正法的含义。
三、自学提示: 1、你知道吗?全等三角形的判定及性质(见课本P2想一想) 2、你发现了吗? (1)把探究1中剪出的△ABC 沿折痕AD 对折,根据得到的信息,填入右表:(2)从上表中你能发现等腰三角形的角有什么样的特点吗?底边上的中线,高线,顶角平分线有什么样的特点吗? (3)你能证明你所得到的结论吗?求证:等腰三角形的两个底角相等。
已知: ΔABC 中,AB=AC.求证: ∠B= ∠C.证明:.等腰三角形的性质:性质1 等腰三角形的两个底角 (简写成“ ” );性质2 等腰三角形的顶角的 、底边上的 、底边上的 相互 。
【我是小翻译】请将等腰三角形性质(文字语言)“翻译”成图形和符号语言。
B五、夯实基础:1.等腰三角形一个底角为70°,它的顶角为______.2.等腰三角形的顶角为100°,它的底角为______.3.等腰三角形一个角为110°,它的另外两个角为___________.4.等腰三角形一个角为70°,它的另外两个角为__________________.5.在△ABC 中,AB=AC ,∠1=∠2=55°,则BD=5,CD=____。
6.在△ABC 中,AB=AC ,BM=CM ,∠BAM=35°,则∠CAM=_____°,∠AMB=_____°。
八年级数学下册 1 三角形的证明 课题 等腰三角形的判定与反证法学案 (新版)北师大版
课题等腰三角形的判定与反证法【学习目标】1.理解等腰三角形的判定定理,并会运用其进行简单的证明.2.了解反证法的基本证明思路,并能简单应用.【学习重点】等腰三角形的判定定理,并会运用其进行简单的证明.【学习难点】反证法的证明方法.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案,教会学生落实重点.方法指导:1.等腰三角形的判定方法有两种:①根据定义判定;②等角对等边.2.“等角对等边”可以将图形中角的等量关系转化为线段的等量关系,是证明线段相等的一种重要方法.情景导入生成问题旧知回顾:1.等腰三角形性质定理内容是什么?等腰三角形两底角相等.2.我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两角所对的边也相等吗?答:还成立.如图,△ABC中,∠B=∠C.求证:AB=AC.证明:作AD⊥BC于D,由∠ADB=∠ADC=90°,∠B=∠C,AD=AD,∴△ABD≌△ACD,∴AB=AC.自学互研生成能力知识模块一等腰三角形的判定【自主探究】阅读教材P8的内容,回答下列问题:等腰三角形的判定定理内容是什么?答:有两个角相等的三角形是等腰三角形,简称“等角对等边”.范例:如图,在△ABC中,AB=AC,点D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于点F.求证:AD=AF.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC,∴∠DEB=∠DEC=90°,∴∠2+∠B=∠F+∠C=90°,∴∠2=∠F,∵∠1=∠2,∴∠1=∠F,∴AF=AD(等角对等边).仿例1:如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点,试判断OE和AB的位置关系,并给出证明.证明:∵AC=BD,∠BAC=∠ABD,AB=BA,∴△ABC≌△BAD(SAS),∴∠OAB=∠OBA,∴OA=OB(等角对等边),∵OE是中线,∴OE⊥AB.仿例2:如图,在△ABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE 的周长是5 cm.归纳:注意等角对等边的灵活应用,仿例2中平行线和角平分线结合是得出等腰三角形的范例.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:教会学生整理反思.知识模块二反证法阅读教材P8-9的内容,回答下列问题:什么是反证法?有哪些重要步骤?答:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【合作探究】1.用反证法证明“等腰三角形的底角都是锐角”.已知:在△ABC中,AB=AC,求证:∠B、∠C都是锐角.证明:假设∠B、∠C都是直角或钝角,∴∠B≥90°,∠C≥90°,∴∠B+∠C≥90°+90°=180°,∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,∴假设不成立,原命题的结论正确,即∠B、∠C都是锐角.2.用反证法证明一个三角形中不能有两个直角的第一步是假设这个三角形中有两个角是直角.3.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.归纳:对直接证明有困难的命题均可用反证法证明,它有三个基本步骤:①反设;②推出矛盾;③否定反设、肯定命题成立.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一等腰三角形的判定知识模块二反证法检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
新版北师大版八年级下册第一章三角形的证明导学案学生版
模块四:课下练习 1、 2、 在△ABC 中,AB=AC,AB 的垂直平分线与 AC 所在的直线相交所得的锐角为50°,则 如图, 已知∠ABC=20°, BD=DE=EF=FG, 求∠CGF 和∠AFG 的度数分别是_________.
∠B 等于________度.
3、
如图, 在△ABC 中, ∠B、 ∠C 的平分线交于 E, 过 E 作 DF∥BC 交 AB 于 D, 交 AC 于 F. 若 ). D.6 A.9 B.7 C.8
3.如图,A、B、F、D 在同一直线上,AB=DF, AE=BC,且 AE∥BC. 求证:⑴△AEF≌△BCD, ⑵EF∥CD.
●中考在线 1、 已知:如图,△ABC 中,AD 是高,CE 是中线,DC=BE, DG⊥CE,G 是垂足, 求证: (1)G 是 CE 中点; (2)∠B=2∠BCE.
2.C 是线段 AB 的中点,CD 平分∠ACE,CE 平分∠BCD,CD=CE. (1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.
模块一 一.知识点
第一节 预习反馈(P5 例 1—P9)
等腰三角形(二)
达州耀华育才学校八年级下册数学集体备课教案导学案
主备人:喻茂伦
1、等腰三角形两个底角的平分线相等; 2、等腰三角形腰上的高相等; 3、等腰三角形腰上的中线相等; 4、推理论证:等腰三角形腰上的中线相等; (以上定理画图、写出已知、求证、证明过程) 5.等边三角形的三个内角都相等,并且每个内角都等于 60。 6、两个角相等的三角形是等腰三角形。 (等角对等边) 7、反证法:在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有 定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法。 模块二 基础训练 1. 在如图的等腰三角形 ABC 中, (1)如果∠ABD= 1 1 ∠ABC,∠ACE= ∠ACB 呢?由此,你能得到一个什么结论? 3 3
北师大版八年级下册数学《等腰三角形》三角形的证明说课教学课件复习(第3课时)
猜想:如果一个三角形有两个角相等,那么这两个角所对的边也相等.如何证明?
数学语言:已知:在△ABC中,∠B=∠C;求证:AB=AC 方法思考:①作高AD可以吗? ②作角平分线AD呢? ③作中线AD呢?
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等,
∴△ABP≌△ACQ(SAS)
∴AP=AQ,∠BAP=∠CAQ
∵∠BAC=∠BAP+∠PAC=60°
∴∠PAQ=∠CAQ+∠PAC=60°
∴△APQ是等边三角形
课堂检测,巩固新知
1.如图,一棵大树在一次强台风中离地面5米处折断倒下,倒下部分与地面成
30°夹角,这棵大树在折断前的高度为( B )
A.10米 B.15米 C.25米 D.30米 2.如图,在△ABC中,AC=BC,∠ACB=120°,CE⊥AB于点D,且DE=DC.求证 :△CEB为等边三角形.
开放训练,体现应用
例 2 (教材第11页例4)求证:如果等腰三角形的底角等于15°,那么腰上的高是
腰长的一半.
已知:如图,在△ABC中,AB=AC,∠B=15°,CD是腰AB上的高.
求证:CD=1AB.
2
证明:在△ABC中, ∵AB=AC,∠B=15° ∴∠B=∠ACB=15°(等边对等角) ∴∠DAC=∠B+∠ACB=30° ∵CD是腰AB上的高 ∴∠ADC=90° ∴CD=AC ∴CD=1AB
开放训练,体现应用
变式训练1 如图,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC 的平分线BD交边AC于点D.求证:△BCD为等腰三角形.
证明:∵∠BAC=75°,∠ACB=35° ∴∠ABC=180°-∠BAC-∠ACB=70° ∵BD平分∠ABC ∴∠DBC=∠ABC=35° ∴∠DBC=∠ACB=35° ∴DB=DC ∴△BCD为等腰三角形
北师大版数学八年级下册:第一章《三角形的证明》含详细答案
北师大版八年级下册数学第一章三角形的证明一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.52.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到A.1B.2C.D.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.北师大版八年级下册数学第一章三角形的证明参考答案与试题解析一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
北师版八年级数学下册优秀作业课件(BS) 第一章 三角形的证明 第3课时 等腰三角形的判定与反证法
8.(8分)用反证法证明:等腰三角形的两底角必为锐角. 证明:假设等腰三角形的底角∠B,∠C都是大于等于90°的角, 则____∠__B__+__∠__C_≥_1_8_0_°________, 从而__∠__A_+__∠__B_+__∠__C_______>180°, 这与__三__角__形__内__角__和__为__1_8_0_°__矛盾. 则假设___不__成__立_____, 所以∠B,∠C只能为__锐__角. 故等腰三角形的两底角必为锐角.
6.(4 分)用反证法证明“ 5 是无理数”时,最恰当的证法是先假设 5 是( C ) A.分数 B.整数 C.有理数 D.实数
7.(4 分)(驻马店月考)在用反证法证明命题“在一个三角形中, 至少有一个内角大于或等于 60°”时, 应首先假设___在__一__个__三__角__形__中___,__三__个__内__角__都__小__于__6_0_°_________.
数学 八年级下册 北师版
第一章 三角形的证明
1.1 等腰三角形
第3课时 等腰三角形的判定与反证法
1.(4 分)在△ABC 中,已知∠B=∠C,则下列关系正确的是( B) A.AB=BC B.AB=AC C.BC=AC D.∠A=60° 2.(4 分)满足下列哪组条件可使△ABC 是等腰三角形( D ) A.∠A=50°,∠B=60° B.∠A=50°,∠B=100° C.∠A+∠B=90°
第10题图
11.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.过点O作DE∥BC, 分别交AB,AC于点D,E.若AB=5,AC=4,则△ADE的周长是__9__.
第11题图
三、解答题(共36分) 12.(10分)如图,在四边形ABDC中,AB=AC,∠B=∠C,求证:BD=CD.
北师版数学八年级下册课时练 第一章 三角形的证明 等腰三角形的特殊性质和等边三角形的性质
北师版数学八年级下册第一章三角形的证明1等腰三角形第2课时等腰三角形的特殊性质和等边三角形的性质1.如图,在△ABC中,AB=AC,高BD和CE相交于点F.若BD=3,则CE=__3__.第1题图第2题图2.(2019·山东济南商河期末)如图,在△ABC中,AB=AC,高BD和CE相交于点O,连接AO并延长交BC于点F,则图中共有__7__对全等三角形.3.证明:等腰三角形两腰上的中线相等.解:已知:如图,△ABC中,AB=AC,AD=DC,AE=EB,求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,∴DC=BE,∠DCB=∠EBC.∵BC=CB,∴△BDC≌△CEB(SAS),∴BD=CE,即等腰三角形两腰上的中线相等.4.若等边三角形的周长为12 cm,则它的边长是(B)A.3 cm B.4 cmC.5 cm D.6 cm5.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是(A)A.100°B.80°C.60°D.40°第5题图第6题图6.(2019·四川成都武侯区期末)如图,等边三角形ABC的边长为2,AD是BC边上的高,则高AD的长为(C)A.1 B. 2C. 3 D.27.(2019·辽宁营口模拟)如图,等边△ABC的顶点A,B分别在网格图的格点上,则∠α的度数为(A)A.15°B.20°C.25°D.30°第7题图第8题图8.如图,等边三角形ABC的两条中线BD,CE相交于点O,则∠BOC=__120°__.9.(2019·江苏无锡宜兴二模)如图,已知在等边三角形ABC中,D为BC延长线上一点,E 为CA延长线上一点,且AE=DC.求证:AD=BE.证明:因为在等边三角形ABC 中,AB =CA ,∠BAC =∠ACB =60°,所以∠EAB =∠DCA =120°.又因为AE =DC ,所以△EAB ≌△DCA ,所以AD =BE .10.如图,已知△ABC 和△BDE 都是等边三角形,且A ,E ,D 三点在同一直线上,若BD =4,CD =3,求线段AD 的长.解:∵△ABC 和△BDE 都是等边三角形,∴AB =AC =BC ,EB =DB =ED ,∠ABC =∠EBD =60°,∴∠ABC -∠EBC =∠EBD -∠EBC ,即∠ABE =∠CBD .在△ABE 和△CBD 中,⎩⎨⎧AB =BC ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD (SAS),∴DC =AE . ∵AD =AE +ED ,∴AD =BD +CD =4+3=7.易错点 对等边三角形的性质把握不清而出错 11.等边三角形的角平分线、中线和高共有( A ) A .3条 B .5条 C .7条D .9条12.(2018·福建中考)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于(A)A.15°B.30°C.45°D.60°13.如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,则图中与∠B相等的角(不包括∠B)有(C)A.1 个B.2个C.3个D.4个14.(2019·广西北部湾经济区二模)如图,已知直线l1∥l2,将等边三角形按如图所示放置.若∠β=20°,则∠α等于__40°__.15.(教材P7,习题1.2,T2改编)如图,在△ABC中,AB=AC,点E,D,F分别是边AB,BC,AC边上的点,且BE=CD,CF=BD.若∠EDF=50°,则∠A的度数为__80°__.第15题图第16题图16.(2019·山西太原三十六中课时作业)如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一直线上,连接BD,则BD的长为__43__.17.(2019·湖北黄冈月考)如图,点D,E分别在等边△ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1,EB1分别交边AC于点F,G.若∠ADF=80°,则∠CEG=__40°__.18.已知:如图,在△ABC中,AC=8,点D在AB边上,且AD=BD=CD=5,在△ABC 外,作等边三角形ACE.(1)判断△ABC的形状,并证明;(2)求四边形ABCE的周长.解:(1)△ABC是直角三角形.证明:如图,∵AD=BD=CD,∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3.又∵∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴△ABC是直角三角形.(2)在Rt△ABC中,AC=8,AB=10,BC=AB2-AC2=6.又∵△ACE是等边三角形,∴AE =CE=8,∴四边形ABCE的周长为AB+BC+AE+CE=32.19.已知△ABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于点Q.就下面给出的三种情况(如图1、图2、图3所示),探究∠BQM的大小,然后猜测∠BQM是否为定值并证明你的结论.解:∠BQM=60°,为定值.证明:如题图1,∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC.∵BM=CN,∴△ABM≌△BCN(SAS).∴∠BAM=∠CBN(全等三角形的对应角相等),∴∠BQM=∠BAQ+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°.如题图2,∠BQM=∠ABN+∠BAM.∵△ABM≌△BCN,∴∠BAM=∠CBN,∴∠BQM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°.如题图3,∠BQM=∠N+∠NAQ.∵△ABM≌△BCN(SAS),∴∠N=∠M,且∠NAQ=∠CAM.又∵∠ACB=∠M+∠CAM=∠N+∠NAQ,且∠BQM=∠N+∠NAQ,∴∠BQM=∠ACB=60°.。
八年级数学下册第一章三角形的证明1等腰三角形第1课时等腰三角形的性质作业课件新版北师大版
5.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,若AB=13,AD =12,则BC的长为( B )
• A.5 B.10 C.20 D.24
6.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则 ∠EDC等于( C )
• A.10° B.12.5° C.15° D.20°
• (2)分以下两种情况:
• ①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;
• ②当0<x<90时,
• 若∠A为顶角,则∠B=
;
• 若∠A为底角,∠B为顶角,则∠B=(180-2x)°;
• 若∠A为底角,∠B为底角,则∠B=x°.
•当
≠180-2x且180-2x≠x且
≠x,
• 即x≠60时,∠B有三个不同的度数.
• 7.如图,在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC= __3_2_°___.
8.如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD 的延长线于点E,求证:CE=AB.
9.(2018·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分
• A3. 2
• B.2 • C.22
• D.
别是点D,E,AD=3,BE=1,则DE的长是( B )
10
10.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上 分别截取B1A2=B1B2,连接A2B2,……按此规律作下去,若∠A1B1O=α,则
∠A10B10O=( B )
• 综上所述,可知当0<x<90且x≠60时,
• ∠B有三个不同的度数.
4.推论:等腰三角形顶角的_平__分__线_、底边上的_中__线__及底边上的_高__线____互相重合.
广平县第八中学八年级数学下册第一章三角形的证明1等腰三角形第3课时等腰三角形的判定教案新版北师大版9
第3课时等腰三角形的判定1.探索等腰三角形的判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用.4.培养学生的逆向思维能力.重点掌握等腰三角形的判定定理,并会运用其进行简单的证明.难点理解和掌握反证法的证明方法.一、复习导入问题1:等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2:我们是如何证明上述定理的?问题3:我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?二、探究新知1.等腰三角形的判定定理师:你能证明“有两个角相等的三角形是等腰三角形”吗?并与同伴交流.处理方式:学生在练习本上画图,写出已知、求证;小组之间探究讨论多种证明方法.已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证法一:过点A作BC的垂线,垂足为D.∵AD⊥BC ,∴∠BDA=∠CDA= 90°.在△ABD和△ACD中,∵∠B=∠C, ∠BDA=∠CDA, AD=AD ,∴△ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).证法二:作∠BAC的角平分线,交BC于点D.∵AD平分∠BAC,∴∠BAD=∠CAD.在△ABD和△ACD中,∵∠B=∠C, ∠BAD=∠CAD, AD=AD,∴△ABD≌△ACD (AAS) .∴AB=AC(全等三角形的对应边相等).(教师引导学生类比“等边对等角”的证明方法正确地添加辅助线,规范地写出推理过程,鼓励学生一题多解.)师指出:作△ABC的边BC的中线,虽然把△ABC分成了两个三角形,这两个三角形对应两边及其一边的对角分别相等,这是“SSA”,是不能证明两个三角形全等的.因此,这种添加辅助线的方法是不可行的.引导学生归纳等腰三角形的判定定理:定理:有两个角相等的三角形是等腰三角形.简述为:等角对等边.2.反证法课件出示:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?处理方法:学生积极动脑思考,小组交流讨论.师引导:用综合法证明本结论是行不通的,因此,我们要探究一种新方法来完成它的证明,下面来看小明同学的想法:(课件出示)如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.这与已知条件∠B≠∠C相矛盾,因此AB≠AC.师:你能理解他的推理过程吗?师出示“反证法”的定义:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.三、举例分析例1 已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:△AED是等腰三角形.证明:∵AB=DC,BD=CA,AD=DA ,∴△ABD≌△DCA.∴∠ADB=∠DAC(全等三角形的对应角相等).∴AE=DE(等角对等边).∴△AED是等腰三角形.例2 (课件出示教材第9页例3)处理方法:学生独立完成,教师点评.四、练习巩固1.如果三角形的一个外角是130°,且它恰好等于一个不相邻的内角的2倍,那么这个三角形是( )A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形2.如图,在△ABC中,∠B=∠C=40°,D,E是BC上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个,第2题图) ,第3题图) 3.如图,已知△ABC中,CD平分∠ACB交AB于点D,又DE∥BC,交AC于点E,若DE =4 cm,AE=5 cm,则AC等于( )A.5 cm B.4 cm C.9 cm D.1 cm五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第9~10页习题1.3第1~4题.本节课的主要内容是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明.这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一.第4章一次函数一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A.B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么= .30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得>>,故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()。
北师大八年级下《1.1等腰三角形》课时练习含答案解析
北师大数学八年级下册第一章三角形的证明第1节等腰三角形练习一、选择题1.等腰三角形的一个角是80°,则它顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20° 答案:B解析:解答:当80°的角是底角时,等腰三角形两底角相等,根据三角形内角和定理得到顶角为20°;另一种情况是80°是顶角.分析:等腰三角形等边对等角,结合三角形内角和为180°,从而得出两种结果.2.已知等腰三角形的两边长分别是3和5,则该三角形的周长是( )A .8B .9C .10或12D .11或13答案:D解析:解答:当3是腰时,两腰和为6加上底边5,周长为11;当5是腰时,两腰和为10加上底边3,周长为13.分析:等腰三角形两腰相等,结合三角形中两小边和大于第三边.3.在等腰△ABC 中,AB =AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或10答案:C解析:解答:设AB =AC =x BC =y则有12,2152x x x y +=+=⎧⎨⎩或者12,2152x x x y +=+=⎧⎨⎩ 所以x =8, y =11或者x =10,y =7.即三角形AB =AC =8,BC =11.或AB =AC =10,BC =7.故选C.分析:等腰三角形两腰相等,会解二元一次方程.4.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或150°D .60°或120°答案:D解析:解答:分两种情况:一种是这个高在三角形内,即此三角形是锐角三角形顶角=180°-90°-30°=60°,另一种是这个高落在一腰延长线上,即此三角形为钝角三角形顶角的补角=180°-90°-30°=60°,顶角=180°-60°=120°.分析:此题要注意分两种情况,要考虑锐角三角形和钝角三角形.5.在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36°B.54°C.18 °D.64°答案:B解析:解答:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°.∵BD⊥AC,∴∠ABD=90°-36°=54°.分析:根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.6. 在△ABC中,D是BC上的点,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°答案:A解析:解答:∵AB=AD, ∴∠ADB=∠B=70°.∵AD=DC,∴12C DAC ADB∠=∠=∠=35°.分析:等腰三角形两底角相等,再根据三角形的外角等于和它不相邻的两个内角和.7. 在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.5答案:D解析:解答:∵∠B=∠C,∴AB=AC=5.分析:等腰三角形的性质可得AB=AC,继而得出AC的长.8. 在矩形ABCD中,AB<BC,AC,BD相交于点O,则等腰三角形的个数是()A.8 B.6 C.4 D.2答案:C解析:解答:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∴△ABO,△BCO,△DCO,△ADO都是等腰三角形.分析:根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.9. 在等腰△ABC中,AB=AC,其周长为20 cm,则AB边的取值范围是()A.1 cm<AB<4 cm B.5 cm<AB<10 cm C.4 cm<AB<8 cm D.4 cm<AB<10cm 答案:B解析:解答:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20-2x)cm,∴2x>20−2x,即20−2x>0.解得5 cm<x<10 cm.分析:设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.10. 在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A. 4 cm B.2 cm C. 3 cm D.1 cm答案:C解析:解答:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.分析:根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值11.在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )A.2 B.3 C.4 D.5答案B解析:解答:AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6-2=4,点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3∴点B到直线y=x的距离为6×32=33,∵33>4,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,所以,点C的个数是1+2=3.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分线与直线y=x 的交点为点C再求出AB的长,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为点C,求出点B到直线y=x的距离可知以点B为圆心,以AB的长为半径画弧,与直线没有交点12. 在△ABC中,AB=20 cm,AC=12 cm,点P从点B出发以每秒3 cm的速度向点A运动,点Q从点A同时出发以每秒2 cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒答案:D解析:解答:设运动的时间为x cm/s,在△ABC中,AB=20cm,AC=12cm点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动当△APQ是等腰三角形时,AP=AQ,AP=20-3x,AQ=2x即20-3x=2x,解得x=4.分析:设运动的时间为x,则AP=20-3x,当APQ是等腰三角形时,AP=AQ,则20-3x=2x,解得x即可.13. 等腰但不等边的三角形的角平分线、高线、中线的总条数是()A.3 B.5 C.7 D.9答案:C解析:解答:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线.分析:画出图形,根据等腰三角形的性质进行分析即可得到答案14. 已知△ABC中,三边a,b,c满足|b-c|+(a-b)2=0,则∠A等于()A. 60°B.45°C.90°D.不能确定答案:A解析:解答:△ABC中,三边a,b,c满足|b-c|+(a-b)2=0∴b-c=0,a-b=0,∴a=b=c,∴三角形是等边三角形,∴∠A=60°.分析:根据非负数的性质列式求解得到a=b=c,然后选择答案即可.15.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm答案:B解析:解答:因为两边长之比为4:1,所以设较短一边为x,则另一边为4x;(1)假设x为底边,4x为腰;则8x+x=36,x=4,即底边为4;(2)假设x为腰,4x为底边,则2x+4x=36,x=6,4x=24;∵6+6<24,∴该假设不成立.所以等腰三角形的底边为4cm.分析:题中只给出了两边之比,没有明确说明哪个是底哪个是腰,所以应该分两种情况进行分析,再结合三角形三边的关系将不合题意的解舍去.二、填空题16. 等腰三角形的一个外角为110°,则底角的度数可能是_______.答案:70°或55°解析:解答:当110°是等腰三角形底角的外角时,底角为70°;当110°是等腰三角形顶角的外角时,因为等腰三角形两底角相等,所以一个底角的度数等于外角110°的一半,即55°分析:外角与它相邻的内角互补,外角等于和它不相邻的两个内角和.17. 等腰三角形的对称轴是____________.答案:底边上的高(顶角平分线或底边的中线)所在的直线解析:解答:根据等腰三角形的性质,等腰三角形的对称轴是底边上的高(顶角平分线或底边的中线)所在的直线.分析:本题根据等腰三角形是轴对称图形,其对称轴是底边上的高所在的直线,因为等腰三角形底边上的高,顶角平分线,底边上的中线三线合一,所以等腰三角形的对称轴是底边上的高(顶角平分线或底边的中线)所在的直线.18.△ABC中,AB=AC,∠A=36°,BD平分∠ABC,则∠1 =_______度,此三角形有_______个等腰三角形.答案:72°/3解析:解答:∵AB=AC,∠A=36°,∴△ABC是等腰三角形,∠C=∠ABC=(180°−36°)12⨯=72°.∵BD为∠ABC的平分线,∴∠ABD=∠A=∠DBC=36°,∴AD=BD,△ADB是等腰三角形,∴∠1=180°-36°-72°=72°=∠C,∴BC=BD,△CDB是等腰三角形.图中共有3个等腰三角形.分析:由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.19. 在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度是_________.答案:80°或50°或20°解析:解答:∵∠A的相邻外角是100°,∴∠A=80°.分两种情况:(1)当∠A为底角时,另一底角∠B=∠A=80°;(2)当∠A为顶角时,则底角∠B=∠C=(180°−80°)12⨯=50°(3)当∠B是顶角时,∠B=180°-2∠A=20°.综上所述,∠B的度数是80°或50°或20°.分析:已知给出了∠A的相邻外角是100°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.20. 在△ABC中,若∠A=80°,∠B=50°,AC=5,则AB=_______.答案:5解析:解答:∵∠A=80°,∠B=50°,∴∠C=180°-80°-50°=50°.∴AB=AC=5.分析:由已知条件先求出∠C的度数是50°,根据等角对等边的性质求解即可.三、解答题.21.在△ABC中,AB=AC,AD是BC边上的高,∠C=63°,BC=4,求∠BAD的度数及DC的长.答案:27°/2 解答:∵AB =AC ,∠C =63°,∴∠B =∠C =63°,∴∠BAC =180°-63°-63°=54°. 又∵AD 是BC 边上的高,∴AD 是∠BAC 的平分线,AD 是BC 边上的中线,∴∠BAD =12∠BAC =27°,DC =12BC =2. 解析:分析:根据等腰三角形的两个底角相等求出顶角∠BAC 的度数,再由等腰三角形的三线合一性质即可求出∠BAD =12∠BAC =27°,DC =12BC =2. 22.在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC答案:证明:∵AB =AC ,∴∠ABC =∠ACB .又∵BD ⊥AC ,CE ⊥AB ,∴∠BEC =∠CDB =90°. 在△BCE 和△CBD 中,∠ABC =∠ACB ,∠BEC =∠CDB ,BC =BC.∴△BCE ≌△CBD (AAS ).∴BE =CD.∵AB =AC ,BE =CD ,∴AB -BE =AC -CD ,∴AE =AD.∴在△AEF 和△ADF 中,AE =AD , AF =AF.△AEF ≌△ADF (HL ).∴∠EAF =∠DAF ,AF 平分∠BAC.解析:分析:要通过两次三角形全等,再结合等腰三角形的性质得出结论.23.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,求证:(1)△BCE ≌△ACD ; 答案:证明:∵△ABC 和△CDE 都是等边三角形,∴∠BCA =∠DCE =60°,BC =AC =AB ,EC =CD =ED ,∴∠BCE =∠ACD .在△BCE 和△ACD 中,,,,BC AC BCE ACD CE CD =⎧∠=∠=⎪⎨⎪⎩∴△BCE ≌△ACD (S A S );(2)CF =CH ; 答案:∵△BCE ≌△ACD ,∴∠CBF =∠CAH .∵∠ACB =∠DCE =60°,在△BCF 和△ACH 中,∴∠ACH =60°,∴∠BCF =∠ACH ,,,,CBF CAH BC AC BCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (A S A ),∴CF =CH ;(3)△FCH 是等边三角形;答案:∵CF =CH ,∠ACH =60°,∴△CFH 是等边三角形.(4)FH ∥BD.答案:证明:∵△CHF 为等边三角形∴∠FHC =60°,∵∠HCD =60°,∴FH ∥BD解析:分析:由等边三角形的三边相等,三角都是60°,再根据平角的关系,就能证明△BCE ≌△ACD ;由△BCE ≌△ACD 得出对应角相等,结合等边三角形的边角特点证明△BCF ≌△ACH ,能得出CF =CH ;两边等,加上一个角60°推出△CFH 是等边三角形;根据内错角相等,两直线平行推出FH ∥BD .24. 如图,已知AB =AC =AD ,且AD ∥BC ,求证:∠C =2∠D答案:证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.解析:分析:首先根据AB=AC=AD,∵AD∥BC,∴∠D=∠DBC可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D25.如图,在△ABC中,∠B与∠C的平分线交于点O,过O点作DE∥BC,分别交AB、AC于D、E,若AB=5,AC=4,求△ADE的周长.答案:解答:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.解析:分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.。
新北师大版八年级数学下册导学案
第一章三角形的证明本章总体设计介绍本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论. 运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论.在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础.本章所证明的命题都和等腰三角形、直角三角形有关,主要包括:1.等腰三角形的性质和判定定理;2.直角三角形的性质定理和判定定理;3.线段的垂直平分线性质和判定定理;4.角平分线性质定理和判定定理。
本章教学建议对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。
对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。
证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。
作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。
1. 等腰三角形(一)一、学生知识状况分析在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。
二、教学任务分析本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。
1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册
角形;
(2)若∠BAC=∠DAE≠60° ①如图2,当点D在线段BC上移动,判断△BEF的形状并证明; ②当点D在线段BC的延长线上移动,△BEF是什么三角形?请 直接写出结论并画出相应的图形.
解:(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴△AED和△ABC为等边三角形, ∴∠C=∠ABC=60°,∠EAB=∠DAC, ∴△EAB≌△DAC, ∴∠EBA=∠C=60°, ∵EF∥BC, ∴∠EFB=∠ABC=60°, ∵在△EFB中,∠EFB=∠EBA=60°,
B
30°
的正北方向,此时它与灯塔的距离是
_2_0___3_海里(结果保留根号).
A
C
东
小结(2分钟)
(考点)
1、等腰三角形的性质与判定: 等边对等角、三线合一
2、等边三角形的性质定理及其判定定理 3、直角三角形的性质定理及其判定定理 4、反证法的证明步骤,互逆命题、互逆定理的概念
(易错点) 1.做没有图形的几何问题求边长或角度时应注意:
是否进行分类讨论
2.做互逆命题的问题应注意:
注意互逆命题的语言的准确性
当堂训练(15分钟) 1、如图,长方形纸片ABCD,AD∥BC,将长方
形纸片折叠,使点D与点B重合,点C落在点C’ 处,折痕为EF,则 △BEF为 等腰 三角形.
2.如图,已知∠AOB=60°,点P在边OA上,OP=8, 点M,N在边OB上,PM=PN,若MN=2,则ON=( B )
②AB=AC,点D为射线BC上一个动点(不与B、C重合),
以AD为一边向AD的左侧作△ADE,使AD=AE,
∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连 接BE.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形学
习目标1.进一步理解掌握等腰三角形的有关性质及其证明;
2.掌握证明的基本步骤和书写格式。
自主导学温故知新(全等三角形的性质与判定)
1、三角形全等的判定定理有:“”、“”、“”、“”。
2、全等三角形的性质:如图,已知△ABC≌△DEF, A D
则∠A= ,∠B ∠E, =∠F ,
AB= , BC EF , =DF 。
B C E F 自主探究:请你先看课本p2至p3,然后解答下列问题。
1、写出等腰三角形的性质:
(1) 等腰三角形的性质定理:。
(2)“三线合一”:。
2、练习:
在△ABC中, AB=AC,若∠A=40°,则∠C= ;若∠B=72°,则∠A= 。
自主探究:全等三角形的判定
将下面证明中每一步的理由写在括号内。
已知:如图,AB=CD,AD=CB.求证:∠A=∠C.
证明:如图,连接BD.在△BAD和△DCB中,
∵AB=CD( ),
AD=CB( )
,BD=DB( ),
∴△BAD≌△DCB( ).
∴∠A=∠C( ).
1.在△ABC中,AB=AC,∠A=44°,则∠B=度.
2.已知等腰三角形两条边的长分别是3和6,则它的周长等于.
3.至少有两边相等的三角形是( )
A.等边三角形 B.等腰三角形 C.等腰直角三角形 D.锐角三角形
巩
固
作
业
4.等腰三角形的对称轴有()
A.1条 B.2条 C.3条 D.1条或3条
5.等腰三角形的底角为45°,则这个三角形是()
A.锐角三角形 B.钝角三角形 C.等边三角形 D.等腰直角三角形
6.在△ABC中,AB=AC,∠BAC=120°,延长BC到D,使CD=AC,则∠C DA=度.
7.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:∠ABD=∠ACD.
8.如图,在△ABC中,AB=AC,点D、E都在边BC上,且AD=AE.那么BD与CE相等吗?
请证明你的结论。
学
习
目
标
1.了解等腰三角形的特殊性质;
2.掌握等边三角形的性质并加以证明。
温故知新
1、如图,在△ABC 中,AB=AC.
(1)若AD是△ABC的中线,则∠B= ,BD= ,AD , =∠DAC ;
(2)若AD是△ABC的高,且BD=3cm , ∠DAB=30°则BC= ,
∠BAC= , ∠C= 。
(3)若∠BAC=50°,则∠C= ;若∠B=70°,则∠BAC= 。
自主探究:请你先看课本p5至p6,了解等腰三角形的特殊性质。
①等腰三角形两底角的平分线;
②等腰三角形两腰上的高;
③等腰三角形两腰上的中线。
自主探究:等边三角形的性质
已知:如图,ΔABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
等边三角形的性质:
等边三角形的三个内角都,并且每个角都等于。
练习:等边三角形的周长是36,则边长为 .
巩
固
作
业
1.等腰三角形的一个角是80°,则它顶角的度数是()
A.80° B.80°或20° C.80°或50° D.20°
2.已知等腰三角形的两边长分别是3和5,则该三角形的周长是()
A.8 B.9 C.10或12 D.11或13
3. 在△ABC中,∠B=∠C,AB=5,则AC的长为()
A.2 B.3 C.4 D.5
4. 等腰但不等边的三角形的角平分线、高线、中线的总条数是()
A.3 B.5 C.7 D.9
5. 等腰三角形的一个外角为110°,则底角的度数可能是_______.
6. 在△ABC中,若∠A=80°,∠B=50°,AC=5,则AB=_______.
7.如图,在△ABC中,∠B与∠C的平分线交于点O,过O点作DE∥BC,分别交AB、AC于D、
E,若AB=5,AC=4,求△A DE的周长.
课题:第一章:三角形的证明 1.1.3 等腰三角形(三)课型:新授学
习目标1、能证明等腰三角形的判定定理并应用;
2、了解“反证法”的应用。
温故知新
1、在△ABC 中,若AB=AC=BC,则这个三角形是三角形,并且每个角都等于。
2、等腰三角形的两底角平分线,两腰上的高(或中线) 。
3、如果等腰三角形有两边长分别为2和5,那么它的周长为。
4、如果等腰三角形有一个角等于100°,那么这个等腰三角形的另两个角分别为。
5、如果等腰三角形有一个角等于40°,那么它的另两个角分别为。
自主探究一:请你先看课本p8至p9,解答下列问题。
等腰三角形的判定定理:有相等的三角形是等腰三角形。
1.已知:如图,在△ABC中,∠B=∠C.求证: △ABC是等腰三角形.
2.如图,∠A =∠B,CE∥DA,CE交AB于E.求证:CE = CB.
自主探究二:反证法的定义及反证法证明的一般步骤
反证法的定义: 在证明时,先假设命题的结论不成立,然后推导出与
相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法。
2、反证法证明的一般步骤:
(1)假设:假设命题的结论不成立;
(2)归谬:从这个假设出发,应用正确的推论方法,得出与定义、公理、已证定理或已知条件相
矛盾的结果;
(3)结论:由矛盾的结果判定假设不正确,从而肯定命题的结论正确。
巩
固
作
业
1.如下左图,在△ABC中,∠B=∠C=40°,D,E是BC上两点,且∠ADE=∠AED=80°,则图中共有个等腰三角形.
2.已知△ABC,如上右图所示,其中∠B=∠C,则
_______=________。
3.等腰三角形底边上的__________,底边上的__________,顶角__________,均把它分成两个全等
三角形。
4.如下左图,在△ABC中,AB=AC,∠BAC=120°,D是BC的中点,DE⊥AC,则∠EDC=__________。
5.在△ABC中,∠A=∠B=
2
1
∠C,则△ABC是__________三角形。
6.如图,已知AD是△ABC的外角平分线,且AD∥BC,且∠1=∠2,求证:AB=AC.
C
B
A
D C
B
A E
学
习目标1.理解等边三角形的判定定理的内容,并能应用;
2.掌握直角三角形的特殊性质并能应用。
温故知新
1.在△ABC 中,若∠B=∠C,则这个三角形是三角形,这一定理可简称为 .
2.在△ABC中,AB=AC,若∠A=40°则∠C=;若∠B=72°,则∠A=。
3.在△ABC中,AB=AC,∠BAC=40°,M是BC的中点,
那么∠AMC=,∠BAM=。
4.如图,在△ABC中,AB=AC,外角∠DCA=100°,
则∠B=度,∠A=。
自主探究一:请你先看课本p10至p11,解答下列问题。
等边三角形的判定定理:三个角都的三角形是等边三角形。
已知:如图,在△ABC中,∠A=∠B=∠C.求证: △ABC是等边三角形.
A
B
C
D
B
A
自主探究二:
等边三角形的判定定理:有一个角等于60°的三角形是等边三角形.
已知:如图,在△ABC中,AB=AC,∠B=60°.求证: △ABC是等边三角形.
直角三角形的性质定理:在直角三角形中,如果一个锐角等于,那么它所对的直角边
等于的一半。
如图,Rt△ABC中,∠A=30°,若BC=3,则AB= .
巩
固
作
业
1、已知,如图,等腰△ABC中,AB=AC:
(1)若AB =BC,则△ABC为__________三角形;
(2)若∠A=60°,则△ABC为__________三角形;
2、如下左图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别为D,E,如果AB=8 cm,则BD
=__________cm,∠BDE =__________°.
3、如上右图,Rt△ABC中,∠A=30°,AB=12 cm,则BC=__________cm。
4、底与腰不等的等腰三角形有__________条对称轴,等边三角形有__________条对称轴.请你在图
中作出等腰△ABC,等边△DEF的对称轴.
C
B
A
C
B
A。