(完整)七年级下册数学不等式与不等式组试卷(2)

合集下载

(完整)七年级下册数学不等式与不等式组试卷(2)

(完整)七年级下册数学不等式与不等式组试卷(2)

、选择题(每小题5分,共30分)1 .若m>n,则下列不等式中成立的是() A. m + a <n + b B. ma<nbC. ma 2>na2D. a m <a n 2 .不等式4 (x 2) >2 (3x + 5)的非负整数解的个数为() A. 0个 B. 1个 C. 2个D. 3个 3 .若不等式组的解集为 1&X&3,则图中表示正确的是( )为 ______________________8 .某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x (单位:月)表示Eatable Date (保质期),那么该饮料的保质期可以用不等式表示 为。

9 . 当 x 时,式子 3x 5的值大于 5x + 3 的值。

10 .阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8 点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值 范围为 o、做一做(每小题6分,共12分)11 .、解不等式」Ux 并把它的解集表示在数轴上 3 7 A.B. C. D. 4 .若方程3mx 11 m 3 x 5x 的解是负数,则m 的取值范围是 ( )八 5A. m 一 4C. mD. 2 m 的解集为x 2,则m 的值为(B. 2C. 3D. x 1 6.不等式组 的解集是( ) A. x > 1或x < 5 、填空题(每小题 B . x < 5 5分,共20分) C. K x <5已知x 的1与5的差不小于3, 2 用不等式表示这一关系式 3 A. 45x12 .解不等式组1x2 四、想一想(每小题9分,共18分)13 .已知方程组3x 2y m 1 , m 为何值时,x>y?2x y m 114 .有一个两位数,其十位数字比个位数字大 2,这个两位数在50和70之间, 你能求出这个两位数吗?五、实际应用(每小题10分,共20分015 .小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月 用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方 米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?16 .学校将若干间宿舍分配给七年级一班的女生住宿, 已知该班女生少于35人, 若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房, 并且还有一间房也不满。

不等式与不等式组练习题(2)及参考答案

不等式与不等式组练习题(2)及参考答案

不等式与不等式组练习题(2)1.已知5-4a 与1-2a 的值的符号相同,求a 的取值范围2.若不等式3x -m≤0的正整数解是1,2,3,求m 的取值范围3.若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,求a 的取值范围4.关于x 的方程kx-1=2x 的解为正实数,求k 的取值范围5.已知不等式组2123x a x b -<⎧⎨->⎩,的解集为-1<x <1,则(a+1)(b-1)的值等于多少?6.已知满足不等式5-3x ≤1的最小正整数是关于x 的方程(a+9)x=4(x+1)的解,求代数式a 2-a1的值7.如果不等式4x -3a>-1与不等式2(x -1)+3>5的解集相同,请确定a 的值8.不等式a (x -1)>x+1-2a 的解集是x<-1,请确定a 是怎样的值9.若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围10.已知不等式组3xx a>-⎧⎨<⎩,⑴若此不等式组无解,求a的取值范围,并利用数轴说明;⑵若此不等式组有解,求a的取值范围,并利用数轴说明11.已知3(5x+2)+5<4x-6(x+1),化简|3x+1|-|1-3x|12.求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值13.若关于x、y的二元一次方程组533x y mx y m-=-⎧⎨+=+⎩中,x的值为负数,y的值为正数,求m的取值范围14.已知方程组32121x y mx y m+=+⎧⎨+=-⎩,m为何值时,x>y?15.已知y=2-2x ,试求(1)当x为何值时,y>0;(2)当y为何值时,x≤-116.在平面直角坐标系中,若点P(x-2, x+5)在第二象限且x为整数,求点P的坐标不等式与不等式组练习题(2)参考答案1.解:由5﹣4a与1﹣2a的值的符号相同可知:(1),解得:a<,a<,∴a<;(2),解得:a>,a >∴a >;∴5﹣4a 与1﹣2a 的值的符号相同,a 的取值范围为:a <或a >.2.解:不等式3x-m ≤0的解集是x ≤3m ,∵正整数解是1,2,3,∴m 的取值范围是3≤3m<4,即19≤m<12,3.解不等式x-2a>0得:x>2a ,解不等式2(x+1)>14-x 得:x>4,因为不等式组的解集是x>2a ,所以2a ≥4,a ≥2,即a 的取值范围是a ≥2.4.解:kx-1=2x(k-2)x=1,解得,x=2-k 1,x 的方程kx-1=2x 的解为正实数, 2-k 1>0,解得,k>2.5.解:∵解不等式2x ﹣a <a 得:x <a ,解不等式x ﹣2b >3得:x >2b+3,∴不等式组的解集是2b+3<x <a ,∵不等式组的解集为﹣1<x <1,∴2b+3=﹣1,a =1,∴b =﹣2,∴(a+1)(b ﹣1)=(1+1)×(﹣2﹣1)=﹣6,6.解:不等式5-3x ≤1x ≥5,x ≥34,x 的最小正整数是2,又x 的最小正整数是关于x 的方程(a+9)x=4(x+1)的解,所以(a+9)×2=4×(2+1),即a=-3代数式a 2-a1=9+31=328.7.解:解不等式4x ﹣3a >﹣1得,x >;解不等式2(x ﹣1)+3>5得,x>2,∵两不等式的解集相同,∴=2,解得a=3.8.解:整理得:(a-1)x>1-2a+a,(a-1)x>1-a,不等式解是x<-1,a-1<0,解得:a<1.9.解:,①+②,得2x=1+m,解得x=,①﹣②,得4y=1﹣m,解得y=,即方程组的解为.∵x与y的值都不大于1,∴,解得﹣3≤m≤1.10.解:(1)若不等式组无解,说明属于“大大小小无处找”或﹣3=a的情形,因此a的取值范围为a≤﹣3,数轴如下:(2)若有解,则与(1)的情形相反,a应取≤﹣3以外的数,所以a的取值范围为a>﹣3,数轴如下:11.解:去括号得15x+6+5<4x-6x-6,移项得15x-4x+6x<-6-6-5,合并得17x<-17,系数化为1得x<-1,所以|3x+1|-|1-3x|=-(3x+1)-(1-3x)=-3x-1-1+3x=-212.解:由不等式6x﹣2≥3x﹣4,解得:x≥﹣,由<1,解得:x<,要同时满足条件:即﹣≤x<,故整数解为0.13.解:,①+②得2x=4m﹣2,解得x=2m﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x的值为负数,y的值为正数,∴,∴﹣4<m<.②×3﹣①得:x=14.解:,③,将③代入②得:y=,∴,∵x>y,∴,解得:m>3.15.(1)当y>0,2-2x>0,x<1;(2)当x≤-1,-2x≥2, -2x+2≥2+2, -2x+2≥4,即y≥4.16.根据题意x+5>0,x-2<0,故得-5<x<2,因为x为正整数,所以x=1,所以x+5=6,x-2=-1,所以P的坐标是(-1,6).。

第九章不等式与不等式组(二)单元测试卷2021-2022学年人教版数学七年级下册

第九章不等式与不等式组(二)单元测试卷2021-2022学年人教版数学七年级下册

2021-2022学年度初中数学七年级下册不等式与不等式组模拟试题(二)一、单选题1.﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <0 2.某市最高气温是33℃,最低气温是24℃,则该市气温t (℃)的变化范围是( )A .t >33B .t ≤24C .24<t <33D .24≤t ≤33 3.若关于x 的分式方程2x x -+1=22ax x --有整数解,且关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解,则所有满足条件的整数a 的值之积是( ) A .0 B .24 C .﹣72 D .12 4.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗(注:饭碗的大小形状都一样,下同)摞起来的高度为15cm ,9只饭碗摞起来的高度为20cm ,李老师家的碗橱每格的高度为31cm ,则里面一摞碗最多只能放( )A .16只B .15只C .14只D .13只 5.设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,下列结论:℃[0)=0;℃[x )-x 的最小值是0;℃[x )-x 的最大值是1;℃存在实数x ,使[x )-x =0.5成立,其中正确的是( )A .℃℃B .℃℃C .℃℃℃D .℃℃℃6.已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是( ) A .﹣1<a <﹣12 B .﹣1≤a ≤﹣12 C .﹣1<a ≤﹣12 D .﹣1≤a <﹣12 7.下列说法正确的个数是( )(1)一个数绝对值越大,表示它的点在数轴上离原点越远;(2)当0a ≠时,a 总是大于0;(3)若mn =0,则m 、n 中必有一个数为0;(4)如果0a ≥那么5a -一定有最小值-5.A .1个B .2个C .3个D .4个8.已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( )A .4个B .3个C .2个D .1个 9.若10a -<<,则有( )A .1a a >B .33a a <C .2a a ->D .32a a <- 10.一群女生住若干间宿舍,若每间住4人,剩下16人无处住;若每间住6人,有一间宿舍住人但不足4人,那么这群女生的人数是( )A .52B .56C .60或56D .60二、填空题11.若0622x k x -≥⎧⎨->-⎩的整数解共有5个,则k 的取值范围是________. 12.已知关于x 的不等式组223x x x m ⎧->+⎨≥⎩只有两个整数解,则实数m 的取值范围是 __________.13.若点P 为数轴上一个定点,点M 为数轴上一点将M ,P 两点的距离记为MP .给出如下定义:若MP 小于或等于k ,则称点M 为点P 的k 可达点.例如:点O 为原点,点A 表示的数是1,则O ,A 两点的距离为1,1<2,即点A 可称为点O 的2可达点.(1)如图,点B 1,B 2,B 3中,___是点A 的2可达点;(2)若点C 为数轴上一个动点,℃若点C 表示的数为﹣1,点C 为点A 的k 可达点,请写出一个符合条件的k 值 ___; ℃若点C 表示的数为m ,点C 为点A 的2可达点,m 的取值范围为 ___;(3)若m ≠0,动点C 表示的数是m ,动点D 表示的数是2m ,点C ,D 及它们之间的每一个点都是点A 的3可达点,写出m 的取值范围 ___.14.有一根长22cm 的金属棒,将其截成x 根3cm 长的小段和y 根5cm 长的小段,剩余部分作废料处理,若使废料最少,则x +y =__.15.某学校举办“创文知识”竞赛,共有20道题,每一题答对得10分,答错或不答都扣5分,小聪要想得分不低于140分,他至少要答对多少道题?如果设小聪答对a 题,则他答错或不答的题数为()20a -题,根据题意列不等式:___________. 16.为了迎接“母亲节”的到来,枣庄市购物中心超市准备开展打折促销活动,现在有某件商品进价200元,标价320元出售,商场规定打折销售后利润率不能少于20%,那么这种商品最多打______折.17.不超过数x 的最大整数称为x 的整数部分,记作[x ]例如,[3.4]=3,[-2.1]=-3则满足关系式[37]6x +=5的x 的整数值有________ 18.如果不等式组320x x m ->⎧⎨≥⎩有解,则m 的取值范围是______. 三、解答题19.西大附中为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1900本,人文类书籍不超过1620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?20.利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x -7>26(2)3x <2x +121.解下列不等式组32122x x x +>⎧⎪⎨≤⎪⎩. 22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x 个,需要长方形纸板________________张,正方形纸板_____________张(请用含有x的式子)(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a的值.23.“学党史,办实事”,为解决停车难问题,某区政府治堵办对老旧小区新增停车位给予补贴,对于通过划线方式新增的和建设改造新增的给予不同的补贴.划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元.(1)政府对划线新增一个停车位和建设改造新增一个停车位分别补贴多少元?(2)在(1)的条件下,政府计划对老旧小区一共新增车位100个,建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元,则老旧小区新增停车位共有几种方案?24.解下列不等式:(1)2x﹣1<﹣6;(2)145 23--<x x;(3)解不等式组:3(2)41213x xxx--≥⎧⎪+⎨>-⎪⎩,并在数轴上表示它的解集.参考答案:1.B【详解】解:﹣(﹣a )=a ,由数轴可得a <﹣1<﹣b <0,℃a <﹣1,℃﹣a >1,故A 选项判断错误,不合题意;℃﹣b <0,℃b >0,b ﹣a >0,故B 正确,符合题意;℃a <﹣1,℃a +1<0,故C 判断错误,不合题意;℃a <﹣b ,℃a +b <0,℃﹣a ﹣b >0,故D 判断错误,不合题意.故选:B .2.D【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间, ℃该市气温t (℃)的变化范围是:24≤t ≤33;故选:D .3.D【详解】先解分式方程,再解一元一次不等式组,进而确定a 的取值.解:℃2x x -+1=22ax x --, ℃x +x ﹣2=2﹣ax .℃2x +ax =2+2.℃(2+a )x =4.℃x =42a+ . ℃关于x 的分式方程2x x -+1=22ax x --有整数解, ℃2+a =±1或±2或±4且42a +≠2. ℃a =﹣1或﹣3或﹣4或2或﹣6.℃2(y ﹣1)+a ﹣1≤5y ,℃2y ﹣2+a ﹣1≤5y .℃2y ﹣5y ≤1﹣a +2.℃﹣3y ≤3﹣a .℃y ≥﹣1+3a . ℃2y +1<0,℃2y <﹣1.℃y <12-. ℃﹣1+3a ≤y <12-. ℃关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解, ℃﹣3<﹣1+3a ≤﹣2. ℃﹣6<a ≤﹣3.又℃a =﹣1或﹣3或﹣4或2或﹣6,℃a =﹣3或﹣4.℃所有满足条件的整数a 的值之积是﹣3×(﹣4)=12.故选:D .4.B【详解】解:设碗底的高度为xcm ,碗身的高度为ycm ,由题意得:615920x y x y +=⎧⎨+=⎩, 解得:535x y ⎧=⎪⎨⎪=⎩, 设李老师一摞碗能放a 只碗,由题意得:5+53a ≤31, 解得:a ≤7815.65=, 则一摞碗最多只能放15只,故选:B .5.B【详解】解:由题意可知:℃[x )表示大于x 的最小整数,℃设[x )=n ,则n -1≤x <n ,℃[x )-1≤x <[x ),℃0<[x )-x ≤1,℃℃[0)1=,故℃错误;℃[)x x -可无限接近0,但取不到0,无最小值,故℃错误;℃[)x x -的最大值是1,当x 为整数时,故℃正确;℃存在实数x ,使[)0.5x x -=成立,比如x =1.5,故℃正确,故选:B .6.D【详解】解:解不等式组得:22x x a ≤⎧⎨>⎩, ℃该不等式组恰有4个整数解,℃-2≤2a <-1,解得:﹣1≤a <﹣12,故选:D .7.D【详解】℃一个数绝对值越大,表示它的点在数轴上离原点越远,℃(1)正确; ℃a ≥0,℃当0a ≠时,a 总是大于0,℃(2)正确;℃mn =0,℃m =0或n =0,℃(3)正确;℃5055a -≥-≥-,℃5a -一定有最小值-5℃(4)正确;故选D .8.C【详解】 解:解方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩得:213322x a y a ⎧=+⎪⎪⎨⎪=--⎪⎩,℃关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥, ℃213a +≥322a --, 解得:a ≥-1813, ℃关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,即4个整数解为1,0,-1,-2, ℃7323a --≤<-, 解得-2≤a <1, ℃1813-≤a <1, ℃符合条件的整数a 的值有:-1,0,共2个,故选:C .9.C【详解】 解:采用特殊取值法,取12a =-, 则12a=-,由122-<-,A 选项错误; 33111111,,282888⎛⎫⎛⎫-=-=->- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 2111111,,222424⎛⎫⎛⎫--=-=> ⎪ ⎪⎝⎭⎝⎭,C 选项正确; 由1184->-知321122⎛⎫⎛⎫->-- ⎪ ⎪⎝⎭⎝⎭,D 选项错误; 故选:C .10.B【详解】解:设有x 间宿舍,则有6(x -1)<4x +16<6(x -1)+4,整理得()()61416416614x x x x ⎧-+⎪⎨+-+⎪⎩<①<②, 解不等式℃得11x <,解不等式℃得9x >,℃不等式组的解集为911x <<,℃x =10,当x =10时4×10+16=56人,故选择B .11.21k -<≤-【详解】解:0622x k x -≥⎧⎨->-⎩①②由℃得:,x k ≥由℃得:x <4,k x ∴≤<4,622x k x -≥⎧⎨->-⎩的整数解共有5个,∴ 不等式组的整数解为:3,2,1,0,1,-∴ 21k -<≤-故答案为:21k -<≤-12.32m -<-【详解】解:当2x 时,223x x ->+,13x ∴<-,13x ∴<-;当2x >时,223x x ->+,5x ∴->,∴不等式的解为13m x ≤<-,不等式组|2|23x x x m ->+⎧⎨⎩只有两个整数解,∴两个整数解为1-和2-,32m ∴-<-,故答案为:32m -<-.13. 2B 、3B ##B 3、B 2 3 13m -≤≤ 12m -≤≤【详解】解:(1)由题意知:1>2B A 2,2<2B A 2,3<2B A 2,℃2B 、3B 是点A 的2可达点,故填:2B 、3B ;(2)℃当点C 表示的数为﹣1时,=2CA ≤k ,故k =3,故填:3;℃当点C 表示的数为m 时,=1CA m -≤2,解得:13m -≤≤,故填:13m -≤≤;(3)由题意知:=1CA m -,21DA m =-, 即:13m -≤,213m -≤,解得:12m -≤≤,故填:12m -≤≤.14.6【详解】℃一根长22cm 的金属棒,将其截成x 根3cm 长的小段和y 根5cm 长的小段, ℃3x +5y ≤22, ℃2253y x -≤, ℃2250y -≥,且y 为正整数,℃y 的值可以为1、2、3、4,当y =1时,x≤173,则x =5,此时,所剩的废料是:22﹣5﹣3×5=2cm , 当y =2时,x≤4,则x =4,此时,所剩的废料是:22﹣2×5﹣4×3=0cm ,当y =3时,x≤73,则x =2,此时,所剩的废料是:22﹣3×5﹣2×3=1cm , 当y =4时,x≤23,则x =0(舍去), ℃废料最少的是:x =4,y =2,℃x +y =6,故答案为:615.()10520140a a --≥【详解】解:根据题意,得10a −5(20−a )≥140.故答案是:10a −5(20−a )≥140.16.七五【详解】解:设这种商品可以按x 折销售,则售价为320×0.1x ,那么利润为320×0.1x -200,所以相应的关系式为320×0.1x -200≥200×20%,解得:x ≥7.5.℃这种商品最多可以按7.5折销售.故答案为:七五.17.8,9.【详解】解:因为原方程即为[37]6x +=5, 所以5≤376x +<6, 所以37563766x x +⎧≥⎪⎪⎨+⎪<⎪⎩, 解得:232933x ≤<, 因为x 是整数,所以x =8, 9,故答案为:8,9.18.32m <【详解】 解:320x x m ->⎧⎨≥⎩, 解不等式320x ->,解得32x <, 因为不等式组320x x m->⎧⎨≥⎩有解, 所以32m x ≤<, 所以32m <. 故答案为:32m <.19.(1)共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)方案1费用最低,最低费用是22320元(1)解:设组建中型图书角x 个,则组建小型图书角(30)x -个,依题意得:()()80303019005060301620x x x x ⎧+-≤⎪⎨+-≤⎪⎩, 解得:1820x ≤≤,又∵x 为整数,∴x 可以取18,19,20,∴共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个;(2)选择方案1的费用为:860185701222320⨯+⨯=(元);选择方案2的费用为:860195701122610⨯+⨯=(元);选择方案3的费用为:860205701022900⨯+⨯=(元).223202*********<<,∴方案1费用最低,最低费用是22320元.20.(1)x >33,见解析(2)x <1,见解析【详解】(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:x -7+7>26+7,x >33.这个不等式的解集在数轴上的表示如图:(2)3x <2x +1;解:(2)根据不等式的性质1,不等式两边减2x ,不等号的方向不变,所以:3x -2x <2x +1-2x ,x <1.这个不等式的解集在数轴上的表示如图:21.14x -<≤【详解】解:解不等式3x +2>x 得:x >-1, 解不等式122x ≤,得:4x ≤, 则不等式组的解集为:14x -<≤.22.(1)长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298 【详解】解:(1)设生产竖式纸盒x 个,则生产横式纸盒(100﹣x )个,则长方形纸板用了43(100)300x x x +-=+张,正方形纸板用了2(100)200x x x +-=-张 ℃长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张.(2)依题意,得:300340200162x x +≤⎧⎨-≤⎩, 解得:3840x ≤≤. ℃x 为整数,℃x =38,39,40,℃共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个.(3)设可以生产竖式纸盒m 个,横式纸盒1622m -个,由此可得,m 为偶数,依题意,得:43(81)2m a m =+-∵290300a << ∴43(8129030)02m m +-<< ∴18.822.8x ≤≤∴20m =或22m =∴293a =或298a =答:a 的值为293或298.23.(1)政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元(2)共有3种方案(1)设政府对划线新增一个停车位补贴x 元,对建设改造新增一个停车位补贴y 元,依题意得:4380002500x y x y +=⎧⎨+=⎩, 解得:{x =500y =2000. 答:政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元.(2)设老旧小区划线新增m 个停车位,则建设改造新增(100)m -个停车位,依题意得:()100 1.55002000100143000m mm m -⎧⎨+-⎩,解得:3840m .又m 为整数,m ∴可以为38,39,40,∴老旧小区新增停车位共有3种方案.24.(1)x <﹣2.5(2)x >1.4(3)x ≤1,在数轴上表示它的解集见解析(1)解:移项得:2x <﹣6+1,合并得:2x <﹣5,解得:x <﹣2.5;(2)解:去分母得:3(x ﹣1)<2(4x ﹣5),去括号得:3x ﹣3<8x ﹣10,移项得:3x ﹣8x <﹣10+3,合并得:﹣5x <﹣7,解得:x >1.4;(3) 解:3(2)41213x x xx --≥⎧⎪⎨+>-⎪⎩①②由℃得:x ≤1,由℃得:x <4,解得:x ≤1.。

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组一、单选题1.以下表达式:①4x+3y≤0;②a>3;③x2+xy;④a2+b2=c2;⑤x≠5.其中不等式有()A.4个B.3个C.2个D.1个2.关于m的不等式−m>1的解为().A.m>0B.m<0C.m<−1D.m>−13.若(m−2)x2m+1−1>5是关于x的一元一次不等式,则该不等式的解集为()A.m=0B.x<−3C.x>−3D.m≠24.设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<a B.b<c<a C.c<a<b D.b<a<c5.若式子3a−4的值不小于2,则a的取值范围是()A.a≥−23B.a≥2C.a<−23D.a<26.已知x<y,则下列不等式一定成立的是().A.x+5<y+2B.−2x+5<−2y+5C.x3>y3D.2x−3<2y−37.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为()A.52<x<72B.3<x<72C.3<x≤72D.52≤x<728.八年级某小组同学去植树,若每人平均植树7棵,则还剩9棵,若每人平均植树9棵,则有1位同学有植树但植树棵数不到3棵.则同学人数为()A.8人B.9人C.10人D.11人9.若不等式组{x +a−22≥−1,3x−22<x−12无解,则实数a 的取值范围是( )A .a ≥−1B .a <−1C .a ≤1D .a ≤−110.对一实数x 按如图所示程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次后停止,则x 的取值范围是( )A .x <64B .x >22C .22<x ≤64D .22<x <64二、填空题11.不等式3x +22<x 的解集是 .12.不等式2x>3的最小整数解是 .13.不等式组{2x−4≥0x 3<2的解集是.14.已知a <b,用“<”或“>”号填空: a−3 b−3; −4a −4b .15.用不等式表示“x 的一半减去3所得的差不大于1” .16.某品牌衬衫的进价为120元,标价为240元,如果商店打折销售但要保证利润不低于30%,则最少可以打折出售.17.若不等式组{2x +a−1>02x−a−1<0的解集为0<x <1,则a 的值为 .18.若整数m 使得关于x 的不等式组{2x +1≥5x +m ≤2无解,且使得关于x ,y 二元一次方程组{x +2y =2,3x−y =m +1 的解x ,y 均为正数,则符合条件的整数m 的和是 .三、解答题19.(1)解不等式:x +12−x−13≤1,并把它的解集在数轴上表示出来.(2)解不等式组:{3x +2≥4x−54x−3<2120.已知二元一次方程组{x+y=3a+9x−y=5a+1的解x,y均为正数.(1)求a的取值范围;(2)化简:|5a+5|−|a−4|21.如图,有一高度为20cm的容器,在容器中倒入100cm3的水,此时刻度显示为5cm,现将大小规格不同的两种玻璃球放入容器内,观察容器的体积变化测量玻璃球的体积.若每放入一个大玻璃球水面就上升0.5cm.(1)求一个大玻璃球的体积;(2)放入27个大玻璃球后,开始放入小玻璃球,若放入5颗,水面没有溢出,再放入一颗,水面会溢出容器,求一个小玻璃球体积的范围.22.关于x,y的二元一次方程组ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当{x=3y=1时,求c的值.(2)当a=1时,求满足|x|<5,|y|<5的方程的整数解.2(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.23.为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:甲种消毒液(瓶)乙种消毒液(瓶)总费用(元)第一次4060660第二次8030690(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,,请你帮助学校计算购买时最低费用为多少?并且甲的数量不少于乙数量的3224.5月22日是第28个国际生物多样性日,为联合国《生物多样性公约》第十五次缔约方大会(COP15)在昆明顺利召开.营造良好氛围,昆明市在植物园举办主题宣传活动.某班开展了此项活动的知识竞赛.小明为班级购买奖品后与小颖对话如下:(1)请用方程的知识帮助小明计算一下,为什么小颖说他搞错了;(2)小明连忙拿出发票,发现自己的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?参考答案1.B 2.C 3.B 4.A 5.B 6.D 7.B 8.A 9.D 10.C 11.x <-212.213.2≤x <614.< >15.12x−3≤116.6.517.118.1019.(1)x ≤1(2)x <620.(1)−54<a <4;(2)当−5<a ≤−1时,−4a−9;当−1<a <4时,6a +121.(1)一个大玻璃球的体积为10cm 3;(2)一个小玻璃球体积的大于5cm 3且不大于6cm 3.22.c =73;(2){x =2y =1 ,{x =−1y =2 {x =−4y =323.(1)甲种消毒每瓶6元,乙种消毒液每瓶7元;(2)最低费用1900元.24.2元或6元。

(完整版)七年级数学下册不等式试题及答案

(完整版)七年级数学下册不等式试题及答案

七年级数学下册不等式测试及答案一、选择题(4′×8=32′)1.若-a a ,则a 必为()A、负整数B、正整数C、负数D、正数2.不等式组⎨⎧x -1 0的解集是()⎩x +2 0A、-2 x 1B、x 1C、-2 x D、无解3.下列说法,错误的是()A、3x -3的解集是x -1B、-10是2x -10的解C、x 2的整数解有无数多个D、x 2的负整数解只有有限多个4.不等式组⎨⎧2x ≤1的解在数轴上可以表示为( )⎩x +3≥0012A、 B、-4-3-2-1-4-3-2-1012C、 D、-4-3-2-1012-4-3-2-10125.不等式组⎨⎧1-x ≥0的整数解是()⎩2x -1 -3A、-1,0B、-1,1C、0,1D、无解6.若a <b 〈0,则下列答案中,正确的是( )A、a <b BB、a >b C、a 2〈b 2D、3a 〉2b7.关于x 的方程5x +12=4a 的解都是负数,则a 的取值范围()A、a 〉3B、a 〈-3C、a 〈3D、a 〉-38.设“○”“△"“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“○"“△"“□”质量从大到小的顺序排列为()A、□○△B、□△○C、△○□ D、△□○二、填空(3×9=27)9.当x时,代数式2x+5的值不大于零10。

若x〈1,则-2x+20(用“>"“=”或“”号填空)11.不等式7-2x>1,的正整数解是12。

不等式-x>a-10的解集为x<3,则a⎧x a⎨⎪x c⎩13.若a〉b>c,则不等式组⎪x b的解集是2x-a 1的解集是-1<x〈1,则(a+1)(b+1)的值为14.若不等式组⎧⎨⎩x-2b 315.有解集2<x〈3的不等式组是(写出一个即可)16.一罐饮料净重约为300g,罐上注有“蛋白质含量 0.6其中蛋白质的含量为 _____ gx a17。

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试题(答案解析)(2)

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试题(答案解析)(2)

一、选择题1.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 2.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个3.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5 B .0 C .-1 D .-24.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .5.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <26.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5 B .m≥5 C .m <5 D .m≤87.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数 8.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m 9.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( )A .100厘米B .101厘米C .102厘米D .103厘米10.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( ) A . B .C .D .11.下列是一元一次不等式的是( )A .21x >B .22x y -<-C .23<D .29x <12.已知关于x 的方程:24263a x x x --=-的解是非正整数,则符合条件的所有整数a 的值有( )种.A .3B .2C .1D .0二、填空题13.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个).14.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________. 15.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__. 16.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -.(1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.17.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.20.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______. 三、解答题21.已知点()39,210A m m --,分别根据下列条件解决问题:(1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.22.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?23.某商店有A 商品和B 商品,已知A 商品的单价比B 商品单价多12元,若购买400件B 商品与购买100件A 商品所用钱数相等.(1)求A ,B 两种商品的单价分别是多少元.(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4,如果需要购买A ,B 两种商品的总件数不少于32,且该商店购买的A ,B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.24.解下列不等式(组)(1)5261x x -<+;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 25.解下列不等式组,并把它的解集表示在数轴上.(1)35318x x +≥⎧⎨-<⎩; (2)()1212235x x x x ⎧+<-⎪⎪⎨+⎪>⎪⎩. 26.解不等式组:()324112x x x ⎧+≥+⎪⎨-<⎪⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.2.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x ,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x 的正整数解有:1,2共2个.故选:B .【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.3.C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】解:3114x x +>⎧⎨-≤⎩①②解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.4.B解析:B【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论.【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <,在数轴上表示为:故选:B .【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质5.D解析:D【详解】由题意得2021x x -<⎧⎨-≥-⎩解之得12x ≤<故选D .6.C解析:C【解析】∵不等式组有解, ∴m <5.故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键. 7.A解析:A【分析】先解方程,再结合题意列出不等式,解之即可得出答案.【详解】解:∵3x+3a=2,∴x=233a - , 又∵方程的解为正数,∴233a ->0, ∴a <23. 故选:A.【点睛】 本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.8.D解析:D【分析】根据点P(m ,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点P(m ,1m -)在第四象限,∴010m m >⎧⎨-<⎩, 解得m >1,故选:D .【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.9.D解析:D【分析】设这次爆破的导火索需要xcm 才能确保安全,安全距离是70米(人员要撤到70米以外),根据人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,列不等式求解即可.【详解】设这次爆破的导火索为x 厘米才能确保安全.根据安全距离是70米(人员要撤到70米及以外的地方),可列不等式:77010.3x ⨯≥ 解得:103x ≥故选:D【点睛】本题考查一元一次不等式的应用,关键是理解导火索燃尽时人撤离的距离要大于等于70米. 10.C解析:C【分析】先解不等式组求出其解集,然后根据不等式的解集在数轴上的表示方法进行判断即可.【详解】解:对不等式组32153x x ->⎧⎨-<-⎩, 解不等式3x -2>1,得x >1,解不等式x -5<﹣3,得x <2,∴不等式组的解集是1<x <2, 不等式组的解集在数轴上表示为:.故选:C .【点睛】本题考查了一元一次不等式组的解法和不等式的解集在数轴上的表示,属于基础题目,熟练掌握解一元一次不等式组的方法是解题的关键. 11.A解析:A【分析】根据一元一次不等式的定义对各选项进行逐一分析即可.【详解】解:A 、21x >中含有一个未知数,并且未知数的最高次数等于1,是一元一次不等式,故本选项正确;B 、22x y -<-中含有两个未知数,故本选项错误;C 、23<中不含有未知数,故本选项错误;D 、29x <中含有一个未知数,但未知数的最高次数等于1,不是一元一次不等式,故本选项错误.故选:A .【点睛】本题考查的是一元一次不等式的定义,即含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式.12.A解析:A【分析】先用含a 的式子表示出原方程的解,再根据解为非正整数,即可求得符合条件的所有整数a .【详解】解:24263a x x x --=- ()264212--=-x a x x264+212-=-x a x x ()24+8=-a x 284+=-x a ∵方程的解是非正整数, ∴2804+-≤a∴2804+≥a ∴24+=1a 或2或4或8∴a=0或2或-2,共3个故选:A【点睛】本题考查了一元一次方程的解法及解不等式,根据方程的解为非正整数列出关于a 的不等式是解题的关键.二、填空题13.50(答案不唯一)【分析】由于规定表示不大于x 的最大整数则表示不大于的最大整数接下来根据可列出不等式组求解即可【详解】解:表示不大于x 的最大整数表示不大于的最大整数又可列不等式组x 的取值可以是范围内 解析:50(答案不唯一)【分析】由于规定[]x 表示不大于x 的最大整数,则410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数,接下来根据4510x +⎡⎤=⎢⎥⎣⎦,可列出不等式组,求解即可. 【详解】 解:[]x 表示不大于x 的最大整数, ∴410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数, 又4510x +⎡⎤=⎢⎥⎣⎦,∴可列不等式组45104610xx+⎧≥⎪⎪⎨+⎪<⎪⎩,450460xx+≥⎧⎨+<⎩,∴4656xx≥⎧⎨<⎩,∴4656≤<x,∴x的取值可以是范围内的任何实数.故答案为:50(答案不唯一).【点睛】本题主要考查了一元一次不等式组的应用,解题的关键是根据[x]表示不大于x的最大整数列出不等式组.14.【分析】根据不等式组确定解集的方法:大大小小无解了解答即可【详解】∵关于的不等式组无解∴故答案为:【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大同小取小大小小大中间找大大小小无解了解析:a5≥【分析】根据不等式组确定解集的方法:大大小小无解了解答即可.【详解】∵关于x的不等式组x5x a≤⎧⎨>⎩无解,∴a5≥,故答案为:a5≥.【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.15.【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:解不等式①得:解不等式②得:所以不等式组的解集是故答案为:【点睛】本题考查了解一元一次不等式组正确求出每一个不等式解集是基解析:87 52x-<【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:351231148x xx x⎧+>-⎪⎪⎨⎪--⎪⎩①②,解不等式①得:85x >-, 解不等式②得:72x , 所以不等式组的解集是8752x -<, 故答案为:8752x -<. 【点睛】 本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.16.【分析】(1)-2<3满足时点的坐标为据此写出即可;(2)分和两种情况讨论解答【详解】(1)∵-2<3满足∴的变换点坐标是故填::(2)当≥时≥此时该点的变换点坐标是≤;当<时<此时该点的变换点坐标解析:()2,3--43 【分析】(1)-2<3,满足a b <时,点的坐标为(,)a b -,据此写出即可;(2)分a b 和a b <,两种情况讨论解答.【详解】(1)∵-2<3,满足a b <,∴(2,3)-的变换点坐标是()2,3--,故填:()2,3--:(2)当a ≥0.52a -+时,a ≥43,此时该点的变换点坐标是(0.52,)a a -+-, 0.52m a =-+≤43; 当a <0.52a -+时,a <43,此时该点的变换点坐标是(,0.52)a a -, m a =<43, 故m 的最大值是43, 故填:43. 【点睛】 本题考查不等式的应用、点的坐标特征,读懂“变换点”的坐标定义是关键.17.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案.【详解】 解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >,解不等式②,得2x ≤,∵原不等式组无解,∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】 首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++,解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价再利用总费用不超过1820元得出不等式求出答案【详解】解:设键盘每个价格为x 元鼠标每个价格为y 元根据题意可得:解得:则设购买键盘a 个则鼠解析:20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价,再利用总费用不超过1820元,得出不等式求出答案.【详解】解:设键盘每个价格为x 元,鼠标每个价格为y 元,根据题意可得:319023220x y x y +=⎧⎨+=⎩, 解得:5040x y =⎧⎨=⎩, 则设购买键盘a 个,则鼠标(50﹣a )个,根据题意可得:50×0.8a +40×0.85(50﹣a )≤1820,解得:a ≤20,故最多可购买键盘20个.故答案为:20.【点睛】本题咔嚓的是二元一次方程组与一元一次不等式,根据题意正确列式是解题的关键. 20.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x <a ﹣4则3a+2≥a ﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a ≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x a x a +-<<的解集,解这个不等式即可.【详解】解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3故答案a ≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键三、解答题21.(1)m=5;(2)()3,2A -【分析】(1)根据点A 在x 轴上可知点A 的纵坐标为0,从而可以解答本题;(2)点A 在第四象限,并且m 为整数,从而可以求得点A 的坐标;【详解】解:根据题意,∵点()39,210A m m --在x 轴上,∴2100m -=,解得:5m =;()2点()39,210A m m --在第四象限.390,2100,m m ->⎧∴⎨-<⎩①② 解不等式①得3m >,解不等式②得5m <,所以,m 的取值范围是:35m << m 为整数4m ∴=,()3,2A ∴-;【点睛】坐标与图形的性质,解题的关键是明确每一问提供的信息,能正确知道与坐标之间的关系,灵活变化,求出所求问题的答案.22.(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答.【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元.(2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本.【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 23.(1)A 种商品的单价为16元,B 种商品的单价为4元;(2)有两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件.【分析】(1)设B 种商品的单价为x 元,A 种商品的单价为(x -12)元,根据等量关系:购买400件A 商品与购买100件B 商品所用钱数相等,列出方程求解即可.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,根据不等关系:①购买A 、B 两种商品的总件数不少于32件,②购买的A 、B 两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m 的取值范围,进而讨论各方案即可.【详解】设B 种商品的单价为x 元,则A 种商品的单价为(x +12)元,由题意得:400100(12)x x =+ ,解得x =4,则x +12=16(元),答:A 种商品的单价为16元、B 种商品的单价为4元.设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,由题意得:2432164(24)296m m m m +-≥⎧⎨+-≤⎩, 解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件.【点睛】本题考点是一元一次方程及一元一次不等式组的应用,注意找到正确的等量关系是解题的重点.24.(1)x >﹣3;(2)﹣1≤x <2【分析】(1)根据不等式的性质解一元一次不等式解答即可;(2)分别求出每个不等式的解集,再求其解集的公共部分即可解答.【详解】解:(1)移项、合并同类项,得:﹣x <3,化系数为1,得:x >﹣3,∴不等式的解集为x >﹣3;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩①②, 解①得:x≥﹣1,解②得:x <2,∴不等式组的解集为﹣1≤x <2.【点睛】本题考查不等式的性质、解一元一次不等式(组),熟练掌握一元一次不等式(组)的解法是解答的关键,求解时注意不等号的方向.25.(1)23x ≤<;(2)3x >【分析】(1)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可; (2)分别求出各不等式的解集,在数轴上表示出来即可.【详解】(1)解不等式35x +≥得2x ≥解不等式318x -<得3x <∴不等式的解集为23x ≤<,在数轴上表示如下:(2)解不等式()1212x x +<-得2x >, 解不等式235x x +>得3x >, ∴不等式的解集为3x >,在数轴上表示如下:【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集,解题的关键在熟练掌握不等式组的解法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.26.﹣1≤x<3.【分析】先分别求出各不等式的解集,再求出其公共解集.【详解】解:不等式组3(2)4?11?2x xx+≥+⎧⎪⎨-<⎪⎩①②,由①得:x≥﹣1,由②得:x<3,故不等式组的解集是:﹣1≤x<3.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 3.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 4.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 10.不等式1322x x -+>的解在数轴上表示正确的是( )A .B .C .D . 11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 二、填空题13.a b ≥,1a -+_____1b -+14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 16.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题21.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和. 24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 26.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.3.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故选:A.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.10.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.12.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.15【分析】设至少答对x道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.15.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a的取值范围是解答的关键,必要时可借助数轴更直观.16.【分析】根据题意可得2m﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m-5)⊕3=3∴2m﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得 2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.(1)2x ≤;(2)1≤x <4,数轴见详解.【分析】(1)通过去分母,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,分别求出两个不等式的解,进而即可求解,然后再数轴上表示不等式组的解,即可.【详解】(1)2132x x -≤, 2(21)3x x -≤,423x x -≤,432x x -≤,2x ≤;(2)3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①② 由①得:x≥1,由②得:x <4,∴不等式组的解为:1≤x <4,在数轴上表示如下:【点睛】本题主要考查解一元一次不等式(组),熟练掌握解一元一次不等式的基本步骤,是解题的关键.22.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试卷(有答案解析)(2)

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试卷(有答案解析)(2)

一、选择题1.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-2.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.不等式32x x -≤的解集在数轴上表示正确的是( ) A .B .C .D .4.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >05.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( ) A . B . C .D .6.已知01m <<,则m 、2m 、1m( ) A .21m m m>>B .21m m m >> C .21m m m>> D .21m m m>> 7.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .8.若a >b ,则下列式子正确的是( ) A .a +1<b +1 B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b9.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a-10.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .11.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤12.若01x <<,则下列选项正确的是( ) A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 二、填空题13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______.15.已知不等式组103x a ⎨->⎪⎩有解,那么a 的取值范围是___________.16.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.17.不等式12x -<的正整数解是_______________.18.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________. 19.关于x 、y 的二元一次方程组3234x y ax y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.20.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题21.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.22.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和.24.解方程组与不等式组.(1)解方程组244523x y x y -=-⎧⎨-=-⎩.(2)解不等式组4(1)710853x x x x +≤+⎧⎪-⎨-<⎪⎩. 25.回答下列小题: (1)解不等式:211126x x -+-≤.(2)解不等式组:32(1)4x ⎨⎪->-⎩.26.(1)解不等式()311x x -≥+,并将其解集在数轴上表示出来.(2)若不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集. 【详解】解:解不等式13x ->得4x >, 解不等式224x -<得1x >-, ∴不等式组的解集为4x >. 【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.D解析:D 【分析】根据程序操作进行了1次后就停止,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论. 【详解】依题意,得:3126x ->, 解得:9x >. ∵x 为整数, ∴x 的最小值为10. 故选:D . 【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.3.B解析:B【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得.【详解】32x x-≤,23x x--≤-,33x-≤-,1≥x,由此可知,只有选项B表示正确,故选:B.【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键.4.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.5.A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.C解析:C 【分析】根据不等式的性质解答. 【详解】 解:∵01m <<,∴01m m m <⋅<⨯,即20m m <<(不等式的两边都乘以同一个正数,所得的不等式仍然成立)①10m m m <<,即101m<<(不等式的两边都除以同一个正数,所得的不等式仍然成立)②由①②知21m m m>>; 故选:C. 【点睛】此题考查不等式的性质:不等式两边都乘以同一个正数,所得的不等式仍然成立,不等式的两边都除以同一个正数,所得的不等式仍然成立,解题的关键是正确掌握不等式的性质.7.C解析:C 【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”取解集,即可得到答案. 【详解】解:321323251223x x x x ++⎧≤+⎪⎨⎪->-⎩①②,解不等式①得:2x ≥-; 解不等式②得:3x >; 将解集在数轴上表示为:,故选:C . 【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.8.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A错误;∵a<-1,∴a+1<0,∴B错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C错误;由a<-1可知-a>1,因此101a<-<,∴D正确.故选D.【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键.10.C解析:C【分析】先解不等式组求出其解集,然后根据不等式的解集在数轴上的表示方法进行判断即可. 【详解】解:对不等式组32153x x ->⎧⎨-<-⎩,解不等式3x -2>1,得x >1, 解不等式x -5<﹣3,得x <2, ∴不等式组的解集是1<x <2, 不等式组的解集在数轴上表示为:.故选:C . 【点睛】本题考查了一元一次不等式组的解法和不等式的解集在数轴上的表示,属于基础题目,熟练掌握解一元一次不等式组的方法是解题的关键.11.D解析:D 【分析】根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得. 【详解】 由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②,解不等式①得:64x ≤, 解不等式②得:22x >, 则不等式组的解集为2264x <≤, 故选:D . 【点睛】本题考查了一元一次不等式组的应用,根据程序运行的次数,正确建立不等式组是解题关键.12.C解析:C 【分析】利用不等式的基本性质,分别求得x 、x 2及1x的取值范围,然后比较,即可做出选择. 【详解】 解:∵0<x <1,∴0<x 2<x (不等式两边同时乘以同一个大于0的数x ,不等号方向不变); 0<1<1x(不等式两边同时除以同一个大于0的数x ,不等号方向不变);∴x 2<x <1x. 故选:C . 【点睛】考查了有理数大小比较,解答此题的关键是熟知不等式的基本性质: 基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.3【分析】分别求出不等式的解集得到不等式组的解集得到整数解【详解】解不等式得解不等式得∴不等式组的解集是故不等式组的整数解为0123故答案为:3【点睛】此题考查解不等式组求不等式组的整数解正确解不等解析:3 【分析】分别求出不等式的解集,得到不等式组的解集,得到整数解. 【详解】解不等式312x +>-得1x >-,解不等式1213-≥x 得3x ≤, ∴不等式组的解集是13x -<≤, 故不等式组的整数解为0,1,2,3, 故答案为:3. 【点睛】此题考查解不等式组,求不等式组的整数解,正确解不等式是解题的关键.15.【分析】先求出不等式组中第二个不等式的解再结合数轴根据不等式组有解即可得【详解】解得:在数轴上表示两个不等式的解如下:要使不等式组有解则解得故答案为:【点睛】本题考查了一元一次不等式组的解熟练掌握不 解析:1a <-【分析】先求出不等式组中第二个不等式的解,再结合数轴,根据不等式组有解即可得. 【详解】 解103x a ->得:3x a >, 在数轴上表示两个不等式的解如下:要使不等式组有解,则33a <-, 解得1a <-, 故答案为:1a <-. 【点睛】本题考查了一元一次不等式组的解,熟练掌握不等式组的解法是解题关键.16.【分析】根据新定义列不等式组并求解集即可【详解】解:由题意得:1<2x-(-4)x <12即1<6x <12解得故答案为【点睛】本题主要考查了新定义运用解不等式组等知识点正确理解新运算法则是解答本题的关键解析:126x <<【分析】根据新定义列不等式组并求解集即可. 【详解】解:由题意得:1<2x-(-4)x <12,即1<6x <12,解得126x << .故答案为126x <<.【点睛】本题主要考查了新定义运用、解不等式组等知识点,正确理解新运算法则是解答本题的关键.17.12【分析】先求出不等式的解集再从不等式的解集中找出适合条件的正整数即可【详解】解:∴∴正整数解为:12故答案为:12【点睛】本题考查了一元一次不等式的整数解属于基础题关键是根据解集求出符合条件的解 解析:1,2.【分析】先求出不等式的解集,再从不等式的解集中找出适合条件的正整数即可.【详解】解:12x -<∴3x <∴正整数解为:1,2.故答案为:1,2.【点睛】本题考查了一元一次不等式的整数解,属于基础题,关键是根据解集求出符合条件的解. 18.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.19.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.20.6【解析】设甲种运输车共运输x 吨则乙种运输车共运输(46-x )吨根据题意得≤10解不等式得:则故甲种运输车辆至少需要6辆故答案:6解析:6【解析】设甲种运输车共运输x 吨,则乙种运输车共运输(46-x )吨.根据题意,得x 4654x -+≤10.解不等式得:45(46)200,30x x x +-≤≥,则65x ≥ ,故甲种运输车辆至少需要6辆. 故答案:6. 三、解答题21.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.22.(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答.【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元.(2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本.【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)125x y ⎧=⎪⎨⎪=⎩;(2)722x -≤< 【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集.【详解】(1)244523x y x y -=-⎧⎨-=-⎩①②. ①5⨯得:10520x y -=-,③③-②得:63x =, ∴12x =, 将12x =代入①得:14y -=-, ∴5y =,∴方程组的解为125x y ⎧=⎪⎨⎪=⎩;(2)4(1)710853x x x x +≤+⎧⎪⎨--<⎪⎩①②, 由①得:44710x x +≤+,解得:2x ≥-,由②得:3(5)8x x -<-, 解得:72x <, ∴不等式组的解集为722x -≤<. 【点睛】 本题考查了解二元一次方程组与一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.25.(1)2x ≤;(2)13x -≤<.【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】(1)211126x x -+-≤, 不等式两边同乘以6去分母,得3(21)(1)6x x --+≤,去括号,得6316x x ---≤,移项,得6631x x -≤++,合并同类项,得510x ≤,系数化为1,得2x ≤;(2)11 32(1)4xxx+⎧-≤⎪⎨⎪->-⎩①②,解不等式①得:1x≥-,解不等式②得:3x<,则不等式组的解集为13x-≤<.【点睛】本题考查了解一元一次不等式和一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.26.(1)2x≥,数轴见解析;(2)3【分析】(1)解不等式,然后根据数轴与解集的关系画出数轴即可;(2)首先解出不等式325123x x--<+的解集,从中找到最小整数解,然后代入方程24x ax-=中,得到一个关于a的方程,解方程即可.【详解】(1)()311x x-≥+331x x-≥+313x x-≥+24x≥2x≥数轴如下:(2)325123x x--<+()()332256x x-<-+394106x x-<-+341069x x-<-++5x-<5x>-∴不等式的最小整数解为-4.∵不等式325123x x--<+的最小整数解是关于x的方程24x ax-=的解,∴()2444a⨯-+=解得3a=.【点睛】本题主要考查不等式与方程的结合,掌握解一元一次不等式的方法是解题的关键.。

期末专项训练----不等式与不等式组(2)

期末专项训练----不等式与不等式组(2)

期末专项训练----不等式与不等式组(2)一、填空题(每空2分,共28分) 1、不等式621<-x 的负整数解是2、若2,2a a 则-<_______a 2-;不等式b ax >解集是ab x <,则a 取值范围是3、一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答,一道题得-1分,在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了 道题。

4、不等式组⎩⎨⎧≤〉+201x x 的解集是 。

5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是-1+1-26、若代数式1-x-22 的值不大于1+3x3的值,那么x 的取值范围是_______________________。

7、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .8、已知三角形三边长分别为3、(1-2a)、8,则a的取值范围是____________。

9、若0,0><b a ,则点 ()21+-b a , 在第象限 。

10、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是_______________。

11、在方程组a y x y x a y x 则已知中,0,0,62<>⎩⎨⎧=-=+的取值范围是____________________ 12、某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。

某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。

则该学生第二次购书实际付款 元。

12、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 。

二、选择题(每小题3分,共30分)1、若∣-a ∣=-a 则有(A) a ≥ 0 (B) a ≤ 0 (C) a ≥-1 (D) -1≤a ≤02、不等式组⎩⎨⎧-≤-->xx x 28132的最小整数解是( )A .-1B .0C .24、在∆ABC 中,AB=14,BC=2x ,AC=3x ,则x 的取值范围是( )A 、x >2.8B 、2.8<x <14C 、x <14D 、7<x <145、下列不等式组中,无解的是( )2x+3<03x+2>0⎧⎨⎩ (B) 3x+2<02x+3>0⎧⎨⎩ (C) 3x+2>02x+3>0⎧⎨⎩ (D) 2x+3<03x+2<0⎧⎨⎩ 6、如果0<x<1则1x ,x,x 2 这三个数的大小关系可表示为( )(A)x< 1x < x 2 (B)x <x 2< 1x (C) 1x <x<x 2(D) x 2<x<1x7、在平面直角坐标系中,点(-1,3m 2+1)一定在( )A .第一象限. B.第二象限. C.第三象限.D.第四象限 8、如图2,天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)的取值范围,在数轴上可表示为( )9、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所CD示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大....的顺序排列为( ) A 、○□△ B 、○△□ C 、□○△D 、△□○10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( ) A .6折 B .7折 C .8折 D .9折三、解答题(1~2共10分,3~4共12分,5~6共20分)1、解不等式组⎪⎩⎪⎨⎧+<+≤-.413,13)1(2x xx x2、求不等式组5131131132x x x x -<+⎧⎪++⎨≤+⎪⎩的整数解3、已知方程组32121x y m x y m +=+⎧⎨+=-⎩,m 为何值时,x >y?4、乘某城市的一种出租车起步价是10元(即行驶路程在5km 以内都需付车费10元),达到或超过5km 后,每增加1km 加价1.2元(不足1km 部分按1km 计)。

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试(含答案解析)(2)

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试(含答案解析)(2)

一、选择题1.若a b >,则下列结论不一定成立的是( )A .a c b c ->-B .22ac ab >C .c a c b -<-D .a c b c +>+2.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<- 3.不等式-3<a≤1的解集在数轴上表示正确的是( )A .B .C .D .4.若a b <,则下列各式中不一定成立的是( ) A .11a b -<- B .33a b < C .a b ->-D .ac bc < 5.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .116.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7 7.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2 8.若关于x 的不等式组327x x a -<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ). A .3aB .3a >C .3aD .3a < 9.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D . 10.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 11.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 12.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( )A .x y >B .44x y ->-C .33x y ->-D .22xy > 二、填空题13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 14.关于x 的不等式组x 5x a ≤⎧⎨>⎩无解,则a 的取值范围是________. 15.不等式21302x --的非负整数解共有__个. 16.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______. 17.若||2x =,||3y =,且0x y +<,则x y -值为______.18.点()1,2P x x -+不可能在第__________象限.19.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)20.已知x ﹣y=3,且x >2,y <1,则x+y 的取值范围是_____.三、解答题21.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.22.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆车的租车费用分别为2500元和2000元,请你选择最省钱的一种方案.23.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(2)哪种方案更省钱?并说明理由.24.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.25.解下列方程(方程组)或不等式(组).(1)[]{}3213(21)35x x ---+=(2)2(53)3(12)x x x +≤--(3)解方程214163x x --=- (4)解方程组2538x y x y +=⎧⎨-=⎩(代入法解) (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩(6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ 26.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥) (2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x 的代数式表示该班买票最少应付多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据不等式的性质逐一分析四个选项的正误即可得出结论.【详解】解:A 、∵a >b ,∴a-c >b-c ,选项A 成立;B 、22ac ab >不一定成立;C 、∵a >b ,∴a b -<-∴c a c b -<-,选项C 成立;D 、∵a >b ,∴a c b c +>+,选项D 成立.故选:B .【点睛】本题考查了不等式的性质,牢记不等式的性质是解题的关键.2.D解析:D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a 的范围.【详解】 解:1021x x x a -⎧<⎪⎨⎪+>⎩①② 解①得1x <且0x ≠,解②得12a x ->.若不等式组只有1个整数解,则整数解是1-.1212a -∴-≤<- 所以31a -≤<-,故选:D .【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 3.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A .【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键. 4.D解析:D【分析】根据不等式的性质进行解答.【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.5.B解析:B【分析】 先解方程组得83273x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,根据x 、y 为正整数可求得a ,再解不等式组,根据不等式组无解可得a的取值范围,据此可求得a值.【详解】解:解二元一次方程组931ax yx y-=⎧⎨-=⎩,得:83273xaaya⎧=⎪⎪-⎨-⎪=⎪-⎩,∵方程组的解均为正整数,∴a=4、5、7、11,解不等式组()1211931xx a⎧+≥⎪⎨⎪-<⎩,得:81xx a≥⎧⎨<+⎩,∵不等式组无解,∴a+1≤8,即a≤7,∴满足题意的a值为4或5或7,故答案为:B.【点睛】本题考查二元一次方程的解法、一元一次不等式组的解法,熟练掌握它们的解法,会用不等式组无解求参数范围,会利用正约数求满足方程组的整数解是解答的关键.6.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m的范围.【详解】解不等式x﹣m<0,得:x<m,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.7.C解析:C试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.8.C解析:C【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围.【详解】解:327x x a -<⎧⎨<⎩①②, ①式化简得:39,3x x << 又∵该不等式的解集为x a <,∴3a .故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322xx -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.11.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.12.B解析:B【分析】根据不等式的性质逐项排除即可.【详解】解:∵2<2x y ++∴x <y ,故选项A 不符合题意;∴44x y ->-,故B 选项符合题意;33x y --<,故选项C 不符合题意;22x y <,故D 选项不符合题意.故答案为B .【点睛】本题主要考查了不等式的性质,给不等式左右两边乘以(除以)一个大于0的代数式(数),不等式符号不变,反之改变. 二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.【分析】根据不等式组确定解集的方法:大大小小无解了解答即可【详解】∵关于的不等式组无解∴故答案为:【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大同小取小大小小大中间找大大小小无解了 解析:a 5≥【分析】根据不等式组确定解集的方法:大大小小无解了解答即可.【详解】∵关于x 的不等式组x 5x a≤⎧⎨>⎩无解, ∴a 5≥,故答案为:a 5≥.【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了. 15.4【分析】不等式去分母合并后将x 系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算 解析:4【分析】不等式去分母,合并后,将x 系数化为1求出解集,找出解集中的非负整数解即可.【详解】 解:21302x --, 2160x --,27x ,解得: 3.5x ,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键. 16.【分析】分别求出每个不等式的解集再取它们的公共部分即可得到不等式组的解集【详解】解:解不等式①得x <2解不等式②得x≥-2所以不等式组的解集为:故答案为:【点睛】此题考查了解一元一次不等式组解不等式 解析:22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式②得,x≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).17.1或5【分析】由已知可以得到x=2或-2y=3或-3然后对xy的取值进行分类讨论找出使x+y<0的取值组合即可求得x-y的值【详解】解:∵|x|=2|y|=3∴x=2或-2y=3或-3(1)当x=2解析:1或5【分析】由已知可以得到x=2或-2,y=3或-3,然后对x、y的取值进行分类讨论,找出使x+y<0的取值组合,即可求得x-y的值.【详解】解:∵|x|=2,|y|=3,∴x=2或-2,y=3或-3,(1)当x=2时,要使x+y<0 ,必须y=-3,此时x-y=2-(-3)=2+3=5;(2)当x=-2时,要使x+y<0 ,必须y=-3,此时x-y=-2-(-3)=-2+3=1;故答案为1或5.【点睛】本题考查绝对值、不等式和有理数加减法的综合应用,熟练掌握绝对值、不等式、有理数加减法及分类讨论的思想是解题关键.18.四【分析】去掉坐标轴上点的情况可分x<﹣2﹣2<x<1与x>1三种情况逐一判断x-1与x+2的正负进而可得答案【详解】解:当x<﹣2时x-1<0x+2<0此时点P在第三象限;当﹣2<x<1时x-1<解析:四【分析】去掉坐标轴上点的情况,可分x<﹣2、﹣2<x<1与x>1三种情况,逐一判断x-1与x+2的正负,进而可得答案.【详解】解:当x<﹣2时,x-1<0,x+2<0,此时点P在第三象限;当﹣2<x<1时,x-1<0,x+2>0,此时点P在第二象限;当x>1时,x-1>0,x+2>0,此时点P在第一象限;综上,点P不可能在第四象限.故答案为:四.【点睛】本题考查了平面直角坐标系的基本知识和一元一次不等式的内容,属于基本题型,正确分类、掌握解答的方法是解题关键.19.【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负<+<<-<-解析:a a b b a b a根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.20.1<x+y <5【分析】利用不等式的性质解答即可【详解】解:∵x ﹣y=3∴x=y+3又∵x >2∴y+3>2∴y >﹣1又∵y <1∴﹣1<y <1①同理得:2<x <4②由①+②得﹣1+2<y+x <1+4∴x解析:1<x+y <5【分析】利用不等式的性质解答即可.【详解】解:∵x ﹣y=3,∴x=y+3,又∵x >2,∴y+3>2,∴y >﹣1.又∵y <1,∴﹣1<y <1①同理得:2<x <4②由①+②得﹣1+2<y+x <1+4∴x+y 的取值范围是1<x+y <5故答案为1<x+y <5.【点睛】本题考查了一元一次不等式组的应用,关键是先根据已知条件用一个量如y 取表示另一个量如x ,然后根据题中已知量x 的取值范围,构建另一量y 的不等式,从而确定该量y 的取值范围,同法再确定另一未知量x 的取值范围.三、解答题21.不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.22.(1)共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆;(2)最省钱的租车方案为:租用甲种汽车5辆,乙种汽车3辆.【分析】(1)可根据租用甲、乙两种型号的汽车座位总数不小于290,可载行李总数不小于100件列出不等式组,求出x 的取值,看在取值范围中x 可取的整数的个数即为方案数.(2)根据(1)中方案分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.【详解】解:(1)由租用甲种汽车x 辆,则租用乙种汽车()8x -辆.由题意得:()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩解得:56x ≤≤.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)租汽车的总费用为:()25002000850016000x x x +-=+(元)当x 取最小值时,总费用最省,因此当5x =时,总费用最省当5x =时,总费用为:50051600018500⨯+=元最省钱的租车方案为方案一:租用甲种汽车5辆,乙种汽车3辆.【点睛】本题主要考查的是一元一次不等式组的应用,找出题目的不等关系是解题的关键. 23.(1)有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备;第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)购买3台A 型污水处理设备,7台B 型污水处理设备更省钱【分析】(1)设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,由不等量关系购买A 型号的费用+购买B 型号的费用≤136;A 型号每月处理的污水总量+B 型号每月处理的污水总量≥2150,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.【详解】设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,根据题意,得1512(10)136250200(10)2150x x x x +-≤⎧⎨+-≥⎩, 解这个不等式组,得:1353x ≤≤.∵x 是整数,∴x=3或x=4或x=5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10-x=5.答:有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备; 第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).因为135>132>129,所以应购污水处理设备A 型号3台,B 型号7台.答:购买3台A 型污水处理设备,7台B 型污水处理设备更省钱.【点睛】此题考查方案类不等式组的实际应用,有理数的混合运算,正确理解题意,根据题意列得不等式组是解题的关键.24.(1)至少购入什锦套菜礼盒75盒;(2)15m =.【分析】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据总价值不低于15000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论; (2)根据销售总价=销售单价×销售数量结合题意可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据题意得:()6020010015000x x -+≥,解得:75x ≥.答:至少购入什锦套菜礼盒75盒;(2)根据题意得:()()5810080%751%6020075140%150002350215m m ⎛⎫⎛⎫⨯⨯++--+=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:1708503m =, 解得:15m =.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.25.(1)23x =-;(2)3x ≤-;(3)34x =;(4)31x y =⎧⎨=⎩;(5)15x -≤<;(6)71012m n ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(2)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(3)先去分母,去括号,然后移项、合并同类项,系数化为1,即可得到答案; (4)由代入消元法解方程组,即可得到答案;(5)先求出每个不等式的解集,即可得到不等式组的解集;(6)先把方程组去分母,然后进行整理,再利用加减消元法解方程组,即可得到答案.【详解】解:(1)[]{}3213(21)35x x ---+=,∴[]{}3216335x x ---+=,∴{}32165x x --=,∴{}3145x --=,∴3125x --=, ∴23x =-; (2)2(53)3(12)x x x +≤--, ∴10636x x x +≤-+,∴10736x x -≤--,∴39x ≤-,∴3x ≤-;(3)214163x x --=-, ∴212(4)6x x -=--, ∴21826x x -=--,∴43x =, ∴34x =; (4)2538x y x y +=⎧⎨-=⎩①②, 由①得:52x y =-③,把③代入②得:3(52)8y y --=,解得:1y =,把1y =代入①,得3x =,∴方程组的解为31x y =⎧⎨=⎩; (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩①② 解不等式①,得5x <;解不等式②,得1x ≥-;∴不等式组的解集为:15x -≤<;(6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩,方程组整理得:5352153m n m n +=⎧⎨-=⎩①②, 由①-②,得:3618n =, ∴12n =, 把12n =代入②,得710m =, ∴方程组的解为:71012m n ⎧=⎪⎪⎨⎪=⎪⎩; 【点睛】本题考查了解一元一次方程,解二元一次方程组,解不等式,解不等式组,解题的关键是熟练掌握运算法则,正确的进行解题.26.(1)()15120x +;()13.5108x +;(2)①660元;②729元;(3)若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【分析】(1)若按个人票购买,则费用为(4×30+15x )元;若按团体票购买,该班师生买票共付费(4×30×0.9+15x ×0.9)元;(2)①把x =36代入计算即可求解,注意团体票x 不足46取46;②把x =42代入计算即可求解,注意团体票x 不足46取46;(3)先计算学生人数为x 时,购团体票比实际票便宜时的人数为x ≥40 35;因此根据此结果分三种情况计算:①若41≤x ≤46时,购团体最少;②若x >46时,按实际打折计算;③若0<x ≤40时,按实际不打折计算.【详解】解:(1)()4301515120x x ⨯+=+元,所以若按个人票购买,该班师生买票共付费()15120x +元;()4300.9150.913.5108x x ⨯⨯+⋅=+元.所以若按团体票购买,该班师生买票共付费()13.5108x +元;故答案为:()15120x +;()13.5108x +;(2)①当按个人票购买时,1536120660⨯+=(元),当按团体票购买时,13.546108729⨯+=(元).所以该班师生买票最少可付费660元;②当按个人票购买时,1542120750⨯+=(元),当按团体票购买时,13.546108729⨯+= (元).所以该班师生买票最少可付费729元;(3)依题意有()4301543046150.9x ⨯+≥⨯+⨯⨯,15609x ≥, 解得3405x ≥, ①若4146x ≤≤时,最好团体购票,则需费用:()43046150.98100.9729⨯+⨯⨯=⨯=(元),②若46x >时,则需费用为:()430150.910813.5x x ⨯+⨯=+(元),③若040x <≤时,则需费用:4301512015x x ⨯+=+(元),答:若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【点睛】本题考查了列代数式,代数式求值以及用一元一次不等式解决问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.。

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。

(完整版)初一第二学期不等式数学试卷(二)

(完整版)初一第二学期不等式数学试卷(二)

一、选择题1.若整数a 使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是( ).A .-3B .-4C .-10D .-142.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.已知36a b >-,则下列结论错误的是( )A .360a b +>B .121a b +>-+C .2ab>- D .2a b -<4.如果关于x 的不等式组3021x a x b -≥⎧⎨+<⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(),a b 共有( )A .4个B .6个C .8个D .9个5.下列说法错误..的是( ) A .由20x +>,可得2x >- B .由102x <,可得0x < C .由24x >-,可得2x <-D .由312x ->-,可得23x <6.如果m >n ,那么下列结论错误的是( ) A .m +2>n +2B .﹣2m >﹣2nC .2m >2nD .m ﹣2>n ﹣27.若关于x 的不等式0ax b ->的解集是12x <,则关于x 的不等式bx a <的解集是( ) A .2x <-B .2x <C .2x >-D .2x >8.如图,按下面的程序进行运算,规定程序运行到“判断结果是否大于30”为一次运算.若某运算进行了3次才停止,则x 的取值范围是( )A .393342x <≤B .513984x ≤≤ C .393342x ≤< D .513984x <≤9.若整数a 使得关于x 的不等式组153241x x x a +⎧≥+⎪⎨⎪+≥⎩有且仅有6个整数解,且使关于y 的一元一次方程23y a +﹣2y a+=1的解满足y >21.则所有满足条件的整数a 的值之和为( ) A .31B .48C .17D .3310.如果关于x 的不等式组4430x x x m -⎧-<-⎪⎨⎪->⎩的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x ,y 均为整数),则下列选项中,不符合条件的整数m 的值是( ) A .﹣4B .2C .4D .5二、填空题11.已知2153+132x x x --≥-,则代数式23x x --+最大值与最小值的差是________. 12.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.13.关于x 的方程23(2)k x k -=-的解为非负数,且关于x 的不等式组2(1)323x x k x x --≤⎧⎪+⎨≥⎪⎩有解,则符合条件的整数k 的值的和为__________.14.若不等式组5512x x x m ++⎧⎨-⎩<>的解集是x >1,则m 的取值范围是___________15.关于x 的不等式组0211x a x -≥⎧⎨-≤⎩只有4个整数解,则a 的取值范围是_____.16.若关于x 的不等式组0721x m x -<⎧⎨-≤-⎩只有4个正整数解,则m 的取值范围为__________.17.不等式3x ﹣3m≤﹣2m 的正整数解为1,2,3,4,则m 的取值范围是_____. 18.对于任意实数m 、n ,定义一种运算m ※n =mn ﹣m ﹣n +3,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <4※x <7,且解集中有三个整数解,则整数a 的取值可以是_________.19.已知关于x 的不等式ax +b >0的解集为13x <,则不等式bx +a <0的解集是______________.20.有一根长22cm 的金属棒,将其截成x 根3cm 长的小段和y 根5cm 长的小段,剩余部分作废料处理,若使废料最少,则x +y =__.三、解答题21.如果 x 是一个有理数,我们定义{x } 表示不小于 x 的最小整数. 如{3.2} = 4 , {-2.6} =-2 , {5} = 5 , {-6} = -6.由定义可知,任意一个有理数都能写成 x = {x } - b 的形式( 0≤b <1 ).(1)直接写出{x } 与 x , x + 1的大小关系;提示1:用“不完全归纳法”推导{x } 与 x , x + 1的大小关系; 提示2:用“代数推理”的方法推导{x } 与 x , x + 1的大小关系. (2)根据(1)中的结论解决下列问题: ① 直接写出满足{3m + 7} = 4 的 m 取值范围; ② 直接写出方程{3.5n - 2} = 2n + 1 的解..22.在平面直角坐标系xOy 中,对于任意两点()111,P x y ,()222,P x y ,如果1212x x y y d -+-=,则称1P 与2P 互为“d -距点”.例如:点1(3,6)P ,点2(1,7)P ,由|31||67|3d =-+-=,可得点1P 与2P 互为“3-距点”.(1)在点()2,2D --,(5,1)E -,(0,4)F 中,原点O 的“4-距点”是_____(填字母); (2)已知点(2,1)A ,点(0,)B b ,过点B 作平行于x 轴的直线l . ①当3b =时,直线l 上点A 的“2-距点”的坐标为_____; ②若直线l 上存在点A 的“2-点”,求b 的取值范围.(3)已知点(1,2)M ,(3,2)N ,(,0)C m ,C MN 上存在点P ,在C 上存在点Q ,使得点P 与点Q 互为“5-距点”,直接写出m 的取值范围.23.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:(36)W ________;(10)W mn ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ;(3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________.24.在平面直角坐标系中,点A ,B ,C 的坐标分别为(),0a ,()2,4-,(),0c ,且a ,c 满足方程()243240c aa x y ---+=为二元一次方程.(1)求A ,C 的坐标.(2)若点D 为y 轴正半轴上的一个动点.①如图1,当//AD BC 时,ADO ∠与ACB ∠的平分线交于点P ,求P ∠的度数;②如图2,连接BD ,交x 轴于点E .若ADE BCE S S ≤△△成立.设动点D 的坐标为()0,d ,求d 的取值范围.25.材料1:我们把形如ax by c +=(a 、b 、c 为常数)的方程叫二元一次方程.若a 、b 、c 为整数,则称二元一次方程ax by c +=为整系数方程.若c 是a ,b 的最大公约数的整倍数,则方程有整数解.例如方程342,735,426x y x y x y +=-=+=都有整数解;反过来也成立.方程6310421x y x y +=-=和都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数. 材料2:求方程56100x y +=的正整数解. 解:由已知得:1006100520555y y y yx y ---===--……① 设5yk =(k 为整数),则5y k =……② 把②代入①得:206x k =-.所以方程组的解为2065x ky k =-⎧⎨=⎩ , 根据题意得:206050k k ->⎧⎨>⎩.解不等式组得0<k <103.所以k 的整数解是1,2,3. 所以方程56100x y +=的正整数解是:145x y =⎧⎨=⎩,810x y =⎧⎨=⎩,215x y =⎧⎨=⎩.根据以上材料回答下列问题:(1)下列方程中:① 3911x y +=,② 15570x y -=,③ 63111x y +=,④27999x y -=,⑤ 9126169x -=,⑥ 22121324x y +=.没有整数解的方程是 (填方程前面的编号);(2)仿照上面的方法,求方程3438x y +=的正整数解;(3)若要把一根长30m 的钢丝截成2m 长和3m 长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程) 26.阅读材料:关于x ,y 的二元一次方程ax+by=c 有一组整数解00x x y y =⎧⎨=⎩,则方程ax+by=c 的全部整数解可表示为00x x bty y at =-⎧⎨=+⎩(t 为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为0069x y =⎧⎨=⎩,则全部整数解可表示为61997x ty t =-⎧⎨=+⎩(t 为整数).因为61909+70.t t ->⎧⎨>⎩,解得96719t -<<.因为t 为整数,所以t =0或-1.所以该方程的正整数解为69x y =⎧⎨=⎩和252x y =⎧⎨=⎩. (1)方程3x-5y=11的全部整数解表示为:253x ty t θ=+⎧⎨=+⎩(t 为整数),则θ= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解; (3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案.27.定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a ﹣b . 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 ; (3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.28.对x ,y 定义一种新运算T ,规定:T (x ,y )=ax+2by ﹣1(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a•0+2b•1﹣1=2b ﹣1. (1)已知T (1,﹣1)=﹣2,T (4,2)=3. ①求a ,b 的值;②若关于m 的不等式组(2m,54)4(32)?T m T m m p ⎩-≤->⎧⎨,恰好有2个整数解,求实数p 的取值范围;(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立(这里T (x ,y )和T (y ,x )均有意义),则a ,b 应满足怎样的关系式?29.某数码专营店销售A ,B 两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的35,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.30.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表:经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元.(1)求x,y的值;(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据不等式组求出a 的范围,然后再根据关于x,y的方程组206ax yx y+=⎧⎨+=⎩的解为正整数得到26a-=-或12-,从而确定所有满足条件的整数a的值的和.【详解】解:125262x xx a++⎧⎪⎨⎪->⎩,不等式组整理得:22xx a⎧⎨>+⎩,由不等式组至少有4个整数解,得到21a+<-,解得:3a <-,解方程组206ax y x y +=⎧⎨+=⎩,得12262x a a y a ⎧=-⎪⎪-⎨⎪=⎪-⎩, 又关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,26a ∴-=-或12-,解得4a =-或10a =-,∴所有满足条件的整数a 的值的和是14-.故选:D . 【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出a 的范围,本题属于中等题型.2.D解析:D 【分析】首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围. 【详解】解:0(1)721(2)x m x -<⎧⎨-≤⎩由(1)得,x <m , 由(2)得,x ≥3,故原不等式组的解集为:3≤x <m , ∵不等式组的正整数解有4个, ∴其整数解应为:3、4、5、6, ∴m 的取值范围是6<m ≤7. 故选:D . 【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m 的不等式组,再借助数轴做出正确的取舍.3.C解析:C 【分析】先将不等式两边都除以3得a >﹣2b ,再两边都加上1知a +1>﹣2b +1,结合﹣2b +1>﹣2b ﹣1利用不等式的同向传递性可得答案. 【详解】 解:∵3a >﹣6b , ∴360a b +>∵3a >﹣6b , ∴a >﹣2b , ∴a +1>﹣2b +1, 故B 正确; ∵3a >﹣6b , ∴a >﹣2b , 得不到2ab>- 故C 不正确; ∵3a >﹣6b , ∴a >﹣2b , ∴2a b -< 故D 正确; 故选:C . 【点睛】本题主要考查不等式的性质,解题的关键是掌握不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项4.B解析:B 【分析】解不等式组,然后根据不等式组的整数解仅有1,2即可确定a ,b 的范围,即可确定a ,b 的整数解,即可求解.【详解】解:3021x a x b -⎧⎨+<⎩①②,解不等式①,得:3a x , 解不等式②,得:12bx -<, ∴不等式组的解集为132a b x -<, 不等式组的整数解仅有1、2,013a ∴<,1232b-<, 解得:03a <,53b -<-,∴整数a 有1;2;3,整数b 有4-;3-,整数a 、b 组成的有序数对(,)a b 有(1,4)-;(2,4)-;(3,4)-;(1,3)-;(2,3)-;(3,3)-,共6个, 故选:B .此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a ,b 的取值范围是解决问题的关键.5.C解析:C 【分析】根据不等式的性质求解判断即可. 【详解】解:A .由20x +>,可得2x >-,故A 说法正确,不符合题意; B .由102x <,可得0x <,故B 说法正确,不符合题意; C .由24x >-,可得2x <-,故C 说法错误,符合题意; D .由312x ->-,可得,23x <,故D 说法正确,不符合题意; 故选:C . 【点睛】本题考查了不等式的性质,熟记不等式的性质是解题的关键.6.B解析:B 【分析】根据不等式的性质(①不等式的两边都加上或减去同一个数或整式,不等号的方向不发生改变;②不等式的两边都乘以或除以同一个负数,不等号的方向发生改变;③不等式的两边都乘以或除以同一个正数,不等号的方向不发生改变)判断即可. 【详解】 解:A .∵m >n ,∴m +2>n +2,故本选项不合题意; B .∵m >n ,∴﹣2m <﹣2n ,故本选项符合题意; C .∵m >n ,∴2m >2n ,故本选项不合题意; D .∵m >n ,∴m ﹣2>n ﹣2,故本选项不合题意; 故选:B . 【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质的运用.7.D解析:D 【分析】由题意可知,a 、b 均为负数,且可得a =2b ,把a =2b 代入bx <a 中,则可求得bx <a 的解集. 【详解】由0ax b ->得:ax b > ∵不等式0ax b ->的解集为12x < ∴a <0 ∴12b x a <= ∴a =2b ∴b <0由bx a <,得2bx b < ∵b <0 ∴x >2 故选:D . 【点睛】本题考查了解一元一次不等式,关键是由条件确定字母a 的符号,从而确定a 与b 的关系,易出现错误的地方是求bx <a 的解集时,忽略b 的符号,从而导致结果错误.8.D解析:D 【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围. 【详解】解:根据题意可知:()()22333022233330x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩ , 解得:513984x <≤. 故选:D . 【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.9.D解析:D 【分析】先求出不等式组的解集,根据不等式组的整数解的个数求出a 的范围,求出方程的解,根据y >21求出a 的范围,求出公共部分,再求出a 的整数解,最后求出答案即可. 【详解】解:153?241?x x x a +⎧≥+⎪⎨⎪+≥⎩①②, 解不等式①,得x ≤9,解不等式②,得x ≥14a -, 所以不等式组的解集是14a -≤x ≤9, ∵a 为整数,不等式组有且仅有6个整数解,∴3<14a -≤4, 解得:13<a ≤17, 解方程23y a +﹣2y a +=1得:y =6+a , ∵y >21,∴6+a >21,解得:a >15,∴15<a ≤17,∵a 为整数,∴a 为16或17,16+17=33,故选:D .【点睛】本题考查了解一元一次方程,解一元一次不等式组和不等式组的整数解等知识点,能根据不等式组的解集及整数解的个数求出a 的取值范围是解此题的关键.10.D解析:D【分析】根据不等式组的解集确定m 的取值范围,根据方程组的解为整数,确定m 的值.【详解】 解:解不等式443x x --<-得:x >4, 解不等式x ﹣m >0得:x >m ,∵不等式组的解集为x >4,∴m ≤4,解方程组831mx y x y +=⎧⎨+=⎩得73243x m m y m ⎧=⎪⎪-⎨-⎪=⎪-⎩, ∵x ,y 均为整数,∴31m -=或31m -=-或37m -=或37m -=-,则4m =或2m =或10m =或4m =-,∵4m ≤∴4m =或2m =或4m =-,∴m =﹣4或m =2或m =4,故选D .【点睛】本题考查了一元一次不等式组和二元一次方程组的解,解题关键是熟练运用解方程组和解不等式组方法求解,根据整数解准确进行求值.二、填空题11.【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a|=a ;当a 为0时,|a|=0;当a 为负时,|a|=-a .【详解】 解析:10411【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a |=a ;当a 为0时,|a |=0;当a 为负时,|a |=-a .【详解】 解:2153+132x x x --≥-, 去分母得:22166353x x x -+≥--()(), 去括号得:4266159x x x -+≥-+,移项得:4691526x x x --≥-+-,合并同类项得:1119x -≥-, 解不等式组得:1911x ≤; (1)当19311x -≤≤时,()23232312x x x x x x x --+=--+=---=--, 当1911x=时有最小值4911-, 当=3x -时有最大值5;(2)当3x -<时,()2323235x x x x x x --+=-++=-++=,∴当3x -<时23x x --+的值恒等于5(最大值);∴最大值与最小值的差是494910455111111==⎛⎫--+ ⎪⎝⎭. 故答案为:10411.此题考查了一元一次不等式的求解与绝对值的性质.解题时要注意一元一次不等式的求解步骤,绝对值的性质.12.【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a≤0,所以x≤,因为原不等式的正整数解恰是1,2,3,4解析:1215a ≤<【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a ≤0,所以x ≤3a , 因为原不等式的正整数解恰是1,2,3,4, 即4353a a ⎧≥⎪⎪⎨⎪<⎪⎩,解得12≤x <15. 故答案为12≤x <15.【点睛】由不等式(组)的整数解确定所含字母的取值范围的解法是:①解不等式(组),用字母系数表示出解集;②由不等式(组)的整数解确定不等式(组)的解集;③综合①②列出关于字母系数的不等式(注意是否可取等于)求解.13.5【解析】【分析】先求出方程的解与不等式组的解集,再根据题目中的要求求出相应的的值即可解答本题.【详解】解:解方程,得:,由题意得,解得:,解不等式,得:,解不等式,得:,【解析】【分析】先求出方程的解与不等式组的解集,再根据题目中的要求求出相应的k 的值即可解答本题.【详解】解:解方程23(2)k x k -=-,得:3x k =-,由题意得30k -,解得:3k ,解不等式2(1)3x x --,得:1x -, 解不等式23k x x +,得:x k , 不等式组有解,1k ∴-,则13k -,∴符合条件的整数k 的值的和为101235-++++=,故答案为:5.【点睛】本题考查一元一次方程的解、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.14.m≤-1【解析】【分析】先解每个不等式,然后根据不等式组的解集是x >1,即可得到一个关于m 的不等式,从而求解.【详解】解:解①得x >1,解②得x >m+2,∵不等式组的解集是x >1,解析:m≤-1【解析】【分析】先解每个不等式,然后根据不等式组的解集是x >1,即可得到一个关于m 的不等式,从而求解.【详解】解:5512x x x m ++⎧⎨-⎩<①>②解①得x>1,解②得x>m+2,∵不等式组的解集是x>1,∴m+2≤1,解得m≤-1.故答案是:m≤-1.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.-3<a≤-2【分析】先求不等式组得解集,然后根据整数解的情况,确定a的范围.【详解】解:解不等式组得:a≤x≤1组4个整数解为:1,0,-1,-2,所以-3<a≤-2故答案为-3<a≤解析:-3<a≤-2【分析】先求不等式组211x ax-≥⎧⎨-≤⎩得解集,然后根据整数解的情况,确定a的范围.【详解】解:解不等式组211x ax-≥⎧⎨-≤⎩得:a≤x≤1组4个整数解为:1,0,-1,-2,所以-3<a≤-2故答案为-3<a≤-2【点睛】本题考查了不等式组的解法和根据整数解确定参数,其中解不等式组是解答本题的关键. 16.【分析】首先解两个不等式,根据不等式有4个正整数解即可得到一个关于m的不等式组,从而求得m的范围.【详解】解不等式①得:x<m解不等式②得:x≥4∵原不等式组只有4个正整数解,故4个解析:78m <≤【分析】首先解两个不等式,根据不等式有4个正整数解即可得到一个关于m 的不等式组,从而求得m 的范围.【详解】0721x m x -<⎧⎨-≤-⎩①② 解不等式①得:x<m解不等式②得:x≥4∵原不等式组只有4个正整数解,故4个正整数解为;4、5、6、7∴78m <≤故答案为78m <≤【点睛】本题主要考查了不等式组的正整数解,正确求解不等式组,并得到关于m 的不等式组是解题的关键.17.12≤m <15【解析】分析:先求出不等式的解集,然后根据其正整数解求出m 的取值范围. 详解:不等式3x ﹣3m≤﹣2m 的解集为x≤m ,∵正整数解为1,2,3,4,∴m 的取值范围是4≤m <5,即解析:12≤m <15【解析】分析:先求出不等式的解集,然后根据其正整数解求出m 的取值范围.详解:不等式3x ﹣3m≤﹣2m 的解集为x≤13m , ∵正整数解为1,2,3,4,∴m 的取值范围是4≤13m <5,即12≤m <15. 故答案为:12≤m <15.点睛:本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.18.【分析】利用题中的新定义列出不等式组,求出解集即可确定出a 的范围.【详解】根据题中的新定义化简得:a≤4x-4−x+3<7,整理得:,即<x<,由不等式组有3个整数解,即为2,1,解析:4,3,2---【分析】利用题中的新定义列出不等式组,求出解集即可确定出a的范围.【详解】根据题中的新定义化简得:a≤4x-4−x+3<7,整理得:317 31xx a-<⎧⎨->⎩,即13a+<x<83,由不等式组有3个整数解,即为2,1,0,所以1103a+-≤<解得-4<a<-1所以a可取的正数解有:-4,-3,-2故答案为:-4,-3,-2【点睛】此题考查了一元一次不等式组的整数解,实数的运算,以及一元一次不等式的整数解,熟练掌握运算法则是解本题的关键.19.【分析】根据已知不等式的解集确定出a与b的关系,用b表示出a,代入所求不等式求出解集即可.【详解】解:∵关于x的不等式ax+b>0的解集为x<,∴−=且a<0,整理得:a=−3b,b>0解析:3x<【分析】根据已知不等式的解集确定出a与b的关系,用b表示出a,代入所求不等式求出解集即可.【详解】解:∵关于x的不等式ax+b>0的解集为x<13,∴−ba =13且a<0,整理得:a=−3b,b>0,代入所求不等式得:bx−3b<0,解得:x<3.故答案为:x<3.【点睛】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.20.6【分析】根据金属棒的长度是22cm,则可以得到3x+5y≤22,再根据x,y都是正整数,即可求得所有可能的结果,分别计算出剩料的长度,即可得到答案.【详解】∵一根长22cm的金属棒,将其截解析:6【分析】根据金属棒的长度是22cm,则可以得到3x+5y≤22,再根据x,y都是正整数,即可求得所有可能的结果,分别计算出剩料的长度,即可得到答案.【详解】∵一根长22cm的金属棒,将其截成x根3cm长的小段和y根5cm长的小段,∴3x+5y≤22,∴2253yx-≤,∵2250y-≥,且y为正整数,∴y的值可以为1、2、3、4,当y=1时,x≤173,则x=5,此时,所剩的废料是:22﹣5﹣3×5=2cm,当y=2时,x≤4,则x=4,此时,所剩的废料是:22﹣2×5﹣4×3=0cm,当y=3时,x≤73,则x=2,此时,所剩的废料是:22﹣3×5﹣2×3=1cm,当y=4时,x≤23,则x=0(舍去),∴废料最少的是:x=4,y=2,∴x+y=6,故答案为:6【点睛】本题考查了不等式的应用,正确确定x,y的所有取值情况是解题关键.三、解答题21.(1){}1x x x ≤<+;(2)①413m -<≤-;②32n =或2n =. 【分析】(1)提示1:先列出4个x 的值,分别得出{}x 与,1x x +的大小关系,再利用“不完全归纳法”即可得;提示2:先根据“{}x x b =-”得出{}b x x =-,再根据“01b ≤<”即可得;(2)①根据(1)的结论得出374371m m +≤<++,据此解不等式组即可得; ②先根据(1)的结论得出3.5221 3.521n n n -≤+<-+,再解不等式组求出n 的取值范围,从而可得21n 的取值范围,然后根据“21n 为整数”可得出方程,由此解方程即可得.【详解】(1)提示1:当 1.2x =时,{}{}1.22x ==,1 1.21 2.2x +=+=则{}1x x x <<+当 2.4x =-时,{}{}2.42x =-=-,1 2.41 1.4x +=-+=-则{}1x x x <<+当2x =时,{}{}22x ==,1213x +=+=则{}1x x x =<+当1x =-时,{}{}11x =-=-,x 1110+=-+=则{}1x x x =<+由“不完全归纳法”可得:{}1x x x ≤<+;提示2:{}x x b =-,且01b ≤<{}b x x ∴=-{}01x x ∴≤-<{}1x x x ∴≤<+;(2)①由(1)的结论得:{}3737371m m m +≤+<++{}374m +=374371m m ∴+≤<++ 解得413m -<≤-; ②由(1)的结论得:{}3.52 3.52 3.521n n n -≤-<-+{}3.5221n n -=+3.5221 3.521n n n ∴-≤+<-+ 解得423n <≤112153n ∴<+≤ {}3.5221n n -=+21n ∴+为整数则214n +=或215n += 解得32n =或2n =. 【点睛】本题考查了一元一次不等式组的应用、解一元一次方程等知识点,理解新定义,正确求解不等式组是解题关键.22.(1),D F ;(2)①(2,3);②13b -≤≤;(3m ≤≤. 【分析】(1)根据定义判断即可;(2)①设直线l 上与点A 的“2-距点”的点的坐标为(a ,3),根据定义列出关于a 的方程,解方程即可;②点A 坐标为(2,1),直线l 上点的纵坐标为b ,由题意得|1|2b -≤,转化为不等式组,解不等式组即可.(3)分类讨论,分别取P 与点M 重合、P 与点N 重合讨论。

(完整版)初一数学下册不等式试题(带答案) (二)

(完整版)初一数学下册不等式试题(带答案) (二)

一、选择题1.已知关于x 的不等式组()35413111233x a x a x x ⎧+>++⎪⎨+>-⎪⎩的整数解只有三个,则a 的取值范围是( )A .3a >或2a <B .522a <<C .732a <≤D .732a ≤<2.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3个整数解,那么a 的取值范围是( )A .21a -<<B .32a -<≤-C .32a -≤<-D .32a -<<-3.如果关于x 的不等式组2030x m n x -≥⎧⎨-≥⎩仅有四个整数解:-1,0,1,2,那么适合这个为等式组的整数m n 、组成的有序实数对(),m n 最多共有( ) A .2个B .4个C .6个D .9个4.关于x 的不等式组0321x a x -≤⎧⎨+>-⎩的整数解共有4个,则a 的取值范围( )A .3a =B .23a <<C .23a ≤<D .23a <≤5.已知3a >-,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,那么所有符合条件的整数a 的个数为( ) A .6个B .7个C .8个D .9个6.若整数a 使关于x 的不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,则符合条件的所有整数a 的和为( ) A .-180B .-238C .-119D .-1777.已知关于x 的不等式(2)50a b x a b -+->的解集为107x <,则关于x 的不等式ax b a >-的解集为( ) A .3x <-B .5x >-C .25x <-D .25x >-8.我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解.同样地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解.对于二元一次不等式2x +3y ≤10,它的正整数解有( ) A .4个B .5个C .6个D .无数个9.下列四个命题:①若a >b ,则a -3>b -3;②若a >b ,则a +c >b +c ;③若a >b ,则-3a <-3b ;④若a >b ,则ac >bc .其中,真命题有( ) A .①③④B .②③④C .①②③④D .①②③10.已知关于x 的不等式组100x x a ->⎧⎨-≤⎩,有以下说法:①如果它的解集是1<x ≤4,那么a =4; ②当a =1时,它无解;③如果它的整数解只有2,3,4,那么4≤a <5; ④如果它有解,那么a ≥2. 其中说法正确的个数为( ) A .1个B .2个C .3个D .4个二、填空题11.已知实数a ,b ,满足14a b ≤+≤,01a b ≤-≤且2a b -有最大值,则82021a b +的值是__________.12.已知不等式组32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩有解但没有整数解,则a 的取值范围为________. 13.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.14.已知关于x 的不等式组212213x x ax a x +>+⎧⎪++⎨-≤⎪⎩ (a 为整数)的所有整数解的和S 满足21.6≤S <33.6,则所有这样的a 的和为_____.15.某学校举办“创文知识”竞赛,共有20道题,每一题答对得10分,答错或不答都扣5分,小聪要想得分不低于140分,他至少要答对多少道题?如果设小聪答对a 题,则他答错或不答的题数为()20a -题,根据题意列不等式:___________.16.若关于x 的一元一次不等式组3136xx x m-⎧<-⎪⎨⎪<⎩的解集是3x <,那么m 的取值范围是______.17.已知不等式30x a -<的正整数解恰好是1、2、3,则a 的取值范围是______. 18.定义:把b a -的值叫做不等式组a x b ≤≤的“长度”若关于x 的一元一次不等式组230x a x a +≥⎧⎨-+≤⎩解集的“长度”为3,则该不等式组的整数解之和为______. 19.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生______人.20.如果不等式组122x x x m +≤+⎧⎨≥⎩的解集是x ≥1,则m 的取值情况是______.三、解答题21.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表: 数量范围(千克) 不超过50的部分 50以上但不超过150的部分 150以上的部分 价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x 千克苹果(100x >),问师傅应怎样选择两家批发商所花费用更少? 22.阅读下列材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离,即|||0|x x =-,也就是说,12||x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例 1.解方程||2x =,因为在数轴上到原点的距离为2的点对应的数为2±,所以方程||2x =的解为2x =±.例 2.解不等式|1|2x ->,在数轴上找出|1|2x -=的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1-或3,所以方程|1|2x -=的解为1x =-或3x =,因此不等式|1|2x ->的解集为1x <-或3x >. 参考阅读材料,解答下列问题: (1)方程|3|5x +=的解为 ; (2)解不等式:|2|3x -≤; (3)解不等式:428x x -++>.23.如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果)(2)若k 使得方程组321431x y k x y k +=+⎧⎨+=-⎩中的x ,y 均为连动数,求k 所有可能的取值;(3)若关于x 的不等式组263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.24.若关于x 的方程ax +b =0(a ≠0)的解与关于y 的方程cy +d =0(c ≠0)的解满足﹣1≤x﹣y ≤1,则称方程ax +b =0(a ≠0)与方程cy +d =0(c ≠0)是“友好方程”.例如:方程2x ﹣1=0的解是x =0.5,方程y ﹣1=0的解是y =1,因为﹣1≤x ﹣y ≤1,方程2x ﹣1=0与方程y ﹣1=0是“友好方程”.(1)请通过计算判断方程2x ﹣9=5x ﹣2与方程5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y 是不是“友好方程”.(2)若关于x 的方程3x ﹣3+4(x ﹣1)=0与关于y 的方程32y k++y =2k +1是“友好方程”,请你求出k 的最大值和最小值.25.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x ﹣3=1与不等式x +3>0,当x =2时,2x ﹣3=2×2﹣3=1,x +3=2+3=5>0同时成立,则称x =2是方程2x ﹣3=1与不等式x +3>0的“理想解”. (1)已知①1322x ->,②2(x +3)<4,③12x -<3,试判断方程2x +3=1的解是否是它们中某个不等式的“理想解”,写出过程;(2)若00x x y y =⎧⎨=⎩是方程x ﹣2y =4与不等式31x y >⎧⎨<⎩的“理想解”,求x 0+2y 0的取值范围.26.如图①,在平直角坐标系中,△ABO 的三个顶点为A (a ,b ),B (﹣a ,3b ),O (0,0),且满足3a ++|b ﹣2|=0,线段AB 与y 轴交于点C .(1)求出A ,B 两点的坐标; (2)求出△ABO 的面积;(3)如图②,将线段AB 平移至B 点的对应点B '落在x 轴的正半轴上时,此时A 点的对应点为A ',记△A B C ''的面积为S ,若24<S <32,求点A '的横坐标的取值范围. 27.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________;②计算:(36)W ________;(10)W mn ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ;(3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________.28.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的内数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的内数是______,6的内数是______; (2)若3是x 的内数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;…… ①用n 表示t 的内数;②当t 的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)29.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A 、B 两类:A 类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B 类年票每张60元,持票者进入中心时,需再购买门票,每次2元.(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A 类年票,请问他一年中进入该中心不低于多少次?30.阅读材料:形如2213x <+<的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如221213x x <+⎧⎨+<⎩;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得122x <<,然后同时除以2,得1112x <<. 解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组; (2)利用不等式的性质解双连不等式2235x ≥-+>-; (3)已知532x -≤<-,求35x +的整数值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别求出不等式的解集,根据不等式组有解得到2245x a -<<-,再根据不等式组有三个整数解得到2243a <-≤,求解即可. 【详解】解:()35413111233x a x a x x ⎧+>++⎪⎨+>-⎪⎩①②, 解不等式①得x<2a-4, 解不等式②得25x >-,∵不等式组有解, ∴2245x a -<<-,∵不等式组的整数解只有三个, ∴2243a <-≤, 解得732a <≤, 故选:C. 【点睛】此题考查不等式组的整数解的情况求参数,正确理解不等式组的整数解只有三个得到关于参数的不等式是解题的关键.2.C解析:C【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可. 【详解】解不等式3﹣2x >1,得:x <1, 解不等式x ﹣a >0,得:x >a , 则不等式组的解集为a <x <1, ∵不等式组恰有3个整数解, ∴不等式组的整数解为﹣2、﹣1、0, 则﹣3≤a <﹣2, 故选C . 【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.3.C解析:C 【分析】先求出不等式组的解集,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案. 【详解】∵解不等式20x m -≥得:2m x ≥, 解不等式30n x -≥得:3n x ≤, ∴不等式组的解集是23m n x ≤≤, ∵关于x 的不等式组的整数解仅有-1,0,1,2, ∴212m -<≤-,233n≤<, 解得:42m -<≤-,69n ≤<,即m 的整数值是-3,-2,n 的整数值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(m ,n)共有6个,是(-3,6),(-3,7),(-3,8),(-2,6),(-2,7),(-2,8). 故选:C . 【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.4.C解析:C 【分析】分别求出每一个不等式的解集,根据不等式组的整数解的个数可得答案. 【详解】解不等式x-a≤0得x≤a , 解不等式3+2x >-1得x >-2, ∵不等式组的整数解共有4个, ∴这4个整数解为-1、0、1、2, 则2≤a <3, 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B解析:B 【分析】分别求得不等式组中每一个不等式的解集,再根据不等式组无解以及3a >-解答即可 【详解】解不等式1x a +<,得1x a <-, 解不等式212x x -≥+,解得3x ≥,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,13a ∴-≤解得4a ≤又3a >-,且a 为整数,34a ∴-≤≤且为整数∴a 的值为2,1,0,1,2,3,4--共7个故选B 【点睛】本题考查了接一元一次不等式组,根据不等式的解集求参数的范围,求不等式组的整数解,掌握不等式组的解法是解题的关键.6.A解析:A 【分析】不等式组整理后,根据只有4个整数解,确定出x 的取值,进而求出a 的范围,进一步求解即可 【详解】解:1112341x xx a x -+⎧≤⎪⎨⎪->+⎩①②解不等式①得,25x ≤ 解不等式②得,a 1x 3+>∴不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩的解集为1253a x +<≤ ∵不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩有且只有45个整数解,∴120193a +-≤<- ∴6058a -≤<- ∵a 为整数 ∴a 为-61,-60,-59 ∴-61-60-59=-180 故选:A 【点睛】本题主要考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.7.C解析:C 【分析】先根据题意得:35b a =且20a b -<,可得0a <,即可求解. 【详解】解:∵(2)50a b x a b -+->, ∴(2)5-+>-a b x b a ,∵关于x 的不等式(2)50a b x a b -+->的解集为107x <, ∴51027b a a b -=- ,且20a b -< ,∴3572010b a a b -=- ,解得:35b a = , ∵20a b -<, ∴3205a a -< , ∴0a < , ∵ax b a >-, ∴35ax a a >- ,即25ax a >- ,∴25x <- .故选:C . 【点睛】本题主要考查了一元一次不等式的解集的定义,解不等式,不等式的性质,熟练掌握一元一次不等式的解集的定义,解不等式的基本步骤是解题的关键.8.B解析:B 【分析】先解不等式,得到1033522y x y -≤=-,结合x 、y 是正整数,则3502y ->,即可得到答案. 【详解】解:∵2310x y +≤, ∴1033522y x y -≤=-, ∵x 、y 是正整数, ∴3502y ->, ∴1003y <<, ∴y 能取1、2、3, 当1y =时,有702x <≤, ∴11x y =⎧⎨=⎩,21x y =⎧⎨=⎩,31x y =⎧⎨=⎩, 当2y =时,有02x <≤, ∴12x y =⎧⎨=⎩,22x y =⎧⎨=⎩, 当3y =时,102x <≤,无正整数解; ∴正整数解有5个, 故选:B . 【点睛】本题考查了新定义以及解不等式,二元一次不等式2x+3y≤0正整数解,求出y 的整数值是本题的关键.9.D解析:D 【分析】根据不等式的性质判断即可; 【详解】若a>b,则a-3>b-3,故①正确;若a>b,则a+c>b+c,故②正确;若a>b,则-3a<-3b,故③正确;若a>b,则ac>bc,没有告知c的取值,故④错误;故正确的是①②③;故选D.【点睛】本题主要考查了不等式的基本性质,准确分析判断是解题的关键.10.C解析:C【分析】分别求出每个不等式的解集,再根据各结论中a的取值情况逐一判断即可.【详解】解:由x﹣1>0得x>1,由x﹣a≤0得x≤a,①如果它的解集是1<x≤4,那么a=4,此结论正确;②当a=1时,它无解,此结论正确;③如果它的整数解只有2,3,4,那么4≤a<5,此结论正确;④如果它有解,那么a>1,此结论错误;故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题11.8【分析】把变形得,故可求出有最大值时,a,b的值,代入故可求解.【详解】设=∴a-2b=(m+n)a+(m-n)b∴,解得∴=∵,∴,∴∴有最大值1解得a=1,b=解析:8【分析】把2a b -变形得()()1322a b a b -++-,故可求出2a b -有最大值时,a ,b 的值,代入82021a b +故可求解.【详解】设2a b -=()()m a b n a b ++-∴a -2b =(m +n )a +(m -n )b∴12m n m n +=⎧⎨-=⎩,解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩∴2a b -=()()1322a b a b -++- ∵14a b ≤+≤,01a b ≤-≤ ∴()11222a b -≤-+≤-,()33022a b ≤-≤ ∴221a b -≤-≤∴2a b -有最大值1 此时()1122a b -+=-,()3322a b -= 解得a =1,b =0∴82021a b +=8故答案为:8.【点睛】此题主要考查不等式组的应用与求解,解二元一次方程组,解题的关键是根据题意把把2a b -变形得()()1322a b a b -++-,从而求解. 12.【分析】先求得不等式组的解集,根据解集没有整数解,建立起新的不等式组,解之即可【详解】∵,∴解①得,x <-a ,解②得,x >-1,∴不等式组的解集为:-1<x <-a ,∵不等式组有解但没有解析:01a ≤<先求得不等式组的解集,根据解集没有整数解,建立起新的不等式组,解之即可【详解】 ∵32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩①②, ∴解①得,x <-a ,解②得,x >-1,∴不等式组的解集为:-1<x <-a ,∵不等式组32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩有解但没有整数解, ∴01a a -≤⎧⎨-<-⎩, ∴01a ≤<,故答案为:01a ≤<.【点睛】本题考查了一元一次不等式组的解法,能根据不等式组无整数解建立新不等式组并解之是解题的关键.13.【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a≤0,所以x≤,因为原不等式的正整数解恰是1,2,3,4解析:1215a ≤<【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a ≤0,所以x ≤3a , 因为原不等式的正整数解恰是1,2,3,4, 即4353a a ⎧≥⎪⎪⎨⎪<⎪⎩,解得12≤x <15. 故答案为12≤x <15.【点睛】由不等式(组)的整数解确定所含字母的取值范围的解法是:①解不等式(组),用字母系数表示出解集;②由不等式(组)的整数解确定不等式(组)的解集;③综合①②列出关于字母系数的不等式(注意是否可取等于)求解.14.5【分析】先求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】,∵解不等式①得:x >a ﹣1,解不等式②得:x≤a+5,∴不等式组的解集为a ﹣1<x≤a解析:5【分析】先求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】21+a 2213x x x a x +⎧⎪⎨++-≤⎪⎩>①②, ∵解不等式①得:x >a ﹣1,解不等式②得:x ≤a +5,∴不等式组的解集为a ﹣1<x ≤a +5,∴不等式组的整数解a ,a +1,a +2,a +3,a +4,a +5,∵所有整数解的和S 满足21.6≤S <33.6,∴21.6≤6a +15≤33.6,∴1.1≤a ≤3.1,∴a 的值为2,3,∴2+3=5,故答案为5.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.15.【分析】小聪答对题的得分为10a ;小明答错或不答题的得分为:−5(20−a ).不等关系:不低于140分.由此即可解答.【详解】解:根据题意,得10a−5(20−a )≥140.故答案是:10解析:()10520140a a --≥【分析】小聪答对题的得分为10a ;小明答错或不答题的得分为:−5(20−a ).不等关系:不低于140分.由此即可解答.【详解】解:根据题意,得10a −5(20−a )≥140.故答案是:10a −5(20−a )≥140.【点睛】本题主要考查了由实际问题抽象出一元一次不等式,此题要特别注意:答错或不答都扣5分.不低于即大于或等于.16.【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】解:,解不等式,,解得:,因为不等式组的解集是,所以,故答案为:.【点解析:3m ≥【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】 解:3136x x x m-⎧<-⎪⎨⎪<⎩, 解不等式3136x x -<-, ()263x x <--,解得:3x <, 因为不等式组3136x x x m-⎧<-⎪⎨⎪<⎩的解集是3x <,所以3m ≥,故答案为:3m ≥.【点睛】本题主要考查由不等式组解集求参数的取值范围,解决本题的关键是要熟练掌握不等式组解集确定.17.【分析】首先求得不等式的解集,其中方程的解可用a 表示,根据不等式的正整数解即可得到一个关于a 的不等式组,即可求得a 的范围.【详解】解:解不等式得: ,根据题意得:,解得:,故答案为.解析:912a <≤【分析】首先求得不等式30x a -<的解集,其中方程的解可用a 表示,根据不等式的正整数解即可得到一个关于a 的不等式组,即可求得a 的范围.【详解】解:解不等式30x a -<得:3a x < , 根据题意得:343a ≤<, 解得:912a <≤,故答案为912a <≤.【点睛】此题考查了一元一次不等式的整数解,根据x 的取值范围正确确定a 3的范围是解题的关键.解不等式时要根据不等式的基本性质.18.【分析】解不等式组求得不等式的解集为−a≤x≤2a−3,根据题意得出2a−3−(−a )=3,解得a =2,即可得到不等式的解集为−2≤x≤1,进而即可求得不等式组的整数解之和为−2.【详解】解解析:2-【分析】解不等式组求得不等式的解集为−a ≤x ≤2a −3,根据题意得出2a −3−(−a )=3,解得a =2,即可得到不等式的解集为−2≤x ≤1,进而即可求得不等式组的整数解之和为−2.【详解】解:0230x a x a +≥⎧⎨-+≤⎩①②, 由①得x ≥−a ,由②x ≤2a −3,∴不等式组的解集为−a ≤x ≤2a −3,∵关于x 的一元一次不等式组0230x a x a +≥⎧⎨-+≤⎩ 解集的“长度”为3,∴2a −3−(−a )=3,∴a =2,∴不等式组的解集为−2≤x ≤1,∴不等式组的整数解为−2,−1,0,1,它们的和为−2.故答案为−2.【点睛】本题考查了一元一次不等式组的整数解,解一元一次方程,求得a 的值是解题的关键. 19.158【分析】设星期天选派同学值勤的交通路口有x 个,则这个中学共选派值勤学生人,根据题意列出一元一次不等式组求解即可;【详解】设星期天选派同学值勤的交通路口有x 个,则这个中学共选派值勤学生人 解析:158【分析】设星期天选派同学值勤的交通路口有x 个,则这个中学共选派值勤学生()478x +人,根据题意列出一元一次不等式组求解即可;【详解】设星期天选派同学值勤的交通路口有x 个,则这个中学共选派值勤学生()478x +人,依题意得:()4788144788x x x x ⎧+≥-+⎨+⎩<, 解得:394122x ≤<, ∵x 为正整数,∴20x ,∴47872078158x +=⨯+=人;故答案是:158.【点睛】本题主要考查了一元一次不等式组的应用,准确计算是解题的关键.20.m=1【分析】先求出不等式①的解集,再与②组成不等式组根据同大取大,即可求得m的值.【详解】解:,由①得x≥﹣1而不等式组的解集是x≥1,根据大大取大,m=1.故答案为m=1.【点解析:m=1【分析】先求出不等式①的解集,再与②组成不等式组根据同大取大,即可求得m的值.【详解】解:122x xx m+≤+⎧⎨≥⎩①②,由①得x≥﹣1而不等式组的解集是x≥1,根据大大取大,m=1.故答案为m=1.【点睛】本题考查了解一元一次不等式组,能根据不等式组的解集得出关于m的算式是解此题的关键.三、解答题21.(1)在乙家批发更优惠;(2)当x=200时他选择任何一家批发所花费用一样多;当100<x<200时,师傅应选择甲家批发商所花费用更少;当x>200时,师傅应选择乙家批发商所花费用更少.【分析】(1)分别求出在甲、乙两家批发240千克苹果所需费用,比较后即可得出结论;(2)分两种情况:①若100<x≤150时,②若x>150时,分别用含x的代数式表示出在甲、乙两家批发x千克苹果所需费用,再比较大小,列出不等式,求出x的范围,即可得到结论.【详解】(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(240−150)×8×75%=1600(元),∵1632>1600,∴在乙家批发更优惠;(2)①若100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(x−50)×8×85%=6.8x+40,∵6.8x <6.8x+40,∴师傅应选择甲家批发商所花费用更少;②若x>150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(x−150)×8×75%=6x+160, 当6.8x=6x+160时,即x=200时,师傅选择两家批发商所花费用一样多,当6.8x >6x+160时,即x >200时,师傅应选择乙家批发商所花费用更少,当6.8x <6x+160时,即150<x <200时,师傅应选择甲家批发商所花费用更少.综上所得:当x=200时他选择任何一家批发所花费用一样多;当100<x <200时,师傅应选择甲家批发商所花费用更少;当x >200时,师傅应选择乙家批发商所花费用更少.【点睛】本题主要考查代数式,一元一次方程,一元一次不等式的综合实际应用,理清数量关系,列出代数式,不等式或方程,是解题的关键.22.(1)x=2或x=-8;(2)-1≤x≤5;(3)x >5或x <-3.【分析】(1)利用在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8求解即可; (2)先求出|2|3-=x 的解,再求出|2|3x -≤的解集即可;(3)先在数轴上找出428-++=x x 的解,即可得出428x x -++>的解集.【详解】解:(1)∵在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8∴方程35x +=的解为x=2或x=-8(2)∵在数轴上到2对应的点的距离等于3的点的对应的数为-1或5∴方程|2|3-=x 的解为x=-1或x=5∴|2|3x -≤的解集为-1≤x≤5.(3)由绝对值的几何意义可知,方程428-++=x x 就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x 的值.∵在数轴上4和-2对应的点的距离是6∴满足方程的x 的点在4的右边或-2的左边若x 对应的点在4的右边,可得x=5;若x 对应的点在-2的左边,可得x=-3∴方程428-++=x x 的解为x=5或x=-3 ∴428x x -++>的解集为x >5或x <-3.故答案为(1)x=2或x=-8;(2)-1≤x≤5;(3)x >5或x <-3.【点睛】本题考查了绝对值及不等式的知识. 解题的关键是理解12||x x -表示在数轴上数1x 与数2x 对应的点之间的距离.23.(1)-2.5,2;(2)k =-8或-6或-4;(3)2,1,-1,-2,532a -≤-< 【分析】(1)根据连动数的定义即可确定;(2)先表示出x ,y 的值,再根据连动数的范围求解即可;(3)求得不等式的解,根据连动整数的概念得到关于a 的不等式,解不等式即可求得.【详解】解:(1)∵点P 是线段AB 上一动点,点A 、点B 对应的数分别是-1,1,又∵|PQ |=2,∴连动数Q 的范围为:31-Q ≤≤-或13Q ≤≤,∴连动数有-2.5,2;(2)321431x y k x y k +=+⎧⎨+=-⎩①②, ②×3-①×4得:=7y k --,①×3-②×2得:5x k =+,要使x ,y 均为连动数,31x -≤≤-或13x ≤≤,解得86-≤≤-k 或42k -≤≤-31y -≤≤-或13y ≤≤,解得64-≤≤-k 或108-≤≤-k∴k =-8或-6或-4;(3)263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩解得: 323x x a <⎧⎨≥+⎩, ∵解集中恰好有4个解是连动整数,∴四个连动整数解为-2,-1,1,2,∴3232a -<+≤-, ∴532a -<≤- ∴a 的取值范围是532a -<≤-. 【点睛】本题考查了解一元一次不等式组的整数解,一元一次方程的解,根据新定义得到不等式组是解题的关键,24.(1)是;(2)k 的最小值为﹣23,最大值为83 【分析】(1)分别解出两个方程,得到x ﹣y 的值,即可确定两个方程是“友好方程”;(2)分别解两个方程为x =1,325k y +=,再由已知可得﹣1≤3215k +-≤1,求出k 的取值范围为即可求解.【详解】解:(1)由2x ﹣9=5x ﹣2,解得x =73-, 由5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y ,解得y =﹣3,∴x ﹣y =23, ∴﹣1≤x ﹣y ≤1,∴方程2x ﹣9=5x ﹣2与方程5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y 是“友好方程”; (2)由3x ﹣3+4(x ﹣1)=0,解得x =1, 由3212y k y k ++=+,解得325k y +=, ∵两个方程是“友好方程”,∴﹣1≤x ﹣y ≤1,∴﹣1≤3215k +-≤1, ∴2833k -≤≤ ∴k 的最小值为﹣23,最大值为83. 【点睛】本题主要考查了解一元一次方程和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.25.(1)2x +3=1的解是不等式12x -<3的理想解,过程见解析;(2)2<x 0+2y 0<8 【分析】(1)解方程2x +3=1的解为x =﹣1,分别代入三个不等式检验即可得到答案; (2)由方程x ﹣2y =4得x 0=2y 0+4,代入不等式解得﹣12<y 0<1,再结合x 0=2y 0+4,通过计算即可得到答案.【详解】(1)∵2x +3=1∴x =﹣1, ∵x ﹣12=﹣1﹣12=﹣32<32∴方程2x +3=1的解不是不等式1322x ->的理想解; ∵2(x +3)=2(﹣1+3)=4,∴2x +3=1的解不是不等式2(x +3)<4的理想解;∵12x -=112--=﹣1<3, ∴2x +3=1的解是不等式12x -<3的理想解; (2)由方程x ﹣2y =4得x 0=2y 0+4,代入不等式组31x y >⎧⎨<⎩,得002431y y +>⎧⎨<⎩; ∴﹣12<y 0<1,∴﹣2<4y 0<4,∵00000422244x y y y y =+=+++∴2<x 0+2y 0<8.【点睛】本题考查了一元一次不等式、一元一次方程、代数式、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式、代数式的性质,从而完成求解.26.(1)A (-3,2),B (3,6);(2)△ABO 的面积为12;(3)点A '的横坐标的取值范围是04A x '<<.【分析】(1)根据算术平方根和绝对值的非负性可得a =-3,b =2,进而可求得A ,B 两点的坐标;(2)过A 作AE ⊥x 轴,垂足为E ,过B 作BF ⊥x 轴,垂足为F ,根据ABO AEO BOF AEFB S S S S =--梯形即可求得答案;(3)先根据1122ABO A B S CO x CO x =⋅+⋅△可求得点C 的坐标,设B '(m ,0),根据平移的性质可得A '(m -6,-4),过点A '、B '、C 分别作坐标轴的平行线,交点记为点M 、N 、H ,根据A B C A MC A B H CB N A HNM SS S S S '''''''=---四边形可得122S m =+,再根据24<S <32可求得610m <<,进而可求得点A '的横坐标的取值范围. 【详解】解:(1)∵320a b ++-=,30a +≥,20b -≥,∴a +3=0且b -2=0,∴a =-3,b =2,又∵A (a ,b ),B (-a ,3b ),∴A ,B 两点的坐标为A (-3,2),B (3,6);(2)如图,过A 作AE ⊥x 轴,垂足为E ,过B 作BF ⊥x 轴,垂足为F ,。

七年级数学《不等式与不等式组》复习题二(附解析)

七年级数学《不等式与不等式组》复习题二(附解析)

七年级数学《不等式与不等式组》复习题二(附解析)一、单选题1.一元一次不等式x+1≥2的解在数轴上表示为()A.B.C.D.2.不等式组2x+3>5{3x2<4-的解等于()A.1<x<2B.x>1C.x<2D.x<1或x>2 3.不等式组的最小整数解为()A.1B.2C.5D.64.当x=3时,下列不等式成立的是()A.x+3>5B.x+3>6C.x+3>7D.x+3>85.不等式组211423xx x+>-⎧⎨+>⎩的最大正整数解为()A.1B.2C.3D.46.已知非负数x,y,z满足325234x y z-++==,设32W x y z=-+,则W的最大值与最小值的和为()A.2-B.4-C.6-D.8-7.若关于x的不等式组13231x ax-⎧≥⎪⎨⎪-≤-⎩无解,且关于y的方程2122y ay y++=--的解为正分数,则符合题意的整数a 有()A.1个B.2个C.3个D.4个8.如果对于某一特定范围内的x 的任意允许值,P =|10﹣2x |+|10﹣3x |+|10﹣4x |+|10﹣5x |+…+|10﹣10x |为定值,则此定值是()A.20B.30C.40D.509.已知关于x 、y 的方程组,给出下列说法:①当a =1时,方程组的解也是方程x +y =2的一个解;②当x -2y >8时,15a >;③不论a 取什么实数,2x +y 的值始终不变;④若25y x =+,则4a =-.以上说法正确的是()A.②③④B.①②④C.③④D.②③10.若整数a 使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是().A.-3B.-4C.-10D.-14二、填空题11.若关于x ,y 的二元一次方程组2134x y ax y -=-⎧⎨+=⎩的解满足40x y -<,则a 的取值范围是________.12.不等式组113243x x x ->⎧⎨+≥-⎩的解集是__________.13.关于x 的不等式组,22213x bx b-≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________14.已知关于x 的不等式组200x x a +⎧⎨-≤⎩>的整数解共有4个,则a 的最小值为________.15.某商品的成本价为240元,出售时标价360元,由于换季,商店准备打折销售,但要保证利润不低于20%,则最多能打____折.16.对于实数x ,规定[]x 表示不大于x 的最大整数,例如[]1.21=,[]2.53-=-,若[]21x -=-,则x 的取值范围为______.17.如图,在矩形ABCD 中,16 , 6 AB cm AD cm ==.点E 从点D 出发以1 /cm s 的速度向点C 运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 从点C 出发以2 /cm s 的速度向点D 运动,当直线MN 和正方形AEFG 开始有公共点时,点E 运动的时间为__________s18.若不等式(a-2)x>a-2可以变形为x<1,则a 的取值范围为_____.19.将长为4,宽为a (a 大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当3n =时,a 的值为___________.20.已知关于x 的不等式组255332x t x t x +⎧->⎪⎪⎨+⎪->⎪⎩恰有三个整数解,则t 的取值范围为__________.三、解答题21.已知在平面直角坐标系中,O 为坐标原点,点A 的坐标为(),0a ,点B 的坐标为(),2b ,点C 的坐标为(),c d ,其中a、b、c 满足方程组21223a b c a b c -+=⎧⎨--=⎩.(1)若点C 到x 轴的距离为6,则d 的值为_______.(2)连接AB ,线段AB 沿y 轴方向平移得到线段A B '',平移过程中线段AB 扫过的面积为15,求平移后点B ′的纵坐标;(3)连接AB AC BC 、、,若ABC 的面积小于等于7,求d 的取值范围.22.某商场分别以每盏150元,190元的进价购进A,B 两种的护眼灯,下表是近两天的销售情况.销售日期销售数量(盏)销售收入(元)AB 第一天21680第二天341670(1)求A,B 两种护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种的护眼灯共30盏,求B 护眼灯最多采购多少盏?23.如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有;(直接写出结果)(2)若k 使得方程组321431x y k x y k +=+⎧⎨+=-⎩中的x ,y 均为连动数,求k 所有可能的取值;(3)若关于x 的不等式组263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.24.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.25.阅读下列材料:解答“已知2x y -=,且1x >,0y <,试确定x y +的取值范围”有如下解法:解:因为2x y -=,所以2x y =+,又因为1x >,所以21y +>,所以1y >-,所以10y -<<①,同理:12x <<②,①+②得:1102y x -+<+<+,所以x y +的取值范围是02x y <+<.请仿照上述解法,完成下列问题:(1)已知3x y -=,且2x >,1y <,则x y +的取值范围是多少.(2)已知1y >,1x <-,若x y a -=,求x y +的取值范围(结果用含a 的式子表示).参考答案1.A【分析】先求出不等式的解集,依据解集在数轴上的表示法即可解答.【详解】x+1≥2,x≥2-1,x≥1.由不等号为“≥”,即在数轴上的“1”处为实心点,线的方向为右,故不等式的解集x≥1在数轴上表示为:故选A.2.A因此,解2x+3>5得,x>1;解3x-2<4得,x<2,∴此不等式组的解集为:1<x<2.故选A.3.B【解析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,从而可得最小整数解.解不等式﹣a≥﹣6,得:a≤6,解不等式>5,得:a>1,∴1<a≤6,∴该不等式组的最小整数解为24.A【分析】根据不等式的定义求解即可.【详解】A、x+3=6>5,故A符合题意;B、x+3=6,故B不符合题意;C、x+3=6<7,故C不符合题意;D、x+3=6<8,故D不符合题意;故选:A.5.C【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【详解】解不等式211x+>-得:x>−1,解不等式423+>得:x<4,x x∴不等式组的解集为−1<x<4,∴不等式组的最大正整数解为3,故选:C.6.C 【分析】首先设325234x y z k -++===,求得23x k =-+,32y k =-,45z k =-,又由x ,y ,z 均为非负实数,即可求得k 的取值范围,则可求得W 的取值范围.【详解】解:设325234x y z k -++===,则23x k =-+,32y k =-,45z k =-,x ,y ,z 均为非负实数,∴230320450k k k -+⎧⎪-⎨⎪-⎩,解得5342k ,于是323(23)2(32)(45)88W x y z k k k k =-+=-+--+-=-+,3588888824k ∴-⨯+-+-⨯+ ,即42W -- .W ∴的最大值是2-,最小值是4-,W ∴的最大值与最小值的和为6-,故选:C.7.C 【解析】分析:由不等式组无解确定a 的取值范围,由方程的解是正数确定a 的范围,结合这两个范围及方程的解是正分数确定a 的值.详解:解不等式组13231x ax-⎧≥⎪⎨⎪-≤-⎩,得31x ax≥⎧⎨≤⎩+,因为不等式组无解,所以a+3>1,则a>-2,解方程2122y ay y--++=,得y=42a-,所以4-a>0,则a<4.所以-2<a<4,因为y=42a-是分数,所以a取-2和4之间的奇数,所以a的可以取的值为-1,1,3.故选C.8.B【分析】若P为定值,则化简后x的系数为0,由此可判定出x的取值范围,然后再根据绝对值的性质进行化简.【详解】∵P=|10-2x|+|10-3x|+|10-4x|+…+|10-10x|为定值,∴求和后,P最后结果不含x,亦即x的系数为0,∵2+3+4+5+6+7=8+9+10,∴x的取值范围是:10-7x≥0且10-8x≤0或10-7x≤0且10-8x≥0,解得:54≤x≤107,∴P=(10-2x)+(10-3x)+…+(10-7x)-(10-8x)-(10-9x)-(10-10x)=60-30=30.故选B.9.A【解析】当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;通过加减消元法可解方程组为x=3+a,y=-2a-2,代入x-2y>8可解得a>15,故②正确;2x+y=6+2a+(-2a-2)=4,故③正确;代入x、y 的值可得-2a-2=(3+a)2+5,化简整理可得a=-4,故④正确.故选:A 10.D 【分析】根据不等式组求出a 的范围,然后再根据关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数得到26a -=-或12-,从而确定所有满足条件的整数a 的值的和.【详解】解:125262x x x a++⎧⎪⎨⎪->⎩ ,不等式组整理得:22x x a ⎧⎨>+⎩,由不等式组至少有4个整数解,得到21a +<-,解得:3a <-,解方程组206ax y x y +=⎧⎨+=⎩,得12262x a a y a ⎧=-⎪⎪-⎨⎪=⎪-⎩,又 关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,26a ∴-=-或12-,解得4a =-或10a =-,∴所有满足条件的整数a 的值的和是14-.故选:D .11.3a >-【分析】通过已知的方程组得到43x y a -=--,再根据已知条件计算即可;【详解】∵2134x y a x y -=-⎧⎨+=⎩,∴43x y a -=--,又∵40x y -<,∴3<0a --,∴3a ->.故答案为3a ->.12.23x <≤【分析】先分别解出各不等式的解集,再求出其公共解集即可.【详解】解113243x x x ->⎧⎨+≥-⎩①②解不等式①得x>2,解不等式②得3x ≤∴不等式组的解集为23x <≤13.b>-3【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①②解不等式①得:22≥+x b 解不等式②得:312+≤b x 所以不等式组的解集为31222++≤≤b b x ∵此不等式无解,∴31222++>b b 解得:3b >-故答案为:3b >-.14.2【解析】解:200x x a +⎧⎨-≤⎩ >①②,解①得:x >﹣2,解②得:x ≤a .则不等式组的解集是﹣2<x ≤a .∵不等式有4个整数解,则整数解是﹣1,0,1,2.则a 的范围是2≤a <3.a 的最小值是2.故答案为:2.15.八【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x折,由题意得360×0.1x﹣240≥240×20%,解得:x≥8.答:最多打八折.故答案为:八.16.1≤x<2【分析】根据[x]的定义可知,x-3<[x-2]≤x-2,然后求解关于x不等式组即可.【详解】解:根据定义可知:x-1<[x]≤x∴x-3<[x-2]≤x-2∴3121 xx--⎧⎨-≥-⎩<解得:1≤x<2.故答案为1≤x<2.17.10 3【分析】首先过点F作FL⊥C于点L,证明△ADE≌△ELF,进而得出AD=EL,得出当直线MN与正方形AEFG开始有公共点时:DL+CM≥16,进而求出即可.【详解】解:如图,过点F作FL⊥CD于点L,∵在四边形AEFG中,,∠AEF=90°,AE=EF ∴∠AED+∠FEL=90°,∵∠DAE+∠AED=90°∴∠DAE=∠FEL在△ADE和△ELF中DAE FEL D FLE AE EF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△ELF(AAS)∴AD=EL=6当直线MN和正方形AEFG开始有公共点时,DL+CM≥16∴DE+EL+MC≥16,即t+6+2t≥16解得:t≥10 3所以当经过103秒时,直线MN和正方形AEFG开始有公共点故答案为:10 318.a<2【详解】根据一元一次不等式的解法和基本性质,可由(a-2)x>a-2的解集为x<1,可知a-2<0,解得a<2.故答案为a<2.19.3或125【分析】根据题意,第一次和第二次操作后,通过列不等式并求解,即可得到a 的取值范围;第三次操作后,通过列一元一次方程并求解,即可得到答案.【详解】根据题意,第一次操作,当剩下的长方形宽为:4a -,长为:a 时,得:4a a -<∴2a >当剩下的长方形宽为:a ,长为:4a -时,得:4a a<-∴2a <∵24a <<∴第一次操作,当剩下的长方形宽为:4a -,长为:a ;第二次操作,当剩下的长方形宽为:4a -,长为:()424a a a --=-时,得:424a a -<-解得:83a >∴843a <<当剩下的长方形宽为:24a -,长为:4a -时,得:424a a ->-解得:83a <∴823a <<∵在第n 次操作后,剩下的长方形恰为正方形,且3n =∴第三次操作后,当剩下的正方形边长为:4a -时,得:()4244a a a -=---解得:3a =∵8233<<∴3a =符合题意;当剩下的正方形边长为:24a -时,得:()24424a a a -=---解得:125a =∵128253<<∴125a =符合题意;∴a 的值为:3或125故答案为:3或125.20.3423t -≤<-【分析】先求出不等式组的解集,再根据不等式组恰有三个整数解,结合数轴,分4种情况分析讨论,分别求解即可.【详解】255332x t x t x +⎧->⎪⎪⎨+⎪->⎪⎩①②解不等式①得:352t x >+解不等式②得:32x t<-要使不等式组有解,则35322t t +<-,解得:47t <-此时,329295,32277t t +<->则不等式组的解集为:35322t x t+<<-要使不等式组恰有三个整数解,需分以下4种情况讨论:(1)当不等式组的解集表示在数轴上如图1时,其恰好有2,3,4三个整数解则31522293257t t ⎧≤+<⎪⎪⎨⎪<-≤⎪⎩,解得:823417t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,无公共部分,不符合题意(2)当不等式组的解集表示在数轴上如图2时,其恰好有3,4,5三个整数解则325325326t t ⎧≤+<⎪⎨⎪<-≤⎩,解得:423312t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,公共部分为3423t -≤<-(3)当不等式组的解集表示在数轴上如图3时,其恰好有4,5,6三个整数解则335426327t t ⎧≤+<⎪⎨⎪<-≤⎩,解得:4233322t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,无公共部分,不符合题意(4)当不等式组的解集表示在数轴上如图4时,其恰好有5,6,7三个整数解则32945277328t t ⎧≤+<⎪⎨⎪<-≤⎩,解得:2437522t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,无公共部分,不符合题意综上,当3423t -≤<-时,题干中的不等式组恰好有三个整数解故答案为:3423t -≤<-.21.(1)±6;(2)5或-1;(3)1825d -≤≤且45d ≠-【分析】(1)利用点到坐标轴的距离的特点即可得出结论;(2)先找出5a b -=,进而根据平移的性质,得出AA BB ''=,再用面积公式即可求出点B 平移后的坐标;(3)先得出5b a =-,2c a =+,分两种情况,利用面积的和差表示出三角形ABC 的面积,进而建立不等式求解即可.【详解】解:(1)点C 的坐标为(,)c d 且到x 轴的距离为6,6d ∴=,6d ∴=±,故答案为:6±;(2)如图1,设直线BB '交x 轴于点D .21223a b c a b c -+=⎧⎨--=⎩①②,∴①+②得,3315a b -=,5a b ∴-=,5b a ∴=-;5AD a b ∴=-=,①2-⨯②得,336a c -=-,2a c ∴-=-,2c a ∴=+,设平移后B 的对应点(,)B b m ',|2|AA BB m ''∴==-,线段AB 扫过的面积为15,()1525AA B B S AA a b m ''∴=='⨯-=-⨯ ,5m ∴=或1m =-,∴平移后B 点的坐标B '的纵坐标为5或-1.(3)如图2,①当点C 在直线AB 上方时,过点B 作BD x ⊥轴于D ,过点C 作CF x⊥轴交x 轴于E ,BA 的延长线于F ,连接BE .设EF x =,则AEFBEF ABE S S S ∆∆∆=-,∴1112722222x x ⨯⨯=⨯⨯=⨯⨯,45x ∴=,45EF ∴=,45d ∴>-,450d ∴+>,由(2)知,2c a -=,2AE ∴=,7DE AD AE ∴=+=,2BD =,(,)C c d ,||CE d ∴=,ABC ABD ACEBDEC S S S S ∆∆∆∴=--梯形111()222BD CE DE AD BD AE CE =+⨯-⨯-⨯1||)7522||]2d d =+⨯-⨯-⨯1(147||102||)2d d =+--1(45||)2d =+522d =+,ABC ∆ 的面积小于等于7,07ABC S ∆∴<≤,50272d ∴<+≤,425d ∴-<≤;②当点C 在直线AB 下方时,即:45d <-,如图3,过点B 作BD x ⊥轴于D ,过点C 作CF x ⊥轴交x 轴于E ,过点B 作BF CE ⊥于F ,ABC BCF ACEAEFB S S S S ∆∆∆=--梯形()111222CF BF AE BF BD AE CE =⋅-+⋅-⋅1[()]2CF BF AE BF BD AE CE =⋅-+⋅-⋅1[(2)7(27)22()]2d d =-⨯-+⨯--1(54)2d =--522d =--ABC ∆ 的面积小于等于7,07ABC S ∆∴<≤,50272d ∴<--≤,18455d ∴-≤<-,即:d 的取值范围为1825d -≤≤且45d ≠-.22.(1)A 为210元/盏,B 为260元/盏.(2)10盏.【详解】(1)设A 护眼灯的销售价为x 元/盏,B 护眼灯的销售价为y 元/盏,依题意,得:2680341670x y x y +=⎧⎨+=⎩,解得:210260x y =⎧⎨=⎩.答:A 护眼灯的销售价为210元/盏,B 护眼灯的销售价为260元/盏.(2)设采购m 盏B 护眼灯,则采购(30-m)盏A 护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B 护眼灯最多采购10盏.销售日期销售数量(盏)销售收入(元)A 品牌B 品牌第一天21680第二天34167023.(1)-2.5,2;(2)k =-8或-6或-4;(3)2,1,-1,-2,532a -≤-<【分析】(1)根据连动数的定义即可确定;(2)先表示出x ,y 的值,再根据连动数的范围求解即可;(3)求得不等式的解,根据连动整数的概念得到关于a 的不等式,解不等式即可求得.【详解】解:(1)∵点P 是线段AB 上一动点,点A 、点B 对应的数分别是-1,1,又∵|PQ |=2,∴连动数Q 的范围为:31-Q ≤≤-或13Q ≤≤,∴连动数有-2.5,2;(2)321431x y k x y k +=+⎧⎨+=-⎩①②,②×3-①×4得:=7y k --,①×3-②×2得:5x k =+,要使x ,y 均为连动数,31x -≤≤-或13x ≤≤,解得86-≤≤-k 或42k -≤≤-31y -≤≤-或13y ≤≤,解得64-≤≤-k 或108-≤≤-k ∴k =-8或-6或-4;(3)263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩解得:323x x a <⎧⎨≥+⎩,∵解集中恰好有4个解是连动整数,∴四个连动整数解为-2,-1,1,2,∴3232a -<+≤-,∴532a -<≤-∴a 的取值范围是532a -<≤-.25.912a ≤<【分析】解不等式得:3a x ≤,则三个正整数为1,2,3.则34,9123a a ≤<≤<【解析】解不等式3x -a ≤0,得:3a x ≤;因为只有三个正整数解,则34,9123a a ≤<≤<.故答案:912a ≤<.25.(1)1<x+y<5;(2)22a x y a +<+<--.【详解】(1)∵3x y -=,∴3x y =+,又∵2x >,∴321y y +>⇒>-,∴11y -<<①,同理24x <<②,①+②得1241x y -+<+<+,∴x y +的取值范围是15x y <+<;(2)∵x y a -=,∴x a y =+,又∵1x <-,∴11a y y a +<-⇒<--,∴11y a <<--,同理11a x +<<-,∴22a x y a +<+<--,∴x y +的取值范围是22a x y a +<+<--.。

人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)

人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)

人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)一.选择题(共10小题,每小题3分,共30分) 1.不等式3(2)4x x -+…的解集是( )A .5x …B .3x …C .5x …D .5x -…2.若点(1,)P m m -在第二象限,则(1)1m x m ->-的解集为( ) A .1x <B .1x <-C .1x >D .1x >-3.如果a b >,则下列不等式一定成立的是( ) A .11a b -<-B .a b ->-C .22ac bc >D .22a b -<-4.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .1x -…B .1x >C .31x -<-…D .3x >-5.已知关于x 的不等式(2)1a x ->的解集是12x a<-;则a 的取值范围是( ) A .0a >B .0a <C .2a <D .2a >6.把不等式组13264x x +⎧⎨-->-⎩…中每个不等式的解集在同一条数轴上表示出来, 正确的为( ) A . B . C .D .7.若方程3(1)1(3)5m x m x x ++=--的解是负数,则m 的取值范围是( ) A . 1.25m >-B . 1.25m <-C . 1.25m >D . 1.25m <8.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A .5千米B .7千米C .8千米D .15千米9.关于x 的不等式组24351x x -<⎧⎨-<⎩的所有整数解是( )A .0,1B .1-,0,1C .0,1,2D .2-,0,1,210.如图,天平右盘中的每个砝码的质量为10g ,则物体M 的质量()m g 的取值范围在数轴上可表示为( )A .B .C .D .二.填空题(共8小题,每小题3分,共24分) 11.x 与5-的差不小于3-,用不等式表示为 .12.不等式13x ->-的正整数解是 . 13.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是 . 14.小马用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小马最多能买支 钢笔.15.已知实数x ,y ,a 满足34x y a ++=,30x y a --=.若11a -剟,则2x y +的取值范围是 . 16.同时满足310x >和161043x x -<的整数解是 . 17.若关于x 的不等式组010x m x -⎧⎨-<⎩…无解,则m 的取值范围是 .18.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A 种型号的污水处理设备x 台,可列不等式组 .三.解答题(共7小题,满分46分,其中19、20、21每小题6分,22题9分,23题6分,24题8分,25题5分)19.解不等式组,并将解集在数轴上表示出来.()()2731,1542x x x x -<-⎧⎪⎨-+⋅⎪⎩①②…20.已知不等式1()23x m m ->-.(1)若其解集为3x >,求m 的值;(2)若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围. 21.方程组323x y x y a -=⎧⎨+=-⎩的解为负数,求a 的范围.22.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.若不等式组2311(3)2x x x +<⎧⎪⎨>-⎪⎩的整数解是关于x 的方程24x ax -=的根,求a 的值. 24.某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元?(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?25.阅读解题:解方程:|3|1x=.解:①当30x…时,原方程可化为一元一次方程为31x=,它的解是13x=;②当30x<时,原方程可化为一元一次方程为31x-=,它的解是13x=-.请你模仿上面例题的解法,解方程:2|3|513x-+=.2018—2019学年人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)参考简答一.选择题(共10小题)1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.A . 8.C . 9.B . 10.C . 二.填空题(共8小题)11. 53x +-… . 12. 1,2 . 13. 1143x … . 14. 13 . 15. 026x y +剟 . 16. 4、5、6、7 . 17. 1m … . 18. 1210(8)89200160(8)1380x x x x +-⎧⎨+-⎩……. 三.解答题(共7小题)19.解不等式组,并将解集在数轴上表示出来.()()2731,1542x x x x -<-⎧⎪⎨-+⋅⎪⎩①②…【解】:解不等式①,得4x >-, 解不等式②,得2x …,把不等式①②的解集在数轴上表示如图,原不等式组的解集为42x -<…. 20.已知不等式1()23x m m ->-. (1)若其解集为3x >,求m 的值;(2)若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围. 【解】:(1)不等式整理得:63x m m ->-, 解得:62x m >-,由不等式的解集为3x >,得到623m -=, 解得: 1.5m =;(2)由满足3x >的每一个数都能使已知不等式成立,得到623m -…, 解得: 1.5m …. 21.方程组323x y x y a -=⎧⎨+=-⎩的解为负数,求a 的范围.【解】:(1)-(2)得:603a y -=< 可得6a <代入(1)得:1103x a =+< 解得3a <-3a ∴<-.22.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 【解】:(1)设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,根据题意得方程组得:8395056800a b a b +=⎧⎨+=⎩,解方程组得:10050a b =⎧⎨=⎩, ∴购进一件A 种纪念品需要100元,购进一件B 种纪念品需要50元;(2)设该商店购进A 种纪念品x 个,则购进B 种纪念品有(100)x -个,∴10050(100)750010050(100)7650x x x x +-⎧⎨+-⎩……,解得:5053x 剟,x为正整数,50x =,51,52,53 ∴共有4种进货方案,分别为:方案1:商店购进A 种纪念品50个,则购进B 种纪念品有50个; 方案2:商店购进A 种纪念品51个,则购进B 种纪念品有49个; 方案3:商店购进A 种纪念品52个,则购进B 种纪念品有48个; 方案4:商店购进A 种纪念品53个,则购进B 种纪念品有47个. (3)因为B 种纪念品利润较高,故B 种数量越多总利润越高, 设利润为W ,则关于W 的代数式为:2030(100)103000W x x x =+-=-+.x 越大,103000x -+的值越小,∴选择购A 种50件,B 种50件.总利润502050302500=⨯+⨯=(元)∴当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.23.若不等式组2311(3)2x x x +<⎧⎪⎨>-⎪⎩的整数解是关于x 的方程24x ax -=的根,求a 的值. 【解】:()231132x x x +<⎧⎪⎨>-⎪⎩①② 解①得22x <-,即1x <-, 解②得23x x >-,即3x >-, 综上可得31x -<<-,x 为整数,故2x =-将2x =-代入24x ax -=, 解得4a =.24.某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元? (2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?【解】:(1)当两个班分别购买门票时, 甲班购买门票的费用为56100.8448⨯⨯=元 乙班购买门票的费用54100.8432⨯⨯=元 甲乙两班分别购买门票共需花费880元 当两个班一起购买门票时,甲乙两班共需花费(5654)100.7770+⨯⨯=元 答:甲乙两班购买门票最少共需花费770元.(2)当多于30人且不足100人时,设有x 人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜,根据题意得301000.8101000.710x x <<⎧⎨⨯>⨯⨯⎩解得87.5100x <<答:当多于30人且不足100人时,至少有88人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜. 25.阅读解题:解方程:|3|1x =.解:①当30x …时,原方程可化为一元一次方程为31x =,它的解是13x =; ②当30x <时,原方程可化为一元一次方程为31x -=,它的解是13x =-. 请你模仿上面例题的解法,解方程:2|3|513x -+=. 【解】:当30x -…时,原方程可化为34x -= 它的解是7x =;当30x -<时,原方程可化为(3)4x --= 它的解是1x =-;所以原方程的解是7x =或1x =-.人教版七年级下册第九章《不等式与不等式组》测试题一、单选题(每小题只有一个正确答案)1.下列各式中:①:②:③:④;⑤:⑥,不等式有()A.2个B.3个C.4个D.5个2.若,则下列各式中一定成立的是( )A.B.C.D.3.下列各数中,能使不等式x–3>0成立的是()A.–3 B.5 C.3 D.24.下列说法中,错误的是( )A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解5.四个小朋友在公园玩跷跷板,他们的体重分别为P,Q,R,S,由图可知,这四个小朋友体重的大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q6.下列式子①7>4;②3x≥2π+1;③x+y>1;④x2+3>2x;⑤>4中,是一元一次不等式的有()A.4个B.3个C.2个D.1个7.“x的3倍与2的差不大于7”列出不等式是( )A.3x-2>7 B.3x-2<7 C.3x-2≥7 D.3x-2≤78.不等式组的解集在数轴上表示为( )A.B.C.D.9.若关于x的不等式(a–1)x>a–1的解集是x>1,则a的取值范围是()A.a<0 B.a>0 C.a<1 D.a>110.某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x道题,根据题意列式得()A.5x﹣3(30﹣x)>70 B.5x+3(30﹣x)≤70C.5x﹣3(30+x)≥70 D.5x+3(30﹣x)>7011.已知点在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.12.若关于x的不等式组有6个整数解,则m的取值范围是()A.-4<m≤-3 B.-3≤m<-2 C.-4≤m<-3 D.-3<m≤-2二、填空题13.请你写出一个满足不等式2x-1<6的正整数x的值:________.14.不等式12-4x≥0的非负整数解是_______15.x的与12的差是负数,用不等式表示为________.16.某种商品的进价为每件100元,商场按进价提高60%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.17.已知关于X的不等式组的解集为-1<x<2,则(m+n)2019的值是_______.三、解答题18.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;(3)a的9倍与b的的和是正数.19.解下列不等式(或组),并把解集表示在数轴上.①②③④20.解不等式组:并写出它的所有整数解.21.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式已知小诚家距离学校2200米,他步行的平均速度为80米分,跑步的平均速度为200米分若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?22.某单位需要将一批商品封装入库,因此打算购进A、B两种型号的包装盒共100个,若购买3个A型包装盒和2个B型包装盒共需550元,且A型包装盒的单价是3型包装盒单价的3倍,每个A型包装盒可容纳500件该商品,每个B型包装盒可容纳200件该商品。

人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案

人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案

人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.若,则下列式子正确的是()A.B.C.D.2.某超市花费元购进苹果千克,销售中有的正常损耗,为避免亏本其它费用不考虑,售价至少定为多少元千克?设售价为元千克,根据题意所列不等式正确的是()A.B.C.D.3.不等式的解集为()A.B.C.D.4.不等式组的解集在数轴上表示为()A.B.C.D.5.已知的解满足,则的取值范围是()A.B.C.D.6.某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至多可以答错或不答的试题道数为()A.5 B.6 C.7 D.87.某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折8.如图点A表示的数是-2,点B表示的数是3,点C是(与点A、B不重合)线段AB上的一点,且点C表示的数是,则x的取值范围是()A.B.C.D.二、填空题9.不等式组的整数解是.10.已知不等式组无解,则的取值范围是.11.某超市以每个50元的进价购入100个玩具,并以每个75元的价格销售,两个月后玩具的销售款已超过这批玩具的进货款,这时至少已售出玩具.12.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子.13.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.三、计算题14.解不等式组,并把解集在数轴上表示出来.15.若关于x的不等式组恰有三个整数解,求实数a的取值范围.16.某市电力部门]实行两种电费计价方法.方法一是使用“峰谷电”:每天8:00至22:00,用电每千瓦时收费0.56元(“峰电”价);22 :00到次日8:00,每千瓦时收费0.28元(“谷电”价).方法二是不使用“峰谷电”:每千瓦时均收费0.53元如果小林家上月总用电量为140千瓦时,那么当“峰电”用量为多少时,使用“峰谷电”比较合算?17.我区某中学体育组因高中教学需要本学期购进篮球和排球共80个,共花费5800元,已知篮球的单价是80元/个,排球的单价是50元/个.(1)篮球和排球各购进了多少个(列方程组解答)?(2)因该中学秋季开学准备为初中也购买篮球和排球,教学资源实现共享,体育组提出还需购进同样的篮球和排球共40个,但学校要求花费不能超过2810元,那么篮球最多能购进多少个(列不等式解答)?18.某社区原来每天需要处理生活垃圾920吨,刚好被12个A型转运站和10个B型转运站处理.已知一个A型转运站比一个B型转运站每天多处理7吨生活垃圾.(1)每个A型或B型转运站每天处理生活垃圾各多少吨?(2)由于垃圾分类要求的提高,每个转运站每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该社区每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型转运站共5个,试问至少需要增设几个A型转运站才能当日处理完所有生活垃圾?参考答案:1.C2.A3.D4.A5.C6.B7.B8.A9.-2 , -1 ,0,1,210.m≥-311.6712.413.3314.解:解不等式①,得:解不等式②,得:则不等式组的解集为:将不等式组的解集表示在数轴上如图:15.解:解不等式①,得解不等式②,得 .∵不等式组恰有三个整数解, .16.解:设小林家每月“峰电”用电量为x千瓦时则0.56x+0.28(140-x) <0.53×140解得x<125.即当“峰电”用电量小于125千瓦时使用“峰谷电”比较合算17.(1)解:设购进篮球x个,购进排球y个根据题意得:解得: .答:购进篮球60个,购进排球20个.(2)解:设购进篮球m个,则购进排球(40-m)个根据题意得:80m+50(40-m)≤2810解得:m≤27.答:篮球最多能购进27个.18.(1)解:设每个B型转运站每天处理生活垃圾x吨,则每个A型转运站每天处理生活垃圾吨.根据题意可得解得:.答:每个B型点位每天处理生活垃圾38吨;(2)解:设需要增设y个A型转运站才能当日处理完所有生活垃圾由(1)得每个A型转运站每天处理生活垃圾45吨分类要求提高后,每个A型点位每天处理生活垃圾(吨)每个B型转运站每天处理生活垃圾(吨)根据题意可得:解得∵y是正整数,∴符合条件的y的最小值为3答:至少需要增设3个A型转运站才能当日处理完所有生活垃圾.。

【教师卷】初中数学七年级数学下册第九单元《不等式与不等式组》复习题(培优)(2)

【教师卷】初中数学七年级数学下册第九单元《不等式与不等式组》复习题(培优)(2)

一、选择题1.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D . B解析:B【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得.【详解】 32x x -≤,23x x --≤-,33x -≤-,1≥x ,由此可知,只有选项B 表示正确,故选:B .【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键. 2.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节, 根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.3.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( ) A .B .C .D . D解析:D【解析】 试题分析:10{360x x -≤-<①②,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.4.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( )A .2B .3C .4D .5D解析:D【分析】将x 3=代入不等式得到关于a 的不等式,求解即可.【详解】根据题意,x 3=是不等式的一个解,∴将x 3=代入不等式,得:6a 20--<,解得:4a >,则a 可取的最小整数为5,故选:D.【点睛】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a 的不等式是解题的关键.5.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc < D 解析:D【分析】根据不等式的性质进行解答.【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .11B解析:B【分析】 先解方程组得83273x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,根据x 、y 为正整数可求得a ,再解不等式组,根据不等式组无解可得a 的取值范围,据此可求得a 值.【详解】解:解二元一次方程组931ax y x y -=⎧⎨-=⎩,得:83273x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩, ∵方程组的解均为正整数,∴a=4、5、7、11, 解不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩,得:81x x a ≥⎧⎨<+⎩, ∵不等式组无解,∴a+1≤8,即a≤7,∴满足题意的a 值为4或5或7,故答案为:B .【点睛】本题考查二元一次方程的解法、一元一次不等式组的解法,熟练掌握它们的解法,会用不等式组无解求参数范围,会利用正约数求满足方程组的整数解是解答的关键.7.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a - D 解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a <-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键.8.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > C 解析:C【分析】根据不等式的基本性质依次分析各项即可得到结果.【详解】∵m <n∴m+3<n+3,故A 选项错误;m-3<n-3,故B 选项错误;-3m >-3n ,故C 选项正确; 33m n <,故D 选项错误; 故选C.【点睛】本题考查了不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤ D解析:D【分析】 根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得.【详解】由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②, 解不等式①得:64x ≤,解不等式②得:22x >,则不等式组的解集为2264x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,根据程序运行的次数,正确建立不等式组是解题关键.10.若01x <<,则下列选项正确的是( )A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< C 解析:C【分析】利用不等式的基本性质,分别求得x 、x 2及1x 的取值范围,然后比较,即可做出选择. 【详解】解:∵0<x <1,∴0<x 2<x (不等式两边同时乘以同一个大于0的数x ,不等号方向不变);0<1<1x(不等式两边同时除以同一个大于0的数x ,不等号方向不变); ∴x 2<x <1x. 故选:C .【点睛】 考查了有理数大小比较,解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.二、填空题11.不等式组63024x x x -⎧⎨<+⎩的解集是__.【分析】分别解两个不等式得到和x <4然后根据同大取大同小取小大于小的小于大的取中间小于小的大于大的无解确定不等式组的解集【详解】解:解不等式得:解不等式得:则不等式组的解集为故答案为【点睛】本题考查解析:2x【分析】分别解两个不等式得到2x 和x <4,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集.【详解】解:解不等式630x -,得:2x ,解不等式24x x <+,得:4x <,则不等式组的解集为2x ,故答案为2x .【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 12.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.-<<4【分析】先解方程组用含a 的式子表示方程组的解根据方程组的解是正数列出关于a 的不等式组再求解【详解】解:①+②得:①-②得:所以原方程组的解为:∵方程组的解为正∴>0且>0解得:-<<4故填:解析:-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0, 解得:-54<a <4, 故填:-54<a <4. 【点睛】本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.13.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________.5【解析】解不等式2(x+3)>1得x >-则最小整数解是-2把x=-2代入方程得-4+2a=3解得:a=35点睛:本题考查了不等式的解法和方程的解的定义正确解不等式求出解集是解答本题的关键解不等式应解析:5【解析】解不等式2(x+3)>1得x >-52,则最小整数解是-2,把x=-2代入方程得-4+2a=3,解得:a=3.5.点睛:本题考查了不等式的解法和方程的解的定义,正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤, ∴a≥1,故答案为:a≥1.【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.15.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.由ac bc >得到a b <的条件是:c ______0(填“>”“<”或“=”).【分析】根据不等式的性质两边同时除以c (c<0)即可得到【详解】根据不等式的性质:由得到的条件是:c<0故答案为:<【点睛】此题考查不等式的性质:不等式的性质1:不等式两边加减同一个数(或式子)不等解析:<【分析】根据不等式的性质,两边同时除以c (c<0)即可得到.【详解】根据不等式的性质:由ac bc >得到a b <的条件是:c<0,故答案为:<.【点睛】此题考查不等式的性质:不等式的性质1:不等式两边加减同一个数(或式子),不等号的方向不变;不等式的性质2:不等式两边乘(或除)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.若关于x 、y 的二元一次方程组23242x y a x y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.【分析】直接把两个方程相加得到然后结合即可求出a 的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到解析:4a. 【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 18.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题 解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.19.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________.【分析】先求出不等式组中每一个不等式的解集再求出它们的公共部分【详解】解:解①得:x >2解②得:x≥-4所以不等式组的解集是:x >2故答案为:x >2【点睛】本题考查的是一元一次不等式组的解解此类题目解析:2x >【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】 解:21312?2x x ->⎧⎪⎨-≤⎪⎩①② 解①得:x >2,解②得:x≥-4.所以,不等式组的解集是:x >2.故答案为:x >2.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.20.不等式组210360x x ->⎧⎨-<⎩的解集为_______.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <,则不等式组的解集为12 2x<<,故答案为:12 2x<<.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.三、解答题21.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.解析:(1)120套;(2)60人生产桌子,24人生产椅子【分析】(1)用720套单人课桌椅÷6=每天要生产单人课桌椅的套数可得答案;(2)找到关键描述语:①生产桌子的5人一组.每组每天可生产12张,②生产椅子的4人一组,每组每天可生产24把,③至少提前1天完成这项生产任务,进而找到所求的量的关系,列出不等式组求解.【详解】解:(1)∵720÷6=120(套),∴光明厂平均每天要生产120套单人课桌椅.(2)设x人生产桌子,则(84﹣x)人生产椅子,由题意可得:1257205842457204xx⎧⨯⨯≥⎪⎪⎨-⎪⨯⨯≥⎪⎩,解得:60≤x≤60,故x=60,∴84-x=24,∴60人生产桌子,24人生产椅子.【点睛】此题主要考查了一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.22.解不等式组()41713843x xxx⎧+≤+⎪⎨--<⎪⎩,并把它的解集在数轴上表示出来.解析:-3≤x<2,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()41713843x xxx⎧+≤+⎪⎨--<⎪⎩①②解不等式①,得:x≥-3,解不等式②,得:x<2,则不等式组的解集为-3≤x<2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.某商店有A商品和B商品,已知A商品的单价比B商品单价多12元,若购买400件B商品与购买100件A商品所用钱数相等.(1)求A,B两种商品的单价分别是多少元.(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4,如果需要购买A,B两种商品的总件数不少于32,且该商店购买的A,B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.解析:(1)A种商品的单价为16元,B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【分析】(1)设B种商品的单价为x元,A种商品的单价为(x-12)元,根据等量关系:购买400件A商品与购买100件B商品所用钱数相等,列出方程求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【详解】设B 种商品的单价为x 元,则A 种商品的单价为(x +12)元,由题意得:400100(12)x x =+ ,解得x =4,则x +12=16(元),答:A 种商品的单价为16元、B 种商品的单价为4元.设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,由题意得:2432164(24)296m m m m +-≥⎧⎨+-≤⎩ , 解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件.【点睛】本题考点是一元一次方程及一元一次不等式组的应用,注意找到正确的等量关系是解题的重点.24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 解析:(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.解析:(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.26.解不等式,并把解表示在数轴上. 417366x x +≥- 解析:3x ≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x ≥+-移项,得4271x x -≤-合并同类项,得26x ≤系数化为1,得3x ≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.27.解下列一元一次不等式组:211132x x x x >-⎧⎪-⎨-<⎪⎩并把解集表示在数轴上. 解析:x>-1,数轴表示见解析.【分析】根据不等式的性质分别求出两个不等式的解集即可求出不等式组的解集,表示在数轴上即可.【详解】解:211132x x x x >-⎧⎪-⎨-<⎪⎩ 解21x x >-得:x>-1,解1132x x --<得: x>-3, ∴原不等式组的解集为x>-1,表示在数轴上如图:【点睛】此题考查一元一次不等式组的解及数轴表示,难度一般.28.解下列不等式(组)(1)221 43x x+-≥(2)273125x xx+>-⎧⎪-⎨≥⎪⎩解析:(1)x≤2;(2)2≤x<8;【分析】(1)不等式两边同时乘以12,化简计算即可.(2)分别求解两个不等式的取值,再把取值范围合并.【详解】(1)解:不等式两边同乘以12得:3(x+2)≥4(2x-1);去括号得:3x+6≥8x-4;移项合并同类项得:-5x≥-10;系数化为1得:x≤2;(2)解:解不等式1得:x<8;解不等式2得:x≥2;∴2≤x<8;【点睛】本题考察了不等式以及不等式组的简单运算,属于解不等式(组)的基础运算,注意细心即可.。

最新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)

最新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21 C .21<m <1D .m <21或m >18.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x 、y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A . B .C .D .10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是( )A . 5B . 6C . 7D . 8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x -5<2y -5,那么-x ______-y .(填“<、>、或=”) 13.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______. 14.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________. 15.不等式组:的解集是________.16.关于x 的不等式组的解集为1<x <4,则a 的值为________.17.把m 个练习本分给n 个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n =________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分) 19.(8分)解不等式:6x -1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad -bc .如=2×5-3×4=-2.如果有>0,求x 的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5,故答案为5.17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42.18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31,那么班主任购买的贺卡数为3x +59=152(张),故填152.19.【答案】6x -1≤5,6x ≤6,x ≤1,在数轴上表示为【解析】利用不等式的性质1及性质2求出解集.20.【答案】解:由题意得2x -(3-x )>0,去括号得2x -3+x >0,移项合并同类项得3x >3,把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可.21.【答案】解: ①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解. 23.【答案】解:解不等式①,得x <2,解不等式②,得x ≥-1,在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341. ∵a 是正整数,∴a =2或a =3.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车; 人教版数学七年级下册单元测试卷:第9章 一元一次不等式(组)人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题(本大题共8小题,每小题3分,共32分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题5分,共30分)1. 若m >n ,则下列不等式中成立的是( )A .m + a <n + bB .ma <nbC .ma 2>na 2D .a -m<a -n2.不等式4(x -2)>2(3x + 5)的非负整数解的个数为( )A .0个B .1个C .2个D .3个3.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )A .B .C .D .4.若方程()()31135m x m x x ++=--的解是负数,则m 的取值范围是( )A .54m >-B .54m <-C .54m >D .54m < 5.不等式()123x m m ->-的解集为2x >,则m 的值为( ) A .4 B .2 C .32 D .126.不等式组123x x -≤⎧⎨-<⎩的解集是( )A .x ≥-1B .x <5C .-1≤x <5D .x ≤-1或x <5二、填空题(每小题5分,共20分)7.已知x 的12与5的差不小于3,用不等式表示这一关系式为 。

8.某饮料瓶上有这样的字样:Eatable Date 18 months. 如果用x (单位:月)表示Eatable Date (保质期),那么该饮料的保质期可以用不等式表示为 。

9.当x 时,式子3x -5的值大于5x + 3的值。

10.阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 。

三、做一做(每小题6分,共12分)11.、解不等式11237x x --≤,并把它的解集表示在数轴上。

12.解不等式组513(1) 131722 x xx x->+⎧⎪⎨-≤-⎪⎩四、想一想(每小题9分,共18分)13.已知方程组32121x y mx y m+=+⎧⎨+=-⎩,m为何值时,x>y?14.有一个两位数,其十位数字比个位数字大2,这个两位数在50和70之间,你能求出这个两位数吗?五、实际应用(每小题10分,共20分015.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?16.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。

有多少间宿舍,多少名女生?1.已知a<b,则下列不等式中不正确的是().A.4a<4b B.a+4<b+4 C.-4a<-4b D.a-4<b-42.不等式的正整数解有().A.1个B.2个C.3个D.4个3.满足-1<x≤2的数在数轴上表示为().4.如果|x-2|=x-2,那么x的取值范围是().A.x≤2 B.x≥2C.x<2 D.x>25.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为().A.1小时~2小时B.2小时~3小时C.3小时~4小时D.2小时~4小时6.不等式组的解集是().A.x<-1 B.x≤2C.x>1 D.x≥27.不等式<6的非负整数解有()A.2个B.3个C.4个D.5个8.下图所表示的不等式组的解集为()A.B.C.D.9.若方程3m(x+1)+1=m(3-x)-5x的解是负数,则m的取值范围是().A.m>-1.25 B.m<-1.25 C.m>1.25 D.m<1.2510.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是().A.5千米B.7千米C.8千米D.15千米二、填空题(每题3分,共30分)11.已知三角形的两边为3和4,则第三边a的取值范围是________.12.如图9-1,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为.13.若,则x的取值范围是.14.不等式组的解为.15.当时,与的大小关系是_______________.16.若点P(1-m,m)在第二象限,则(m-1)x>1-m的解集为____________ ___.17.已知x=3是方程—2=x—1的解,那么不等式(2—)x<的解集是.18.若不等式组的解集是x>3,则m的取值范围是.19.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买只钢笔.20.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打.三、解答题(本题共8个小题,共32分)21.解不等式:人教新课标七年级下第九章不等式与不等式组全章测试一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为_______.二、选择题6.若a≠0,则下列不等式成立的是( ).(A)-2a<2a (B)-2a<2(-a)(C)-2-a<2-a (D)7.下列不等式中,对任何有理数都成立的是( ).(A)x-3>0 (B)|x+1|>0(C)(x+5)2>0 (D)-(x-5)2≤08.若a<0,则关于x的不等式|a|x<a的解集是( ).(A)x<1 (B)x>1 (C)x<-1 (D)x>-19.如下图,对a,b,c三种物体的重量判断正确的是( ).(A)a<c (B)a<b (C)a>c (D)b<c10.某商贩去菜摊卖黄瓜,他上午卖了30斤,价格为每斤x元;下午他又卖了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( ).(A)x<y (B)x>y (C)x≤y (D)x≥y三、解不等式(组),并把解集在数轴上表示出来11..12.四、解答题13.x取何整数时,式子与的差大于6但不大于8.14.如果关于x的方程3(x+4)-4=2a+1的解大于方程的解.求a的取值范围.15.不等式的解集为x>2.求m的值.16.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件2 7个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?17.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?18.为了保护环境,某造纸厂决定购买20台污水处理设备,现有A,B两种型号的设备,其中每台的价格、日处理污水量如下表:A型B型价格(万元/台) 24 20处理污水量(吨/日) 480 400经预算,该纸厂购买设备的资金不能高于410万元.(1)该企业有几种购买方案;(2)若纸厂每日排出的污水量大于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案?19.某班级为准备元旦联欢会,欲购买价格分别为2元,4元和10元的三种奖品,每种奖品至少购买1件,共买16件,恰好用去50元.若2元的奖品购买a 件.(1)用含a的代数式表示另外两种奖品的件数;(2)请你设计购买方案,并说明理由.一、填空题:1.用不等式表示:①a大于0_____________;②是负数____________;③5与x的和比x的3倍小______________________。

2.不等式的解集是__________________。

3.用不等号填空:若。

4.当x_________时,代数代的值是正数。

5.不等式组的解集是__________________。

6.不等式的正整数解是_______________________。

7.的最小值是a,的最大值是b,则8.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________< b <_____________。

9.编出解集为的一元一次不等式为______________________。

10.若不等式组的解集是空集,则a、b的大小关系是_______________。

二、选择题:11.下列不等式中,是一元一次不等式的是()A.2x-1>0 B.-1<2 C.3x-2y<-1 D.y2+3>512.不等式的解集是()A.x≤ B.x ≥ C.x≤ D.x ≥13.一元一次不等式组的解集是()A.-2<x<3 B.-3<x<2 C.x<-3 D.x<214.如图1,在数轴上所表示的是哪一个不等式的解集()A.B.C.x+1≥-1 D.-2x>415.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。

下列两个不等式是同解不等式的是)A.与B.与C.与D.与16.解下列不等式组,结果正确的是( )A.不等式组的解集是x>3 B.不等式组的解集是-3<x<-2C.不等式组的解集是x<-1 D.不等式组的解集是-4<x<217.若,则a只能是()A.a≤-1 B.a<0 C.a≥-1 D.a≤018.关于x的方程的解是非负数,那么a满足一、选择题1.下列不等式中,是一元一次不等式的是()A.B.C.D.2.下列说法中,正确的有()①的解集;②3是不等式的解;③4是不等式的解;④是不等式的解集的一部分。

A.1 B.2 C.3 D.43.若,则下列不等式中,不能成立的是()A.B.C.D.4.下列图中表示的是不等式的解集,其中错误的是()5.与不等式的解集完全相同的不等式是()A.B.C.D.6.不等式的所有整数解的和是()A.B.C.D.7.如果不等式的解集是,那么的取值范围是()A.B.C.D.二、填空题8.用适当的符号表示下列关系:(1)是负数;(2)比2大;(3)是非正数;(4)不大于;(5)的3倍大于4 。

9.不等式的解集是。

10.的最大的正整数解是,最小的正整数解是。

11.若是一元一次不等式,则。

12.不等式组的解集是,这个不等式组的整数解是。

13.如果,那么的取值范围是。

14.一次环保知识竞赛中共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小李获得优秀(90分或90分以上),则小李至少答对了道题。

三、解答题15.解下列不等式(组),并在数轴上表示解集。

(1);(2);(3)(4)16.求不等式组的正整数解。

17.已知方程组的解都是正数,求的取值范围。

相关文档
最新文档