DC-DC变换器的设计方案

合集下载

车载高频推挽DC-DC变换器设计方案

车载高频推挽DC-DC变换器设计方案

车载高频推挽DC-DC变换器设计方案0 引言随着现代汽车用电设备种类的增多,功率等级的增加,所需要电源的型式越来越多,包括交流电源和直流电源。

这些电源均需要采用开关变换器将蓄电池提供的+12VDC或+24VDC的直流电压经过DC-DC变换器提升为+220VDC或+240VDC,后级再经过DC-AC 变换器转换为工频交流电源或变频调压电源。

对于前级DC-DC变换器,又包括高频DC-AC 逆变部分、高频变压器和AC-DC整流部分,不同的组合适应不同的输出功率等级,变换性能也有所不同。

推挽逆变电路以其结构简单、变压器磁芯利用率高等优点得到了广泛应用,尤其是在低压大电流输入的中小功率场合;同时全桥整流电路也具有电压利用率高、支持输出功率较高等特点,因此本文采用推挽逆变-高频变压器-全桥整流方案,设计了24VDC输入-220VDC 输出、额定输出功率600W的DC-DC变换器,并采用AP法设计相应的推挽变压器。

1 推挽逆变的工作原理图1给出了推挽逆变-高频变压-全桥整流DC-DC变换器的基本电路拓扑。

通过控制两个开关管S1 和S2以相同的开关频率交替导通,且每个开关管的占空比d均小于50%,留出一定死区时间以避免S1和S2同时导通。

由前级推挽逆变将输入直流低电压逆变为交流高频低电压,送至高频变压器原边,并通过变压器耦合,在副边得到交流高频高电压,再经过由反向快速恢复二极管FRD构成的全桥整流、滤波后得到所期望的直流高电压。

由于开关管可承受的反压最小为两倍的输入电压,即2UI,而电流则是额定电流,所以,推挽电路一般用在输入电压较低的中小功率场合。

图1 推挽逆变-高频变压-全桥整流DC-DC变换器的基本电路拓扑当S1开通时,其漏源电压uDS1只是一个开关管的导通压降,在理想情况下可假定uDS1=0,而此时由于在绕组中会产生一个感应电压,并且根据变压器初级绕组的同名端关系,该感应电压也会叠加到关断的S2上,从而使S2在关断时承受的电压是输入电压与。

DCDC变换器的设计方案

DCDC变换器的设计方案

DC-DC变换器的设计方案一种模块化高效DC-DC变换器的开发与研制设计方案一、设计任务:设计一个将220VDC升高到600VDC 的DC-DC变换器。

在电阻负载下,要求如下:1、输入电压U=220VDC,输出电压u=600VDC。

2、输出额定电流|;:=2.5A,最大输出电流Iomax=3Ao3、当输入山在小范围内变化时,电压调整率SV W2%(在匕=2.5A时)。

4、当|<在小范围你变化时,负载调整率SI W5%(在||=220VDC时)。

5、要求该变换器的在满载时的效率n±90%o6、输出噪声纹波电压峰-峰值U t)pp<1V(在Ui=220VDC,u=600VDC,[(=2・5A条件下)。

7、要求该变换器具有过流保护功能,动作电流设定在3A o8、设计相关均流电路,实现多个模块之间的并联输出。

二、设计方案分析1、DC-DC升压变换器的整体设计方案主电路图1DC-DC变换器整体电路图如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。

控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。

2、DC-DC升压变换器主电路的工作原理DC-DC功率变换器的种类很多。

按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。

非隔离型的DC-DC变换器又可分为DC600V降压式、升压式、极性反转式等几种;隔离型的DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。

下面主要讨论非隔离型升压式DC-DC 变换器的工作原理。

图2(a )DC-DC变换器主电路图2(b )DC-DC 变换器主电路图2(a )是升压式DC-DC 变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b )是用matlab 模拟主电路 DC220V出的升压式DC-DC变换器的主电路图。

高可靠DC-DC变换器的设计

高可靠DC-DC变换器的设计
2 输 入 . / 输 出 的 DC DC 变 换 器 的 应 用 电 路 8V 5 V 5A: 软 启动 ; 开 关频率 ;S9 l i l4
中图分 类号: N 0 T 79
文献标 识码 : A
文章 编 号 :0 6 6 7 ( 0 )3 0 3 — 4 10 — 9 72 80 — 0 4 0 0
出电压不稳 定 。而正激 式变换 器 的辅 助 电源绕组 正 向导 通 , 出绕 组短 路 时 , 输 脉宽 降到 最 窄 , 依然 能 够 向控 制 电路 提供 足够 的 电源 。故选用 正激式 变换 器 进行设 计
22 P M 控 制 电路 . W 221 i1 4P M 控 制 电 路 特 点 . S9 1 W .
De in fa hih ei b lt sg o g r la iiy DC-t -DC o v r e o c n e tr
YAO u — n S o— g pi
(ee p et e a m n,i We i l t ncMau wui o,t Xi 70 7,hn) D vl m n D p r e t o t X in Ee r i nf tr gC, d 105C ia j g co i n L,
摘要 : 用 P 应 WM 设 计 高可靠 D — C 变换 器 , 开 关频 率 更 高, CD 其 可达 lMH , z 这样 减 小 了储 能元件 的尺 寸 , 可采 用陶 瓷 电容 器 , 高 系统 的可 靠性 , 提 降低 了成 本 分析 了 S 14的工 作原理 , i 91 并给 出
Absr c : e h g ei b l y DC— o e t ri e in d u i g PW M . e DC-DC o v ro e t e t a tTh ih r la ii t DC c nv ro s d sg e sn Th c n e rf aur s t h g wic e u n y u o 1 ih s th f q e c p t r MHz u i g u ta ma li d c o sa d c r mi a a io s o i i mp o e sn lr -s l n u t r n e a c c p ctr .S t s i r v d r la lt , w o t he o e a in p i c p e o i 4 i n ls dTh p lc to ic i o e ibi yl c s. p r to rn i l fS 91 sa a y e . e a p iai n c r u t fDC— i o T 1 DC o — c n v ro c a 8 ipu ,5 5 o t u sg v n i h p r e t rwhih h s 2 V n t V/ A u p ti ie n t e pa e .

DCDC升压稳压变换器设计

DCDC升压稳压变换器设计

DCDC升压稳压变换器设计DC-DC升压稳压变换器是一种常见的电源变换器,用于将低压直流电源(如电池)的电压升高为所需的高压输出。

本文将介绍DC-DC升压稳压变换器的设计原理、组成部分及其工作原理,并进行详细的分析和说明。

DC-DC升压稳压变换器设计的主要目标是将输入直流电压升压到所需的输出电压,同时保持输出电压稳定且具有良好的电流调整性能。

为了实现这一目标,设计者需要考虑以下几个方面:1.输入输出电压和电流:首先确定所需输出电压和电流的数值。

根据要求选择相应的元件和电路拓扑结构。

2. 拓扑结构选择:常见的DC-DC升压稳压变换器拓扑结构有Boost、Flyback和SEPIC等。

选择适合的拓扑结构需要考虑功率转换效率、元件数量和输入输出电流等因素。

3.元件参数选择:选择合适的功率开关管、电感、电容和二极管等元件参数。

元件的选择需考虑其工作频率、电流承受能力和输出纹波等因素。

4.控制电路设计:设计合适的开关控制电路,能够实现稳定的输出电压。

常用的控制电路有单片机控制、模拟控制和PWM控制等。

采用合适的控制方法可以保持输出电压的稳定性和动态响应性。

5.保护电路设计:为了保护DC-DC升压稳压变换器和被供电设备的安全,需要考虑过压、过流和短路保护等电路设计。

这些保护电路可以提高系统的可靠性和安全性。

在进行具体的设计时,首先需要确定输出电压和电流的数值要求,并进一步计算电路参数。

然后选择合适的拓扑结构和元件,并设计出合适的控制电路和保护电路。

接下来进行电路仿真和实验验证,对设计结果进行验证和调整,确保电路性能和稳定性。

最后对整个设计过程进行总结和文档记录。

综上所述,DC-DC升压稳压变换器设计是一个复杂而关键的过程,需要考虑多个因素并进行系统性的设计和调试。

通过合理设计和优化,可以得到稳定性好、效率高且尺寸小巧的DC-DC升压稳压变换器。

这些变换器可以广泛应用于各种电子设备和系统中,如移动电源、电动车充电器和太阳能系统等。

双向dcdc变换器设计的任务书

双向dcdc变换器设计的任务书

双向dcdc变换器设计的任务书任务书标题:双向 DC-DC 变换器设计1. 问题描述:在电力系统中,双向 DC-DC 变换器广泛应用于能量转换和电力的双向传输。

本项目旨在设计一个双向 DC-DC 变换器,实现直流能量的传输和转换。

2. 目标:设计一个工作稳定、高效和可靠的双向 DC-DC 变换器,满足以下要求:a) 能够在输入和输出电压不同的情况下实现双向能量传输;b) 输入电压范围:12V - 24V;c) 输出电压范围:5V - 15V;d) 输出电流范围:0-5A;e) 效率大于90%;f) 稳压精度:小于1%。

3. 设计要求:a) 选择合适的拓扑结构,如反激拓扑、升压降压拓扑等;b) 综合考虑功率器件的选择,如 MOSFET、IGBT 等;c) 考虑电路的控制方式,如电流控制、电压控制等;d) 考虑保护电路设计,如过流保护、过温保护等;e) 进行稳压控制设计,确保输出电压稳定在指定范围内。

4. 设计步骤:a) 进行理论分析,选择合适的拓扑结构和控制策略;b) 进行电路参数计算和选择器件;c) 进行电路原理图设计和 PCB 布局设计;d) 进行模拟仿真,验证设计的性能指标;e) 进行实际电路搭建和调试;f) 进行实验测试,验证设计结果;g) 进行设计总结和改进。

5. 设计工具:a) 仿真工具:如 LTSpice、PSIM 等;b) CAD 工具:如 Altium Designer、Eagle 等。

6. 时间安排:a) 理论分析和参数计算:1周;b) 电路设计和仿真:2周;c) 实际电路搭建和调试:2周;d) 实验测试和设计总结:1周。

7. 成果要求:a) 设计报告,包括理论分析、仿真结果、实验结果、总结和改进;b) 电路原理图和 PCB 布局图;c) 仿真和实验数据。

注:本任务书仅为一个示例,请根据具体情况进行修改和调整。

DC-DC变换器设计毕业设计

DC-DC变换器设计毕业设计

绪论一.开关电源概述开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。

半个世纪以来,开关电源大致经历了四个阶段。

早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。

在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。

随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。

稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。

等对供电电压都有一定的要求。

至于精密的电子仪器,对供电电压的要求更为严格。

所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。

目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。

单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。

尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。

单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。

二. 开关电源的技术追求1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。

在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。

因此高频化是开关电源的主要发展方向。

2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。

从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电源的寿命。

DC—DC升压开关变换器设计

DC—DC升压开关变换器设计

DC—DC升压开关变换器设计本设计设计了相应的硬件电路,研制了一款小功率开关电源。

整个系统包括主电路、控制电路、驱动电路、保护电路和反馈电路几部分内容。

系统主电路由Boost升压斩波电路和相应的滤波保护电路组成。

控制电路包括主电路开关管控制脉冲的产生和保护电路。

论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计过程,包括元器件的选取以及参数计算。

本设计中采用的芯片主要是PWM控制芯片SG3525、光电耦合芯片PC817和半桥驱动芯片IR2110。

设计过程中充分利用了SG3525的控制性能,具有较宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。

标签:SG3525,开关稳压电源,PWM,升压斩波1绪论近年来,随着电力电子学的高速发展,电力供给系统也得到了很大的发展。

同时,人们对电源的要求也越来越高。

在高效率、大容量、小体积之后,对电源系统的输入功率因数和软开关技术也提出了更高的要求。

电源是给电子设备提供所需要的能量的设备,这就决定了电源在电子设备中的重要性。

电子设备要获得好的工作可靠性必须有高质量的电源,所以电子设备对电源的要求日趋增高。

相对于线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求。

但是,由于开关电源轻、小、薄的关键技术是高频化,开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率,近年来国内外的专家学者提出了众多的电路拓扑,使得软开关技术成为电力电子技术研究的热点。

因此对于现代的开关电源功率交换技术的发展趋势,可以概括为:高频化、高效率、无污染和模块化。

2开关电源概况2.1开关电源基本拓扑结构开关变换器是电能变换的核心装置。

按转换电能的种类,可把变换器分为四类:①直流变换器(DC-DC),将一种直流电能转换为另一种或多种直流电能的变换器,是直流开关电源的主要部件;②逆变器(DC-AC),将直流电能变为交流电能的电能变换器,是交流开关电源和不间断电源UPS的主要部件;③整流器(AC-DC),将交流电转为直流电的电能变换器;④交交变频器(AC-AC),将一种频率的交流电转换成另一种频率可变的交流电,或者将一种频率可变的交流电转变为恒定频率的交流电的电能变换器。

DC/DC变换器的设计

DC/DC变换器的设计

DC/DC变换器的设计DC/DC变换器是一种电力电子设备,用于将一个直流电源的电压转换为另一个直流电压。

它在电子设备中广泛应用,例如电气车辆、太阳能发电系统和电视机等。

DC/DC变换器的设计需要考虑以下几个方面:1.输入电压范围:根据应用需要,确定所需的输入电压范围。

这有助于选取合适的输入滤波电容和保护电路。

2.输出电压和电流:确定所需的输出电压和电流,并计算所需的功率。

这有助于确定合适的变压器、开关管和输出滤波电容。

3.开关频率:选择适当的开关频率,以平衡系统效率和元件尺寸。

通常,高开关频率可以减小元件的尺寸,但也会增加开关损耗。

4.控制策略:选择合适的控制策略,例如脉宽调制(PWM)或脉冲频率调制(PFM)。

PWM控制可实现快速响应和精确的输出电压稳定性,而PFM控制则可实现高效和高功率因素。

5.过压保护和过流保护:设计合适的过压保护和过流保护电路,以确保系统在故障情况下可靠工作。

6.效率和温度管理:优化设计,以提高系统的能量转换效率,并采取措施来控制元件的温度,以保证长期可靠性。

7.噪声和EMI控制:设计合适的滤波电路和接地布局,以降低系统的输出噪声和电磁干扰。

8.反馈控制:设计适当的反馈控制回路,以实现输出电压的稳定性和动态响应。

9.元件选型和参数计算:根据应用需求,选择适当的开关管、变压器、电感和电容,并计算它们的参数,以满足设计要求。

一般而言,DC/DC变换器的设计可以分为几个主要步骤:确定电路拓扑,选择工作模式,计算各个元件的参数,进行电路仿真和稳定性分析,制作原型并进行实验验证,最后进行性能优化和可靠性测试。

总的来说,DC/DC变换器的设计需要综合考虑输入输出电压、电流、开关频率、控制策略、保护电路、效率、温度管理、EMI控制和反馈控制等因素。

通过系统性的设计和优化,可以实现高效、稳定和可靠的DC/DC变换器。

双向DCDC变换器的控制方法研究与设计

双向DCDC变换器的控制方法研究与设计

双向DCDC变换器的控制方法研究与设计双向DC-DC变换器(BDC)是一种能够将直流电能在两个方向上进行转换和传输的电力转换装置。

它可以将能量从一个电源送到另一个负载,同时还可以将能量反向传输。

因此,BDC在可再生能源系统、电动汽车和电网储能等领域具有广泛的应用前景。

BDC的控制方法研究与设计是实现高效能量转换和稳定输出的关键。

以下是一个基于脉宽调制(PWM)技术的BDC控制方法的研究与设计过程。

1.建立数学模型:根据BDC的电路结构,可以建立数学模型来描述其电压与电流之间的关系。

通过建立这个模型,可以分析系统的动态特性和稳态性能。

2.控制策略选择:根据应用需求和系统要求,选择适当的控制策略。

常见的控制策略包括PID控制、模糊控制和模型预测控制等。

需要考虑的因素包括系统的响应速度、稳态误差和鲁棒性等。

3.控制器设计:设计适当的控制器来实现所选控制策略。

控制器的作用是根据输出和参考输入之间的差异来调节脉宽调制信号,控制BDC的开关器件的开关状态。

常见的控制器包括比例控制器、积分控制器和微分控制器等,可以根据特定要求设计组合控制器。

4. 控制系统仿真:利用Matlab/Simulink等软件,将前面设计的数学模型和控制器进行仿真。

通过输入不同的电压、电流和负载条件,观察系统的响应和稳态性能。

根据仿真结果,优化控制器参数,满足设计要求。

5.硬件实现:根据仿真结果和优化的控制器参数,进行硬件实现。

选择适当的开关器件、电感和电容等元器件,设计BDC的电路。

由于BDC涉及高频开关和高电压等特殊要求,需要注意电路设计的可靠性和安全性。

6.实验验证:将设计的BDC系统进行实验验证。

输入不同的电压和负载条件,测试系统的响应和稳态性能。

根据实验结果,调整控制器参数和系统参数,进一步优化设计。

综上所述,双向DC-DC变换器的控制方法研究与设计是一个复杂的工程过程。

通过建立数学模型、选择适当的控制策略、设计控制器、进行仿真和实验验证,可以实现高效能量转换和稳定输出的目标。

双向DCDC变换器的设计与研究

双向DCDC变换器的设计与研究

双向DCDC变换器的设计与研究一、本文概述随着电力电子技术的飞速发展,双向DC-DC变换器作为一种高效、灵活的电能转换装置,在电动汽车、可再生能源系统、微电网等领域得到了广泛应用。

本文旨在全面介绍双向DC-DC变换器的设计原理、关键技术以及最新研究进展,以期为相关领域的科研人员和工程师提供有益的参考和启示。

本文将首先概述双向DC-DC变换器的基本原理和分类,包括其拓扑结构、控制方式和工作原理等。

在此基础上,重点探讨双向DC-DC 变换器的关键设计技术,如高效率转换技术、宽输入电压范围技术、快速动态响应技术等。

同时,分析双向DC-DC变换器在实际应用中面临的挑战和解决方案,如电磁干扰、热设计、可靠性等问题。

本文还将综述近年来双向DC-DC变换器的研究热点和发展趋势,包括新型拓扑结构、智能化控制策略、高效散热技术等方面的研究进展。

通过对这些研究内容的深入分析和总结,旨在为未来双向DC-DC 变换器的设计优化和应用拓展提供有益的思路和方向。

本文还将对双向DC-DC变换器的未来发展趋势进行展望,以期推动该领域的技术进步和应用发展。

二、双向DCDC变换器的基本原理与分类双向DCDC变换器是一种能量转换装置,能够在两个不同电压等级之间实现电能的双向流动。

其基本原理和分类对于深入理解和应用该变换器具有重要意义。

双向DCDC变换器的基本工作原理基于电能的转换和传递。

它通过控制开关管的通断,将输入端的直流电能转换为高频交流电能,再通过滤波电路将其转换为输出端的直流电能。

在这个过程中,变换器不仅实现了电能的电压变换,还实现了电能的双向流动。

当变换器工作于正向模式时,它从低压侧吸收电能,经过变换后向高压侧输出电能;当变换器工作于反向模式时,它从高压侧吸收电能,经过变换后向低压侧输出电能。

这种双向流动的特性使得双向DCDC变换器在能量管理、储能系统、电动汽车等领域具有广泛的应用前景。

根据不同的分类标准,双向DCDC变换器可以分为多种类型。

双向DCDC变换器设计

双向DCDC变换器设计

双向DCDC变换器设计双向直流-直流(DC-DC)变换器是一种电力电子设备,能够实现两个不同电压等效电路之间的能量转换和传输。

这种变换器常用于电池系统、节能转换系统和电网隔离系统等应用中。

本文将介绍双向DC-DC变换器的设计原理、工作原理和性能评估。

一、设计原理双向DC-DC变换器可以分为两个部分:升压变换器和降压变换器。

升压变换器将低电压输入提升为较高电压输出,而降压变换器则将高电压输入降压为较低电压输出。

这两个变换器可以通过一个可调节的开关来实现输出电压的控制。

在实际应用中,通过PWM(脉宽调制)技术来控制开关的导通时间,从而实现输出电压的调节。

二、工作原理双向DC-DC变换器的工作原理如下:1.当升压变换器开关导通时,输入电压经过电感储能,同时输出电容储能开始将能量传递到输出端。

2.当升压变换器开关断开时,储能元件的电感和电容开始释放储存的能量,使输出电压保持稳定。

3.当降压变换器开关导通时,输入电压先通过输出电容释放能量,同时电感储能元件开始储存电能。

4.当降压变换器开关断开时,储能元件释放储存的能量,实现输出电压的稳定。

三、性能评估设计双向DC-DC变换器时需要评估以下几个关键性能参数:1.效率:双向DC-DC变换器的效率主要取决于开关的损耗和传输效率。

通过合理选择开关元件和功率传输电路,可以提高变换器的效率。

2.响应时间:双向DC-DC变换器需要能够快速响应输入电压和输出负载的变化。

降低电路和控制系统的响应时间可以提高变换器的动态性能。

3.稳定性:双向DC-DC变换器需要具有良好的稳定性,以确保输出电压在不同负载条件下保持稳定。

在设计过程中应考虑噪声抑制和滤波技术。

4.安全性:在设计双向DC-DC变换器时,需要考虑过电流、过压和过温等保护功能,以防止电路损坏和事故发生。

在实际设计过程中,还需要考虑其他因素,如电路拓扑选择、元件选择、控制算法和布局布线等。

针对不同的应用需求,可能需要做出不同的设计决策。

基于单片机控制的DC-DC变换器的设计

基于单片机控制的DC-DC变换器的设计

目录第一章绪论................................................ 错误!未定义书签。

系统背景.............................................. 错误!未定义书签。

绿色节能型开关电源................................ 错误!未定义书签。

智能化数字电源.................................... 错误!未定义书签。

可编程开关电源.................................... 错误!未定义书签。

电源技术的发展与方向.................................. 错误!未定义书签。

线性电源和开关电源................................ 错误!未定义书签。

电源技术的发展方向................................ 错误!未定义书签。

开关电源的市场前景和研究现状...................... 错误!未定义书签。

第二章系统的总体设计...................................... 错误!未定义书签。

方案论证.............................................. 错误!未定义书签。

DC-DC主回路拓扑结构.............................. 错误!未定义书签。

控制方法及实现方案................................ 错误!未定义书签。

主体思路.............................................. 错误!未定义书签。

软件设计思路.......................................... 错误!未定义书签。

低功耗同步DC-DC降压变换器的研究与设计

低功耗同步DC-DC降压变换器的研究与设计

低功耗同步DC-DC降压变换器的研究与设计低功耗同步DC-DC降压变换器的研究与设计随着信息技术的快速发展,便携式电子设备的需求日益增长。

为了满足这些设备对高性能、低功耗的需求,同步DC-DC降压变换器成为了广泛应用的电源转换电路。

本文将研究并设计一种低功耗的同步DC-DC降压变换器,以提供高效的电能转换。

首先,我们将对同步DC-DC降压变换器的工作原理进行深入研究。

同步DC-DC降压变换器包括两个主要部分:输入电压的变换电路和输出电压的滤波电路。

其中,变换电路由开关器件和电感组成,起到将输入电压变换为合适的输出电压的作用。

滤波电路采用电容器和滤波电感,用于滤除变换电路产生的交流噪声,确保输出电压的稳定性。

其次,我们将对低功耗的设计方案进行探讨。

为了实现低功耗的要求,我们将采取以下措施:1. 选择高效的开关器件:开关器件是同步DC-DC降压变换器中最重要的组成部分。

我们将选择具有低导通和低开关损耗的器件,以提高转换效率。

2. 合理设计电感和电容:电感和电容是变换和滤波电路的关键组件。

我们将通过合理设计电感和电容的数值和布局,以减小能量损耗,并提高电能转换效率。

3. 优化控制策略:同步DC-DC降压变换器的控制方式对于提高转换效率非常重要。

我们将采用先进的控制算法,如模拟控制或数字控制,以提高功耗效率和稳定性。

最后,我们将进行同步DC-DC降压变换器的实验验证。

在设计阶段,我们将使用电路模拟软件进行仿真,并进行性能评估和优化。

之后,我们将根据设计方案进行原型制作与测试。

通过使用高精度的测试仪器,我们将评估实际电路的转换效率、稳定性和功耗等指标,以验证设计的可行性。

通过研究与设计一种低功耗的同步DC-DC降压变换器,可以为电子设备提供高效、长续航时间的电源解决方案。

这将对满足现代社会对电子设备便携性和使用时间的要求具有积极影响。

未来,我们可以在现有设计的基础上进一步研究和改进,以提高功耗效率和降低成本,满足电子产品日益增长的能耗需求。

BUCK型DCDC变换器电路设计

BUCK型DCDC变换器电路设计

BUCK型DCDC变换器电路设计1.原理BUCK型DC-DC变换器的原理基于一个开关和一个电感的组合。

当开关闭合时,电感中储存的能量会增加,同时输出电压会降低。

当开关打开时,电感中储存的能量会释放,输出电压会增加。

通过改变开关的周期和占空比,可以控制输出电压的稳定性。

2.基本电路设计-开关可以是MOSFET或BJT等元件,负责控制电路的开关状态。

-电感主要起到储存能量的作用,根据输出电流选择合适的电感数值,并结合开关频率选择合适的电感电流。

-二极管位于电感和负载之间,用于流动电流。

-滤波电容用于过滤输出纹波,增加稳定性。

-负载则是变换器的输出端,根据需要选择合适的负载数值。

3.性能参数选择在设计BUCK型DC-DC变换器时,需要选择合适的性能参数以确保稳定性和效率。

-输入电压范围:根据实际应用的输入电压范围选择合适的设备。

-输出电压范围:根据实际应用的输出电压需求选择合适的设备。

-开关频率:通过选择合适的开关频率,可以平衡效率和纹波。

-效率:BUCK型DC-DC变换器的效率通常在80%到95%之间,可以通过选择适当的部件来提高效率。

-纹波电压:根据应用需求,选择适当的滤波电容和电感来减小输出电压纹波。

4.工作原理当输入电压施加到BUCK型DC-DC变换器的输入端时,开关关闭,电感将储存能量。

当开关打开时,电感释放能量到负载,从而提供稳定的输出电压。

通过改变开关的占空比,可以控制输出电压的稳定性。

5.效率和效果综上所述,BUCK型DC-DC变换器是一种常见的降压型电源变换器,通过开关和电感的组合实现输出电压的稳定降低。

在设计过程中,需要注意选择合适的元件和参数以满足应用需求。

同时,合理的电路布局和工艺选择,也对BUCK型DC-DC变换器的性能和效果有重要影响。

dcdc变换课程设计

dcdc变换课程设计

dcdc变换课程设计一、课程目标知识目标:1. 理解DC-DC变换器的基本原理和分类;2. 掌握升压、降压、反相等常见DC-DC变换器的工作原理及电路特点;3. 学会分析DC-DC变换器的性能指标,如效率、输出纹波等。

技能目标:1. 能够运用所学知识设计简单的DC-DC变换器电路;2. 掌握使用示波器、万用表等工具对DC-DC变换器电路进行测试和调试;3. 培养学生动手实践能力,能独立完成DC-DC变换器实验。

情感态度价值观目标:1. 激发学生对电子技术的兴趣,培养创新意识和探索精神;2. 培养学生严谨、细致的科学态度,注重实验安全与环境保护;3. 增强团队合作意识,提高沟通与协作能力。

课程性质:本课程属于电子技术领域,以理论教学与实践操作相结合的方式进行。

学生特点:学生处于高中阶段,已具备一定的电子基础,对新鲜事物充满好奇,喜欢动手实践。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力,同时注重培养学生的科学素养和团队协作精神。

在教学过程中,将目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. DC-DC变换器概述:介绍DC-DC变换器的基本概念、分类及在电子设备中的应用;关联教材章节:第3章“直流-直流变换技术”第1节“DC-DC变换器概述”2. 升压、降压、反相DC-DC变换器:详细讲解升压、降压、反相变换器的工作原理、电路结构及性能特点;关联教材章节:第3章“直流-直流变换技术”第2节“升压、降压、反相DC-DC变换器”3. DC-DC变换器性能指标:分析效率、输出纹波、输出电流等性能指标,探讨影响性能的因素;关联教材章节:第3章“直流-直流变换技术”第3节“DC-DC变换器性能指标”4. 实践操作:设计并搭建升压、降压、反相DC-DC变换器电路,进行性能测试与分析;关联教材章节:第3章“直流-直流变换技术”第4节“实验:DC-DC变换器的设计与测试”5. 教学进度安排:共需4课时,其中理论教学2课时,实践操作2课时。

移相全桥DC_DC变换器双闭环控制系统设计

移相全桥DC_DC变换器双闭环控制系统设计

随着我国电源行业的发展,在中大功率应用场合,采用PWM 控制技术的移相全桥DC/DC 变换器越来越受到人们的关注,随着PWM 控制技术逐渐向高频化方向发展,全球各大集成电路生产商竞相研制出各种新型的PWM 控制器件,其中TI 公司推出的UCC3895是一款具有代表性的移相全桥控制器件。

该器件既可以工作于电流模式也可以工作于电压模式,又可以为谐振零电压开关提供高频、高效的解决方案,具有广阔的应用前景。

这里基于UCC3895设计了移相全桥DC/DC 变换器的双闭环控制系统,并结合实际应用对该系统进行了实验测试。

1移相全桥DC/DC 变换器闭环系统工作原理移相全桥DC/DC 变换器闭环系统结构框图如图1所示。

直流输入电压经过全桥逆变、高频变压器降压、输出侧整流滤波得到所需的直流电压。

四路PWM 波配置为两组,PWM1、PWM2为一组,用来控制全桥逆变模块的超前臂;PWM3、PWM4为另一组,控制滞后臂。

PWM1与PWM2互补,PWM3与PWM4互补,可通过UCC3895设置合适的死区时间。

该闭环控制电路采用峰值电流模式,外环电压调节器的输出作为电流内环的基准,在电流环中对采样的电流进行斜坡补偿,以保证占空比大于50%的时候,系统仍能稳定工作。

电流环的输出作为调制信号,通过脉宽调制电路、移相电路、隔离驱动电路实现对系统的闭环控制[1]。

2闭环控制电路设计2.1控制模式闭环系统采用恒定导通时刻峰值电流控制方式,可以实现逐个脉冲控制,动态响应速度快,稳定性好,并且易于实现限流及过流保护。

工作原理框图如图2所示。

收稿日期:2009-07-04稿件编号:200907017作者简介:宋杰(1985—),男,四川都江堰人,硕士。

研究方向:现代电子技术及其应用。

移相全桥DC/DC 变换器双闭环控制系统设计宋杰(西南大学工程技术学院,重庆400716)摘要:提出移相全桥DC/DC 变换器闭环系统设计方案,基于PWM 控制器件UCC3895设计一个双闭环控制系统,该系统采用电压外环和电流内环的控制方式,在电压环中引入双零点、双极点的PI 补偿,电流环中引入斜坡补偿,结合实际应用对闭环系统进行实验测试,结果表明所设计的闭环系统动态响应快,稳定性好。

DC-DC直流变换器的设计

DC-DC直流变换器的设计

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。

其主要特性如下:(1)主要特征集成了全部的脉宽调制电路。

片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

内置误差放大器。

内止5V参考基准电压源。

可调整死区时间。

内置功率晶体管可提供500mA的驱动能力。

推或拉两种输出方式。

(2)TL494外观图和引脚图DC/DC变换器的控制电路控制电路中的元器件列表如下:器件数量备注Tip32A 1tip32c也行,封装同7805 TL494 1dip-16封装双列直插式MR850 1频率响应达40KHz,额定电流2A的二极管即可电解电容50uF,50V1电解电容500uF,10V1电解电容50uF,10V1电感1。

0mH,2A1频率响应40KHz,实在没有用普通电感47Ω1功率1W150Ω2功率1W5。

1KΩ3150Ω147KΩ10。

1Ω11。

0MΩ1普通电容0。

001uF1普通电容0。

1uF116脚底座1小散热片1最小的即可,配相应的螺丝母固定细导线60cm。

通用实验板12cm*8cmTL494内部结构图TL494的极限参数名称代号极限值单位工作电压Vcc 42 V集电极输出电压V c1,V c242 V集电极输出电流I c1,I c2500 mA放大器输入电压范围V IR-0。

V3V—+42功耗P D1000 mW 热阻RθJA80 ℃/W 工作结温T J125 ℃工作环境温度TL494BTL494C TL494INCV494B T A-40—+1250—+70-40—+85-40—+125℃额定环境温度T A40 ℃工作原理TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。

dcdc方案

dcdc方案

DC-DC方案1. 简介DC-DC(Direct Current to Direct Current)方案是一种将电流从直流转换为直流的电力转换技术。

它在许多领域中被广泛应用,包括电子设备、通信系统、汽车电子和太阳能电池等。

DC-DC方案通过改变输入电压的水平、电流的波形和电流的输出模式来满足所需的电力转换需求。

2. 工作原理DC-DC方案基于两个关键的电力转换原理:升压和降压。

2.1 升压升压是指将较低电压的直流电源转换为较高电压的过程。

这种转换是通过使用电感和电容等器件来实现的。

DC-DC升压方案的关键组件是升压变换器,它包括开关元件(如MOSFET或BJT)、电感和电容。

升压的基本过程如下:1.当开关元件闭合时,电感器上的电流增加,储存了能量。

2.当开关元件打开时,电感器上的电流减小,能量被释放。

3.通过选择合适的电感和电容数值,可以将输入电压高效地升压到所需的输出电压。

2.2 降压降压是指将较高电压的直流电源转换为较低电压的过程。

与升压类似,降压也是通过使用电感和电容等器件来实现的。

DC-DC降压方案的关键组件也是降压变换器,它包括开关元件、电感和电容。

降压的基本过程如下:1.当开关元件闭合时,电感器上的电流增加,储存了能量。

2.当开关元件打开时,电感器上的电流减小,能量被释放。

3.通过选择合适的电感和电容数值,可以将输入电压高效地降压到所需的输出电压。

3. DC-DC方案的优势DC-DC方案相比其他电力转换技术具有以下优势:•高效性:DC-DC方案可以实现高效能量转换,减少能量损耗。

•稳定性:DC-DC方案可以提供稳定的输出电压和电流,适用于对电力供应要求较高的应用。

•可调性:DC-DC方案可以通过调整输入和输出参数来满足不同应用的需求。

•小型化:DC-DC方案可以通过优化设计和集成化来实现小型化,适用于空间受限的应用。

4. DC-DC方案的应用DC-DC方案广泛应用于各种领域,包括但不限于以下几个方面:4.1 电子设备DC-DC方案在电子设备中被广泛应用,用于将电池供电的低电压转换为各种类型的电子设备所需的工作电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种模块化高效DC-DC变换器的开发与研制设计方案一、设计任务:设计一个将220VDC升高到600VDC的DC-DC变换器。

在电阻负载下,要求如下:1、输入电压=220VDC,输出电压=600VDC。

2、输出额定电流=2.5A,最大输出电流=3A。

3、当输入在小范围内变化时,电压调整率SV≤2%(在=2.5A时)。

4、当在小范围你变化时,负载调整率SI≤5%(在=220VDC时)。

5、要求该变换器的在满载时的效率η≥90%。

6、输出噪声纹波电压峰-峰值≤1V(在=220VDC,=600VDC,=2.5A条件下)。

7、要求该变换器具有过流保护功能,动作电流设定在3A。

8、设计相关均流电路,实现多个模块之间的并联输出。

二、设计方案分析1、DC-DC升压变换器的整体设计方案图1 DC-DC变换器整体电路图如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。

控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。

2、DC-DC升压变换器主电路的工作原理DC-DC功率变换器的种类很多。

按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。

非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。

下面主要讨论非隔离型升压式DC-DC变换器的工作原理。

图2(a)DC-DC变换器主电路图2(b)DC-DC变换器主电路图2(a)是升压式DC-DC变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b)是用matlab模拟出的升压式DC-DC变换器的主电路图。

其中开关变换电路主要由绝缘栅双极型晶体管IGBT、储能电容C和RC 放电电路组成;高频变压器电路由一个工作频率为20KHz的升压变压器和一个隔直电容组成;整流电路部分采用桥式整流的设计方案,由四个快速恢复二极管构成,实现将逆变产生的纹波电流变换为直流方波电流;输出滤波电路采用LC滤波电路的设计方案。

电路的工作原理是:直流电压经过Q1~Q4 组成的全桥开关变换电路,在高频变压器初级得到高频交流方波电压,经变压器降压,再全波整流变换成直流方波,最后通过电感L、电容C组成的滤波器,在R上得到平直的直流电压。

全桥直流变换器由全桥逆变器、高频变压器和输出整流、滤波电路组成,也属于直流-交流-直流变换器。

当控制信号为高电平时,开关管Q1/Q4导通,开关管Q2/Q3截止;当控制信号为低电平时,开关管Q1/Q4截止,开关管Q2/Q3导通一正一负,相间交替,实现了将直流电流逆变为锯齿纹波的功能。

3、DC-DC变换器稳压原理通过输出电压的关系式可以看出,在输入电压或负载变化,要保证输出电压保持稳定时,可以采用两种方案。

第一可以维持开关管的截止时间TOFF不变,通过改变脉冲的频率f来维持输出电压的稳定,这便是脉冲频率调制(PFM)控制方式DC-DC变换器;第二可以保持脉冲的周期T不变,通过改变开关管的导通时间TON,即脉冲的占空比q,以实现输出电压的稳定,这就是脉宽调制(PWM)控制方式DC-DC变换器。

由于目前已经有各种型号的集成PWM控制器,所以DC-DC变换器普遍采用PWM控制方式。

图2 DC-DC 稳压电路的组成图3是DC-DC升压稳压变换器的原理图,它主要有采样电路、控制电路(比较放大、误差放大)、驱动电路组成。

其稳压原理是:假如输入电压增大,则通过采样电阻将输出电压的变化(增大),采样和基准电压相比较通过比较放大器输出信号去控制控制电路输出脉冲占空比q的变化(减小),结果可使输出电压保持稳定。

反之,当输入电压减小时,PWM控制器输出脉冲占空比q也自动变化(增大),输出电压仍能稳定。

三、主要单元电路设计1、DC-DC变换器主电路设计该升压电路结构选择图1所示的电路。

该变换电路设计主要是确定关键元件:输出滤波电容C、电感L、开关管IGBT和二极管D。

(1)输入滤波电容的选择输入滤波电容是电解电容,主要是滤除低频波,平滑直流输出电压,减小其脉动,通常电容的电容值是从控制纹波的角度考虑的,但是直流220V的蓄电池输入无法确定其纹波,我们现在假设其是经过三相交流桥式整流得到的DC220V电压。

图(3.1)MATLAB 仿真图图(3.2)MATLAB 仿真波形因为经过电容滤波之后,电压会升高,所以把整流后的有效直流电压设置为低于220V 。

本设计从能量的角度估算电容值,在电压脉动的过程中,电容不断的充电和放电。

滤波的电容的输出即为后续电路的电源。

在电压变化过程中电容吸收的能量为:为了保证即使在最低输入电压时,也能保证额定的输出功率,根据能量守恒定律,在半周期内输出的能量等于电容从谷点电压充电到峰值电压储存的能量。

最低输入电压:峰值电压:谷点电压: 效率:η(假设效率为90%)三相整流后的脉动频率为3f 每个周期中输入滤波电容提供的能量为:J J P f P T W in in 1.119.0105.150313130=⨯⨯⨯=•=•=η每半个周期中输入滤波电容提供的能量为:2in W 于是得 ()2min 2min 0212in pk in U U W C -= 则:uF U U W C in pk in 35.8431972281.11222min2min 0=--= 这样计算出来看似很大,其实不然,从另一个方面说,220V 蓄电池的输出电压也不可能是这样脉动的,所以这个电解电容的选取要使用经验值。

我们结合电路设计的参数要求和现在市场中生产厂家所生产的有极性电解电容型号,最终选择使用两个450V/470μF 的电解电容并联来滤除输入电源中的低频波。

由于电解电容无法吸收加在其两端的高频分量,所以还要在输入直流端并联上无极性的陶瓷电容,0.3~0.5uF.陶瓷电容有体积小,容量大、耐热性好、价格低等优点。

(2)输出滤波储能电感设计由上图可知流过电感的电流波形图如下图所示当负载电流减少,直到负载电流减小到 ()12min 021I I I I -== 此时电流波形图如下: 斜波电流的最低点正好降到零,在这个最低点处,电感电流为零,储能为零。

如果负载电流进一步减小,电感将进入不连续工作状态,电压和电流的波形,以及闭环传递函数将发生较大变化。

于是们在输出端加上一个“死负载”,让输出端的电流始终保持0I >(m in)o I 保证其使电路在期望的负载电流范围内工作与连续模式。

同时,电感的选择应保证直流输出电流为最小规定电流时,电感电流也保持连续。

通常最小规定电流约为额定负载电流的10%。

由上图可知,电感电流斜波为:12I I dI -=因为当直流电流等于电感电流斜波峰—峰值一半时,进入不连续工作模式,则 21.0120(min)0I I I I -==对于电感: dt di Lu = →Ludi di = 所以 LT U U L T U dI on on L )(01-== 其中on T 为产生一个脉冲电压时开关管的开通时间由图可知,对于全桥变换器2T T on <,当dc U 最小时,使1U 最小时on T 不需要大于28.0T 就可以输出所需的0U而 TT U U on 210= 则 102U T U T on =于是 (min)10(min)228.0U T U T T on == (假设0(min)125.1U U =)带入得()()(min)00001228.025.1I L T U U L T U U dI on =•-=-=整理为 (min)0005.0I T U L =如果假定最小电流为额定电流的1/20则有 1UmH H I T U L o12600105.11050600360=⨯⨯⨯==- 计算电感量为12mH ,实际选择20m H/5A 的电感。

电感自己绕制。

设计电感参数:直流电流:16.67A, 交流电流:A I I 125.02010==∆ 纹波频率:20KHz需设计电感量:L=20mH铁芯材质:硅钢片叠片铁芯形式:C 型温升:25度 (3)输出滤波电容设计 输出滤波电容的选择满足一些特性,并非理想电容,它可等效为寄生电阻和电感与其理想纯电容的串联。

称为等效串联内阻,称为等效串联电感。

一般的,如果考虑串联扼流圈的纹波电流幅值,我们总希望这个纹波电流的大部分分量流入输出电容,因此输出电压的纹波由输出滤波电容、等效串联电阻和等效串联电感决定。

对于低频(低于500KHz )纹波电流,可以忽略,输出纹波主要由和决定。

是大电解电容,因此在开关频率处,由产生的纹波电压分量小于由产生的纹波电压分量。

因此在中频段,输出纹波接近等于的交流纹波电流乘以。

有两个分别由和决定的纹波分量,由决定的纹波分量与电感斜波峰—峰值(-)成正比,而由决定的纹波分量与流过电流的积分成正比。

为了估算这些纹波分量并选择电容,必须知道的值,而电容厂家很少直接给出该值。

但从一些厂家的产品目录可以知道,对很大范围内不同电压等级不同容值的常用铝电解电容,其的值近似为F Ω⨯-61080~50。

(3)开关管的选择开关管VT在电路中承受的最大电压是U0,考虑到输入电压波动和电感的反峰尖刺电压的影响,所以开关管的最大电压应满足>1.1×1.2U0。

实际在选定开关管时,管子的最大允许工作电压值还应留有充分的余地,一般选择(2~3)1.1×1.2U0。

开关管的最大允许工作电流,一般选择(2~3)II。

开关管的选择,主要考虑开关管驱动电路要简单、开关频率要高、导通电阻要小等。

本设计选择N沟道功率场效应管IRF3205,该器件的VDSM=55V,导通电阻仅为8mΩ,IDM=110A,完全满足设计要求。

(4)续流二极管的选择在电路中二极管最大反向电压为U0,流过的电流是输入电流II,所以在选择二极管时,管子的额定电压和额定电流都要留有充分大的余地。

另外选择续流二极管时还要求导通电阻要小,开关频率要高,一般要选用肖特基二极管和快恢复二极管。

本设计选用MBR10100CT,其最大方向工作电压为100V,最大正向工作电流为10A,完全满足设计要求。

2、DC-DC变换器控制电路设计DC-DC变换器控制电路选用集成PWM控制器TL494构成,调制脉冲的频率选择50kHz,选择振荡电容CT为1000pF,电阻RT为22kΩ即可满足要求。

脉冲采用单端输出方式,将13脚接地,为了提高驱动能力,从内部三极管的集电极输出,并将两路并联,即将8、11脚并联接电源(即输入电压UI),9、10脚并联,该端即为脉冲输出端。

相关文档
最新文档