简单的钣金件展开
3分钟学会钣金展开公式
3分钟学会钣金展开公式
一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为L1、L2,厚度尺寸为T,我们都已知道,L1+L2是要大于展开长度L的,它们的差值就是折弯余量,我定义为K,那么一个弯的展开尺寸L=L1+L2-K。
一般冷轧钢板的K值(条件:90度弯,标准折弯刀具)
T=1.0 K=1.8
T=1.2 K=2.1
T=1.5 K=2.5
T=2.0 K=3.5
T=2.5 K=4.3
T=3.0 K=5.0
T=0.8 K=1.6
T=3.5 K=6.05
T=4.0 K=7.0
T=5.0 K=8.5
实例二:
实例三:
不规则折弯按K因子=0.5,直接用AUTOCAD画中性层测量。
如有偏差再根据具体情况调整。
一般也差不了多少。
折弯时调整下模槽宽也可将偏差的展开尺寸调整成合格的折弯外形(当然在一定的范围内)。
还有一外钣金件总有一些壁外形偏差允许大一些,可将偏差累积到那些壁去。
死边按L1+L2-0.5t
在模型中直接修改dev.l值为1.5*t就可以了!。
锥形钣金展开技巧与实例
锥形钣金展开技巧与实例可以按照以下步骤进行:1. 确定锥形角度:首先需要确定锥形钣金的锥角,这是展开操作的基础。
2. 划线:根据锥角和锥形底部的直径,划出钣金件的展开轮廓线。
展开轮廓线应该精确,以确保展开后的形状正确。
3. 确定展开方式:根据钣金材料和形状,选择合适的展开方法。
常用的有三角形展开法、辅助曲线展开法等。
对于锥形钣金,需要考虑到材料的弯曲和变形,选择合适的展开方式。
4. 制作样板:根据展开后的形状,制作相应的样板或者模具。
样板应该精确,并经过试验验证以确保正确的形状和尺寸。
5. 实际操作:a. 将锥形钣金分成多个部分,以便于展开操作。
b. 使用剪切工具按照轮廓线进行切割。
如果使用机械剪切刀,需要考虑到材料的弯曲和变形,进行适当的调整。
c. 将切割后的部分展开,使用样板进行校验,确保形状和尺寸正确。
d. 对锥形钣金进行进一步的加工和处理,如钻孔、攻丝等,以满足实际应用的需要。
以下是一个具体的实例:实例:制作一个锥形管接头步骤1:确定锥角和锥形底部的直径,画出展开轮廓线。
在本例中,锥角为45度,锥形底部直径为6英寸。
步骤2:选择合适的展开方法。
由于锥形底部为圆形,可以使用三角形展开法结合辅助曲线进行展开。
步骤3:制作样板。
根据展开后的形状,制作一个锥形模具,用于后续的加工和处理。
步骤4:实际操作。
将锥形管接头分成三个部分,使用剪切工具进行切割。
将切割后的部分按照轮廓线展开,使用制作的锥形模具进行校验。
确保形状和尺寸正确后,进行钻孔、攻丝等进一步处理。
在制作过程中需要注意以下几点:1. 确保划线精确,以避免展开后的形状错误。
2. 根据材料的性质和弯曲程度,选择合适的剪切工具。
3. 校验展开后的形状和尺寸,确保符合要求。
4. 遵循安全操作规程,使用正确的工具和设备进行加工和处理。
通过以上技巧和实例,可以更好地掌握锥形钣金展开的操作方法,提高制作效率和准确性。
新手入门如何学习钣金放样展开,老师傅分享篇(二)
新手入门如何学习钣金放样展开,老师傅分享篇(二)1、平面立体棱柱体、棱锥体、多面体2、曲面立体有一条直母线或曲线母线绕一固定轴线旋转而成形成旋转体。
如圆柱、圆锥、球等。
三角形展开法的原理:任何平面都可以看成是由若干三角形组合而成。
任何曲面,我们也可以近视看成是由若干三角形组合而成然后把表面这些小三角形按原来的相互位置和顺序不遗漏地铺平开来,则形体表面就被展开了。
1、天方地圆构件的展开2、方形锥面管的展开3、圆底圆顶成直角异形接头的展开4、作斜天圆地方构件的展开图放射线展开法的作图步骤,可归纳为:(1)在放样图中将形体表面正确分割成若干小三角形。
(2)求所有小三角形各边的实长。
(3)以放样图中各小三角形的相邻位置为依据,用已知的或求出的实长为半径,通过交轨法,依次展开所有小三角形,最后将所得的交点视构件具体情况用曲线或用折线连接起来,由此得到所需构件的展开图。
基本知识:由两个或两个以上形体组合而成的构件称为相贯体。
其表面的交线称为相贯线。
对于相贯体构件的展开而言,关键就是相贯线的求法。
常见的相贯线求法有直线型相贯线法、素线法,纬线法、辅助平面法等。
1、求形体表面上点的投影(1)用素线法求形体表面点的投影原理:设想圆锥面是由许多素线所组成的,圆锥面上任一点必然在过该点的素线上。
只要求出该点的素线投影,即可求出该点的投影。
(2)用纬线法求形体表面点的投影原理用过形体表面任一点所作的平面截切形体,可得到一条纬线(面与形体的交线),那么该点必定在该纬线上,只要把该纬线投影到另一视图上,就可求出该点在另一视图上的投影。
(3)用辅助平面法求形体表面点的投影原理:用辅助平面同时截切两相贯体,找出截面与交线的交点——相贯点。
2、求形体相贯线(1)直线型相贯线(2)用素线法求圆锥面直交圆柱面的相贯线及展开图(3)用纬线法求圆柱面侧面直交正圆锥面的相贯线及展开图(4)用辅助平面法求两圆柱正交的相贯线并作其表面展开图(1)用纬线法作球面的展开图原理:若沿着纬线的方向划分球面,相邻两纬线之间的球面被近似地看成以相邻两纬线为上、下底边的正圆锥面或圆柱面。
(完整版)钣金展开计算方法
上式中取:λ=T/3
K=λ*π/2
=T/3*π/2
=0.5T
3 R≠0 θ=90°
L=(A-T-R)+(B-T-R)+(R+λ)*π/2
当R ≧5T时 λ=T/2
1T≦ R <5T λ=T/3
0 < R <t λ=t 4<="" p=""></t λ=t>
(实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)
D/2={(r+T/3)2
+2(r+T/3)*(h+T/3)
-0.86*(Rd-2T/3)*[(r+T/3)
+0.16*(Rd-2T/3)]}1/2
12卷圆压平
图(a): 展开长度
L=A+B-0.4T
图(b): 压线位置尺寸 A-0.2T
图(c): 90°折弯处尺寸为A+0.2T
图(d): 卷圆压平后的产品形状
4 R=0 θ≠90°
λ=T/3
L=[A-T*tan(a/2)]+[B
-T*tan(a/2)]+T/3*a
(a单位为rad,以下相同)
5 R≠0 θ≠90°
L=[A-(T+R)* tan(a/2)]+[B
-(T+R)*tan(a/2)]+(R+λ)*a
当R ≧5T时 λ=T/2
1T≦ R <5T λ=T/3
以下Hmax取值原则供参考.
当R≧4MM时:
材料厚度T=1.2~1.4取Hmax =4T
钣金展开计算原理及计算方法!
一、展开计算原理板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层,中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准。
中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大。
中性层位置逐渐向弯曲中心的内侧移动。
中性层到板料内侧的距离用A表示(图1)。
二、折弯方法的确定折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法。
单发冲床模具折弯的方式及精度是由模具来实现的。
因此只要做出合格的模具,就能够生产出合格的折弯产品。
而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数。
因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法。
1.一次一道弯。
此种折弯由普通通用折弯模来完成。
包括折直角,钝角和锐角(图2)。
2. 一次折两道弯——压锻差。
此种折弯由专用特殊模来完成,但折弯难度比普通折弯大(图3)。
3. 压死边。
此种折弯也须用特殊模来完成(图4)。
4.大R圆弧折弯。
些种折弯如R在一定范围内,可用专用R模压成形,如R值过大,则须用小R模多次压制成形(图5)。
这四种折弯的展开计算是不同的。
因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。
其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍。
如采用一次折一道弯的方法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1,如图6所示。
折弯高度H的经验值根据产品形状有如下三种(以90度为例,钝角和锐角与直角相近相似)。
1.简单的90度单边折弯(图7)。
如图7所示,此种折弯只需考虑下模V形槽中心到折弯机定位挡块的距离即可确定。
通常H值为H≥3.5 T + R (R 在1mm 以下)。
(完整版)钣金件的展开计算---准确计算
5. K-因子法
K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值。也是一个用于计算在各种材料厚度、折弯半径/折弯角度等广泛情形下的弯曲补偿(BA)的一个独立值。图4和图5将用于帮助我们了解K-因子的详细定义。
我们可以肯定在钣金零件的材料厚度中存在着一个中性层或轴,钣金件位于弯曲区域中的中性层中的钣金材料既不伸展也不压缩,也就是在折弯区域中唯一不变形的地方。在图4和图5中表示为粉红区域和蓝色区域的交界部分。在折弯过程中,粉红区域会被压缩,而蓝色区域则会延伸。如果中性钣金层不变形,那么处于折弯区域的中性层圆弧的长度在其弯曲和展平状态下都是相同的。所以,BA(折弯补偿)就应该等于钣金件的弯曲区域中中性层的圆弧的长度。该圆弧在图4中表示为绿色。钣金中性层的位置取决于特定材料的属性如延展性等。假设中性钣金层离表面的距离为“t”,即从钣金零件表面往厚度方向进入钣金材料的深度为t。因此,中性钣金层圆弧的半径可以表示为(R+t).利用这个表达式和折弯角度,中性层圆弧的长度(BA)就可以表示为:
例如,如果在某些手册或文献中描述中性轴(层)为“定位在离钣料表面0.445x材料厚度”的地方,显然这就可以理解为K因子为0.445,即K=0.445。这样如果将K的值代入方程(8)后则可以得到以下算式:
BA=A(0.01745R+0.00778T)
如果用另一种方法改造一下方程(8),把其中的常量计算出结果,同时保留住所有的变量,则可得到:
BA=A(0.01745R+0.01745K*T)
比较一下以上的两个方程,我们很容易得到:0.01745xK=0.00778,实际上也很容易计算出K=0.445。
仔细地研究后得知,在SolidWorks系统中还提供了以下几类特定材料在折弯角为90度时的折弯补偿算法,具体计算公式如下:
钣金展开计算公式大全
钣金展开计算公式大全
1. 矩形零件的展开计算公式:
长方形展开长度 = 原料长度 + 2 弯曲圆弧压缩量。
长方形展开宽度 = 原料宽度 + 弯曲线圆弧长度 + 弯曲线直线长度。
2. 圆柱形零件的展开计算公式:
圆周展开长度 = 弧长公式,L = π D(D为圆柱直径)。
圆周展开宽度 = 圆周展开长度 / 2。
3. 圆锥形零件的展开计算公式:
圆锥展开长度= π D tan(α)(D为圆锥底部直径,α为锥角)。
圆锥展开宽度 = 圆锥母线长度。
4. 不规则形状零件的展开计算公式:
可使用数学软件进行建模计算,或者通过测量得到各部分的尺寸,然后进行展开计算。
以上是一些常见的钣金展开计算公式,钣金加工中展开计算需要根据具体的零件形状和加工要求来确定使用哪种公式进行计算。
同时,还需要考虑材料的弹性变形、加工工艺等因素,以确保展开后的尺寸能够满足设计要求。
希望以上信息能够对你有所帮助。
钣金件的展开计算准确计算
钣金件的展开计算准确计算The document was prepared on January 2, 2021钣金中的展开计算一、钣金的计算方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度.其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法.通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等.总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法.为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点:1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围二、折弯补偿法为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯.图2是该零件的展开状态.折弯补偿算法将零件的展开长度LT描述为零件展平后每段长度的和再加上展平的折弯区域的长度.展平的折弯区域的长度则被表示为“折弯补偿”值BA.因此整个零件的长度就表示为方程1:LT = D1 + D2 + BA 1折弯区域图中表示为淡的区域就是理论上在折弯过程中发生变形的区域.简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考:1、将折弯区域从折弯零件上切割出来2、将剩余两段平坦部分平铺到一个桌子上3、计算出折弯区域在其展平后的长度4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件图15. K-因子法K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值.也是一个用于计算在各种材料厚度、折弯半径/折弯角度等广泛情形下的弯曲补偿BA的一个独立值.图4和图5将用于帮助我们了解K-因子的详细定义.我们可以肯定在钣金零件的材料厚度中存在着一个中性层或轴,钣金件位于弯曲区域中的中性层中的钣金材料既不伸展也不压缩,也就是在折弯区域中唯一不变形的地方.在图4和图5中表示为粉红区域和蓝色区域的交界部分.在折弯过程中,粉红区域会被压缩,而蓝色区域则会延伸.如果中性钣金层不变形,那么处于折弯区域的中性层圆弧的长度在其弯曲和展平状态下都是相同的.所以,BA折弯补偿就应该等于钣金件的弯曲区域中中性层的圆弧的长度.该圆弧在图4中表示为绿色.钣金中性层的位置取决于特定材料的属性如延展性等.假设中性钣金层离表面的距离为“t”,即从钣金零件表面往厚度方向进入钣金材料的深度为t.因此,中性钣金层圆弧的半径可以表示为R+t.利用这个表达式和折弯角度,中性层圆弧的长度BA就可以表示为:BA = PiR+TA/180为简化表示钣金中性层的定义,同时考虑适用于所有材料厚度,引入k-因子的概念.具体定义是:K-因子就是钣金的中性层位置厚度与钣金零件材料整体厚度的比值,即:K = t/T因此,K的值总是会在0和1之间.一个k-因子如果为的话就意味着中性层位于零件钣金材料厚度的25%处,同样如果是,则意味着中性层即位于整个厚度50%的地方,以此类推.综合以上两个方程,我们可以得到以下的方程8:BA = PiR+KTA/180 8其中几个值如A、R和T都是由实际的几何形状确定的.所以回到原来的问题,K-因子到底从何而来同样,回答还是那几个老的来源,即钣金材料供应商、试验数据、经验、手册等.但是,在有些情况下,给定的值可能不是明显的K,也可能不完全表达为方程8的形式,但无论如何,即使表达形式不完全一样,我们也总是能据此找到它们之间的联系.例如,如果在某些手册或文献中描述中性轴层为“定位在离钣料表面材料厚度”的地方,显然这就可以理解为K因子为,即K=.这样如果将K 的值代入方程8后则可以得到以下算式:BA = A +如果用另一种方法改造一下方程8,把其中的常量计算出结果,同时保留住所有的变量,则可得到:BA = A R + KT比较一下以上的两个方程,我们很容易得到:=,实际上也很容易计算出K=.仔细地研究后得知,在SolidWorks系统中还提供了以下几类特定材料在折弯角为90度时的折弯补偿算法,具体计算公式如下:软黄铜或软铜材料:BA = T + R半硬铜或黄铜、软钢和铝等材料:BA = T + R青铜、硬铜、冷轧钢和弹簧钢等材料:BA = T + R实际上如果我们简化一下方程7,将折弯角设为90度,常量计算出来,那么方程就可变换为:BA = K T + R所以,对软黄铜或软铜材料,对比上面的计算公式即可得到 = ,K==.同样的方法很容易计算出书中列举的几类材料的k-因子值:软黄铜或软铜材料:K =半硬铜或黄铜、软钢和铝等材料:K =青铜、硬铜、冷轧钢和弹簧钢等材料:K =前面已经讨论过,有多种获取K-因子的来源如钣金材料供应商,试验数据,经验和手册等.如果我们要用K-因子的方法建立我们的钣金模型,我们就必须找到满足工程需求的K-因子值的正确来源,从而得到完全满足所期望精度的物理零件结果.在一些情况下,因为要适应可能很广泛的折弯情形,仅靠输入单一的数字即使用单一的K-因子方法可能无法得到足够准确的结果.这种情况下,为了获得更为准确的结果,应该对整个零件的单个折弯直接使用BA 值,或者使用折弯表描述整个范围内不同的A、R、T的所对应的不同BA、BD或K-因子值等.在R≠0, θ=90°时;的折弯系数列表:单位:mm注意:折弯系数不是绝对的,各加工工厂的钣金工艺工程师会根据所用GB材料以及加工机器而略有微弱变化.三.展开计算方法其它参考:一.冷轧钢板SPCC电镀锌板SECC二.压铆螺件底孔尺寸表1.压铆螺母柱注:SO SOS 为通孔不通牙,SOO SOOS 为通孔通牙,加B为不通孔,加S为不锈钢材料,H为螺母柱的高度.2.压铆螺母注:CLS为不锈钢材料,S为普通A3钢,A为螺母适用板厚材代号.3.镶入螺母注:加S为不锈钢材料,A为螺母适用板厚代号.4.涨铆螺母注:加S为不锈钢材料,、、为常用适用板厚.5.压铆螺钉注:加S为不锈钢材料,FH为圆头,NFH为六角头,L为螺钉总长度.。
(完整版)钣金展开计算方法
当R≧4MM时:
材料厚度T=1.2~1.4取Hmax =4T
材料厚度T=0.8~1.0取Hmax =5T
材料厚度T=0.7~0.8取Hmax =6T
材料厚度T≦0.6取Hmax =8T
当R<4MM时,请示上级.
10压缩抽形1 (Rd≦1.5T)
原则:直边部分按弯曲展开,圆角部分按拉伸展开,然后用三点切圆(PA-P-PB)的方式作一段与两直边和直径为D的圆相切的圆弧.
0 < R <t λ=t 4<="" p=""></t λ=t>
6 Z折1.
计算方法请示上级,以下几点原则仅供参考:
(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度)
L=A-T+C+B+2K
(2)当3T<c<5时:</c<5时
L=A-T+C+B+K
(3)当C≦3T时<一次成型>:
1.8
#6-32
1.2
1.5
1.5(1.8)
1.8
说明:
1以上攻牙形式均为无屑式.
2抽牙高度:一般均取H=3P,P为螺纹距离(牙距).
3.内径:M3 Φ2.75 M3.50 Φ3.20 M 4 Φ3.65 # 6-32 Φ3.10
在R≠0, θ=90°时;的折弯系数列表:(单位:mm)
板材↓/板厚→
D/2={(r+T/3)2
+2(r+T/3)*(h+T/3)
-0.86*(Rd-2T/3)*[(r+T/3)
钣金件的展开画法课件
使用CAD软件创建或导入所需钣金件的三 维模型。
5. 校核与优化
对展开图进行校核,确保其符合实际加工 要求,并根据需要对其进行优化。
2. 选择展开面
确定合适的展开面,使钣金件在展开后能 够符合实际加工要求。
4. 生成展开图
根据计算结果,使用CAD软件的绘图功能 生成展开图。
3. 进行展开计算
THANKS
感谢观看
REPORTING
PART 03
钣金件展开画法的实例解 析
REPORTING
实例一:矩形盒子的展开画法
基础且常见
矩形盒子是最基础的钣金件之一,其展开画法相对简单。主要步骤包括确定盒子 的长宽高尺寸,根据其形状特点,使用平行线、垂直线等几何元素进行展开。
实例二:圆柱形罐子的展开画法
需考虑弧度与角度
圆柱形罐子的展开画法需要考虑其弧度和角度。通常采用中径线、素线等方法进行展开,同时要特别注意在展开过程中保持 各部分的相对位置和形状。
• 易于修改和优化:在软件中进行设计修改和优化 非常方便,可以快速实现不同方案之间的比较和 选择。
软件实现的优势与局限性
对软件操作要求较高
使用CAD软件进行钣金件展开画图需要具备 一定的软件操作基础,对于初学者可能需要 较长时间的学习和实践。
依赖软件稳定性
软件的稳定性和兼容性对钣金件展开画图的 准确性有一定影响,需要选择可靠的CAD软 件。
实例三:圆锥形烟囱的展开画法
需考虑曲线与锥度
圆锥形烟囱的展开画法需要利用几何学中的曲线和锥度知识。通常采用旋转法或直角三角形法进行展 开,同时要确保展开后的形状与原烟囱一致。
PART 04
钣金件展开画法的技巧与 注意事项
钣金展开计算公式讲解
钣金展开计算公式讲解钣金加工是一种常见的金属加工方式,它可以将金属板料通过弯曲、切割、焊接等方式加工成各种形状的零件。
在钣金加工过程中,展开计算是一个非常重要的环节,它能够帮助工程师准确地计算出金属板料在加工前的展开尺寸,从而为后续的加工工艺提供准确的参数。
钣金展开计算公式是根据钣金零件的形状和尺寸来确定的,下面我们将分别介绍一些常见的钣金展开计算公式及其应用。
1. 简单直线展开计算公式。
对于一些简单的直线形状的钣金零件,其展开计算可以通过以下公式来进行:展开长度 = 原始长度 + 弯曲长度增量。
其中,原始长度是指钣金零件在未加工前的长度,而弯曲长度增量则是根据材料的弹性模量和弯曲角度来确定的。
这个公式适用于一些简单的直线形状的零件,比如长方形、正方形等。
2. 圆弧形展开计算公式。
对于一些圆弧形状的钣金零件,其展开计算可以通过以下公式来进行:展开长度 = 弧长×弯曲长度增量。
其中,弧长是指圆弧的长度,而弯曲长度增量则是根据材料的弹性模量和弯曲角度来确定的。
这个公式适用于一些圆弧形状的零件,比如弯曲的管道、圆形的罩体等。
3. 不规则形状展开计算公式。
对于一些不规则形状的钣金零件,其展开计算就比较复杂了,需要通过数学方法来进行计算。
一般来说,可以通过将不规则形状分割成若干个简单的直线和圆弧形状,然后分别计算它们的展开长度,最后将它们相加得到整个零件的展开长度。
除了以上介绍的展开计算公式外,还有一些特殊形状的钣金零件可能需要使用其他的展开计算方法,比如通过软件模拟、数值计算等方法来进行计算。
总的来说,展开计算公式是根据钣金零件的形状和尺寸来确定的,需要根据具体情况进行选择和应用。
在实际的钣金加工过程中,展开计算公式的准确性对于加工质量和效率都有着非常重要的影响。
一方面,准确的展开计算可以帮助工程师确定加工前的材料尺寸,从而避免浪费和误差;另一方面,准确的展开计算也可以为后续的弯曲、切割等加工工艺提供准确的参数,从而保证零件的精度和质量。
钣金件展开计算方法及工艺处理
钣金展开计算方法及工艺处理一、钣金件展开方法:1、展开的计算原理:板材在弯曲过程中外层客观存在到拉应力,内层受以压应力,从拉到压之间有一既不受拉力又不受压力的过渡层——中性层,中性层的长度在弯曲后与弯曲前一样,保持不变,所以中性层是计算折弯件展开长度的基准。
中性层位置与变形程度有关,当弯曲半径(下图所示的R角)较大,折弯角度(下图所示θ角)增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动,中性层到板料内层的距离用<90时)2.计算方法:2.1展开的基本公式:展开长度=料内+料内+补偿量展开长度=料外+料外-补偿量2.2.标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值3、预开底孔3.1.展开过程中,除了对外形展开以外,对一些比如抽牙(翻边)攻丝,攻牙(挤牙.切削)翻边胀铆螺母(Z类产品).花齿压铆螺母(S类产品).压铆螺钉(FH类产品).压铆螺钉(NY类产品).压铆螺母柱(SO、BSO、SOO、SOPC类产品)(注意3.5M3与M3底孔的差异).展开过程中,要先进行预开底孔(详细见附表五)4.开工艺孔:对于一些精度要求不高,需焊接打磨的产品,折弯转角处我们可以开一个折弯工艺孔,大小由板厚来决定,要比板厚大一些,也不宜过大,编程过程中尽量选用已使用过的合适的模具。
(便于减少模具及加工时间)。
4.1图有三种情况:全包、半包、搭边。
①所有搭边关系的,无需开工艺孔;②对于有包边板厚T〈1.5mm,无需开工艺孔;③对于有包边且板厚T≥1.5mm,需在转角处加开工艺孔。
工艺孔有两种方式:圆和U形;长圆孔的圆心在折弯线上。
如图a.b所示1.展开后为线段的部分,将其处理成下图所示工艺孔形式:如图c所示工艺孔宽度取0.5(LASER)或2.0(NCT)。
3当抽形边缘与折弯边(内尺寸)距离小于2.0mm,则会影响折弯加工,此时,相应折弯变形区作割孔处理或更改抽形尺寸,如附图e所示:1)在下列情况下,一律不允许开工艺孔:①有外观面或装配关系要求,未经客户允许的工件;②单独出货,未经客户允许的散件。
钣金展开技巧与示例
钣金展开技巧与示例 Revised as of 23 November 2020一展开培训1. 目的: ...............................................................................................................................................................................2. 适用范围: .......................................................................................................................................................................3. 钣金件及其图面的特征: ...............................................................................................................................................3.1折弯特征23.2非折弯特征 44. 展开的工作内容介绍: 44.1展开前准备工作44.2展开作业规范 55. 各种折弯特征的展开系数算法: ....................................................................................................................................6. 折弯示意图的制作及折弯方向的准确辨认: ................................................................................................................一般折弯之七﹕Z折(斜边段差)一般折弯之八﹕Z折(过渡段为两圆弧相切)一般折弯之九﹕反折压平一般折弯之十﹕N折➢插入原图, 打开原图(^O), 拷贝(^C), 建新档(^N), 粘贴(Edit\Paste as Block), 查看电子档原图版次与客户提供的图纸是否一致. 用订单号名称加原图档名作为展开图的档案名,存入(^S)私人档案目录,待工程图完成后再存入(SA)网络.➢客户图面复查, 拷贝粘贴成块的原图后,将其炸开,对其进行图面尺寸检查及相应的图元修改。
钣金展开详细计算方法
0.8
1.0
1.2
1.5
2.0
2.5
3.0
4.0
冷板
1.5
1.8
2.1
2.5
3.2
4.0
4.7
6.2
铝板
—
1.5
1.9
2.3
3.1
3.8
4.4
6.1
注意:折弯系数不是绝对的,各加工工厂的钣金工艺工程师会根据所用GB材料以及加工机器而略有微弱变化。
备注:
a标注公差的尺寸设计值:取上下极限尺寸的中间值作为设计标准值.
b孔径设计值:一般圆孔直径小数点取一位(以配合冲头加工方便性),例:3.81取3.9.有特殊公差时除外,例:Φ3.80+0.050取Φ3.84.
c 产品图中未作特别标注的圆角,一般按R=0展开.
附件一:常见抽牙孔孔径一览表
料厚
类型
0.6
0 < R <t λ=t 4<="" p=""></t λ=t>
6 Z折1.
计算方法请示上级,以下几点原则仅供参考:
(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度)
L=A-T+C+B+2K
(2)当3T<c<5时:</c<5时
L=A-T+C+B+K
(3)当C≦3T时<一次成型>:
∴ AB={H*EF+(π/4-1)*EF2}/T
∴预冲孔孔径=D – 2AB
T≧0.8时,取EF=60%T.
在料厚T<0.8时,EF的取值请示上级.
钣金展开技巧与实例
钣金展开技巧与实例钣金是一种常用的金属加工工艺,通过对金属板材的切割、弯曲、冲压等操作,制作出各种形状的零件和结构。
在钣金加工中,展开是一项重要的技术,它可以将三维形状的物体展开成二维平面的零件图纸,为后续的切割和弯曲提供准确的参考。
本文将介绍钣金展开的技巧与实例。
一、常用的钣金展开技巧1. 整体展开法:将钣金零件整体展开成一个平面,适用于平面或简单形状的零件。
该方法简单快捷,适用于一些简单的钣金零件的展开。
2. 分段展开法:将复杂形状的钣金零件划分为若干简单的几何形状,分别进行展开。
然后将这些展开零件进行叠加或拼接,得到最终的展开图。
这种方法适用于复杂形状的钣金零件的展开。
3. 逆向展开法:根据钣金零件的最终形状,反向推导出展开图。
这种方法适用于对称或规则形状的钣金零件的展开。
4. 三维CAD软件展开法:利用CAD软件进行钣金零件的三维建模和展开。
通过软件的辅助,可以快速准确地完成钣金零件的展开。
二、钣金展开实例1. 直角槽展开:以一个直角槽为例,展开过程如下:a) 首先,根据直角槽的尺寸,在纸上画出一个等大的矩形。
b) 确定直角槽的展开方向,并在矩形上标记出直角槽的长度和宽度。
c) 使用尺子或量具,按照标记的长度和宽度,在矩形上划出直角槽的展开图。
d) 根据展开图,切割钣金板材,然后进行折弯和焊接等工艺,最终得到直角槽零件。
2. 弯曲形展开:以一个弯曲形为例,展开过程如下:a) 首先,根据弯曲形的形状,在纸上画出一个等大的矩形。
b) 确定弯曲形的展开方向,并在矩形上标记出弯曲形的长度和宽度。
c) 通过测量弯曲形的弯曲角度和半径,计算出弯曲形的展开长度。
d) 使用尺子或量具,在矩形上划出弯曲形的展开图。
e) 根据展开图,切割钣金板材,然后进行折弯和焊接等工艺,最终得到弯曲形零件。
3. 复杂形状展开:以一个复杂形状的钣金零件为例,展开过程如下:a) 首先,利用测量工具对钣金零件的各个尺寸进行测量,记录下来。
(完整版)钣金折弯展开计算
展开的计算法
板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.
展开的基本公式:
展开长度=料内+料内+补偿量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钣金件展开分析
得到坯料轮廓
钣金件展开分析
定义坯料 轮廓线, 点击附图 绿色的坯 料轮廓线
钣金件展开分析
排样方式选择
搭边值设定
排样方式及搭边值设定好之后,点击应用,即可得到材料排样。
钣金件展开分析
• AF展开尺寸:1.5*388*1154 DC04
AF展开注意: 1.产品在3D里面调整至冲压方向为Z向。 2.附图为展开尺寸无搭边值,排样时候记得约束。
钣金件展开分析
• 例子:CATIA展开尺寸:1.5*1147*379 DC04
针对公司客户所发的图纸的实际情况,一般客户所发图纸, 简单形面可以CATIA展开,但是CATIA 展开尺寸误差略大, 是因为软件本身的一些参数(如折弯因素等等,没有齐全的材料库, 所以参数设置的是默认)仅供参考。
钣金件展开分析
选择过程生成器
导入曲面后,记住此处 一定要选择应用,这样 可以得到后面所需产品 轮廓
钣金件成形分析
• AF一步成形简单分析
:
选择过程生成器
导入曲面后,记住 此处一定要选择应 用,这样可以得到 后面所需产品轮廓
钣金件展开分析
选择建
文件名为英文
钣金件展开分析
选择IGS文件 存放的位置
钣金件展开分析
此处点击应用, 得到所需的产品 轮廓线
钣金件展开分析
点击开始,即可得到最小展开尺寸, 后续的设置与DF类似。
钣金件成形分析
• AF增量法简单分析(就是模具凸凹模设置)
:
选择关联选取产品的轮廓,设置凸凹模
钣金件展开分析
• DF展开步骤(按照箭头,往下一步进行操作)
点击材料,选择材质及料厚
最开始的3个步骤为导入文件需要做的, 第二步如果只做展开, 不做排样的话可以不需要材质(涉及到后 面的冲裁力的计算)
导入IGS文件
钣金件展开分析
进行网格划分
最大尺寸设定:根据产品大小, 最大尺寸随之变化,本例产品较 大, 网格划分最大尺寸为100
• DF展开尺寸:1.5*388*1156
DF展开注意: 1.产品在3D里面调整至冲压方向为Z向。 2.导入时曲面网格划分根据产品大小来决定最大值(产品大网格相 应放大,产品小网格相应改小根据实际情况而定) 3.在进行坯料估算后,记得排样的时候 要选取坯料轮廓线才能排 样。 4.展开尺寸比料片尺寸(有搭边值)略小