数字信号处理基础实验报告 (2)

合集下载

数字信号处理 实验报告 实验二 应用快速傅立叶变换对信号进行频谱分析

数字信号处理 实验报告  实验二 应用快速傅立叶变换对信号进行频谱分析

数字信号处理实验报告实验二应用快速傅立叶变换对信号进行频谱分析2011年12月7日一、实验目的1、通过本实验,进一步加深对DFT 算法原理合基本性质的理解,熟悉FFT 算法 原理和FFT 子程序的应用。

2、掌握应用FFT 对信号进行频谱分析的方法。

3、通过本实验进一步掌握频域采样定理。

4、了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

二、实验原理与方法1、一个连续时间信号)(t x a 的频谱可以用它的傅立叶变换表示()()j t a a X j x t e dt +∞-Ω-∞Ω=⎰2、对信号进行理想采样,得到采样序列()()a x n x nT =3、以T 为采样周期,对)(n x 进行Z 变换()()n X z x n z +∞--∞=∑4、当ωj ez =时,得到序列傅立叶变换SFT()()j j n X e x n e ωω+∞--∞=∑5、ω为数字角频率sT F ωΩ=Ω=6、已经知道:12()[()]j a m X e X j T T Tωωπ+∞-∞=-∑ ( 2-6 )7、序列的频谱是原模拟信号的周期延拓,即可以通过分析序列的频谱,得到相应连续信号的频谱。

(信号为有限带宽,采样满足Nyquist 定理)8、无线长序列可以用有限长序列来逼近,对于有限长序列可以使用离散傅立叶变换(DFT )。

可以很好的反映序列的频域特性,且易于快速算法在计算机上实现。

当序列()x n 的长度为N 时,它的离散傅里叶变换为:1()[()]()N knN n X k DFT x n x n W-===∑ 其中2jNN W eπ-=,它的反变换定义为:101()[()]()N knN k x n IDFT X k X k W N --===∑比较Z 变换式 ( 2-3 ) 和DFT 式 ( 2-7 ),令kN z W -=则1()()[()]|kNN nkN N Z W X z x n W DFT x n ---====∑ 因此有()()|kNz W X k X z -==k N W -是Z 平面单位圆上幅角为2kNπω=的点,也即是将单位圆N 等分后的第k 点。

数字信号处理实验报告(实验二)

数字信号处理实验报告(实验二)

实验二 时域采样与频域采样1. 实验目的:(1) 掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息。

(2) 掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

(3) 会用MATLAB 语言进行时域抽样与信号重建的方法,以及频域抽样与恢复时程序的编写方法。

2. 实验原理:了解时域采样定理的要点,理解理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系,了解频域采样定理的要点,掌握这两个采样理论的结论:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。

3. 实验内容:(1)时域采样理论的验证。

给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A=444.128,α=502π,0Ω=502πrad/s(2)用DFT(FFT)求该模拟信号的幅频特性,选取三种采样频率,以验证时域采样理论。

(3)编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。

观察分析频谱混叠失真。

(4)频域采样理论的验证。

给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x(5)编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和,再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和。

(6)分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x(n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。

4. 思考题:如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时, 如何用一次最少点数的DFT 得到该频谱采样?答:将长序列分段分段计算,这种分段处理方法有重叠相加法和重叠保留法两种。

数字信号处理实验报告 (2)

数字信号处理实验报告 (2)

实验一信号、系统及系统响应一、实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定的理解。

2、熟悉时域离散系统的时域特性。

3、利用卷积方法观察分析系统的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理采样的的过程既是连续信号离散化的过程。

采用单位冲击串进行采样,为使采样信号能不失真的还原为采样前的信号,根据奈奎斯特采样率,采样频率应该大于信号最高频率的2倍。

因为时域的采样既是对时域的离散化处理,时域离散频域会进行周期延拓,为了防止频域频谱混叠,必须满足奈奎斯特采样定律。

线性卷积的过程为:反褶,移位,相乘,相加。

设一个N1点的序列与一个N2的序列进行卷积则得到N1+N2-1点的序列。

时域卷积,对应频域的相乘。

序列的傅里叶变换即DTFT 。

具有的性质有: 线性,移位性,对偶性,等等。

三、实验内容及步骤1)分析采样序列的特性。

产生采样序列()a x n ,A 444.128=,a =,0Ω=。

a 、 取采样频率s f 1kHz =,即T 1ms =。

观察所采样()a x n 的幅频特性()j X e ω和)(t x a 的幅频特性()X j Ω在折叠频率处有无明显差别。

应当注意,实验中所得频谱是用序列的傅立叶变换公式求得的,所以在频率量度上存在关系:T ω=Ω。

b 、改变采样频率,s f 300Hz =,观察()j X eω的变化并做记录。

c 、 进一步降低采样频率,s f 200Hz =,观察频谱混叠是否明显存在,说明原因,并记录()j X e ω的幅频曲线。

上图是采用不同采样频率时所得到的序列及其对应的傅里叶变换,从图中可以看到,当采样频率比较低时,频谱会发生混叠,且频率越低,混叠现象越明显。

增大采样频率可以有效地防止混叠。

2) 离散信号、系统和系统响应分析。

a 、观察信号()b x n 和系统h ()b n 的时域和频域持性;利用线形卷积求信号()b x n 通过系统h ()b n 的响应y(n),比较所求响应y(n)和h ()b n 的时域及频域特性,注意它们之间有无差异,绘图说明,并用所学结论解释所得结果。

数字信号处理实验报告(二)

数字信号处理实验报告(二)

数字信号处理第二次实验报告学院:信息工程学院班级:2012级电子信息工程*班姓名:学号:20125507**指导老师:实验四:IIR数字滤波器设计及软件实现一、实验目的1、熟悉双线性变换设计IIR滤波器的原理与方法2、掌握IIR滤波器的MATLAB实现方法二、实验原理简述IIR数字滤波器间接法基本设计过程:1、将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;2、设计过渡模拟滤波器;3、将过渡模拟滤波器系统函数转换成数字滤波器的系统函数三、程序与图形1、%-----------------信号产生函数mstg---------------function st=mstg %功能函数的写法%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st的频谱%-------绘制st的时域波形和幅频特性曲线-----subplot(2,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(2,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10123t/ss (t )(b) s(t)的频谱f/Hz幅度2、%-------实验4-2--------- clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;fp=280;fs=450; %下面wp,ws,为fp,fs 的归一化值范围为0-1wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A);y1t=filter(B,A,st); %滤波器软件实现 figure(2);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y1t)-1)*T; plot(t,y1t);%axis([0,1,-80,0])-10123t/ss (t )(b) s(t)的频谱f/Hz幅度-80-60-40-20000.020.040.060.080.10.120.140.16-1-0.500.511.53、%-------实验4-3---------fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y2t=filter(B,A,st);figure(3);subplot(2,1,1);plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y2t)-1)*T; plot(t,y2t);00.20.40.60.81-80-60-40-20000.020.040.060.080.10.120.140.16-2-10124、%-------实验4-4--------- fp=900;fs=550;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs);%调用ellipord 算椭圆DF 阶数N 通带截止频率 [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y3t=filter(B,A,st);figure(4);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y3t)-1)*T; plot(t,y3t);-80-60-40-20000.020.040.060.080.10.120.140.16-2-1012四、实验结果分析由图可见,三个分离滤波器指标参数选取正确,损耗函数曲线达到所给指标。

《数字信号处理》实验报告汇总

《数字信号处理》实验报告汇总

物理与电子电气工程学院实验报告
课程名称:数字信号处理
院系:物电学院
专业:电子信息科学与技术班级:
学号:
姓名:
实验报告(1)
实验名称常见离散信号产生与实现
实验日期2016年9月13日指导教师曹凤莲
实验报告(2)
实验名称离散时间系统的时域分析
实验日期2016年9月20日指导教师曹凤莲
实验报告(3)
实验名称离散时间LTI系统的z域分析
实验日期2016年9月27日指导教师曹凤莲
实验报告(4)
实验名称用FFT进行谱分析
实验日期2016年10月10日指导教师曹凤莲
实验报告(5)
实验名称实验五数字滤波器结构的实现
实验日期2016年10月17日指导教师曹凤莲
实验报告(6)
实验名称实验六IIR数字滤波器的设计
实验日期2016年10月25日指导教师曹凤莲。

数字信号处理-实验二-FFT频谱分析

数字信号处理-实验二-FFT频谱分析

实验三:用FFT对信号作频谱分析10.3.1实验指导1.实验目的学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。

2.实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D和分析误差。

频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2 /N,因此要求2 /N D。

可以根据此式选择FFT的变换区间N。

误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3•实验步骤及内容(1)对以下序列进行谱分析。

X1 (n) RHn)n 1, 0 n 3X2 (n) 8 n, 4 n 70 ,其它n4 n, 0 n 3X3( n) n 3, 4 n 70, 其它n选择FFT的变换区间N为8和16两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

x4(n) cos—n44x5(n) cos( n/4) cos( n/8)选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析x6(t) cos8 t cos16 t cos20 t选择采样频率F s 64Hz ,变换区间N=16,32,64 三种情况进行谱分析。

【精品】数字信号处理实验报告

【精品】数字信号处理实验报告

【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。

2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。

3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。

4 总结。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理 实验报告二

数字信号处理  实验报告二

实验二离散时间信号时域表示一、实验目的:1、掌握序列的产生方法。

2、熟悉关于序列的简单运算。

3、序列及其运算结果的可视化表示。

二、实验内容和步骤:1、编写sy2_1.m程序文件,生成单位抽样序列和单位阶跃序列(n=-10~20),用图形显示。

2、编写sy2_2.m程序文件,生成一个实数值指数序列(n=0~35,a=1.2,k=0.2),用图形显示。

3、编写sy2_3.m程序文件,生成扫频正弦序列x(n)=cos(π/200*n2)(n=0~100),用图形显示。

4、编写sy2_4.m程序文件以实现下列功能:用rand函数产生随机噪声,在一个已知确定信号上,然后采用三点滑动平均算法y(n)=1/3(x[n-1]+x[n]+x[n+1])实现信号平滑,用图形显示平滑前后的信号。

三、实验数据:M文件sy2_1.m:n=-10:20;f=[zeros(1,10),1,zeros(1,20)];stem(n,f);title('单位抽样序列');xlabel('n');ylabel('f');单位抽样序列nM文件sy2_2.m:n=-10:20;x=[zeros(1,10),1,ones(1,20)]; stem(n,x);title('单位阶跃序列');xlabel('n');ylabel('f');单位阶跃序列nM文件sy2_3.m:n=0:0.2:35;a=1.2;f=a.^n;stem(n,f);title('指数序列');xlabel('n');ylabel('f');指数序列n fM 文件sy2_4.m:n=0:100;f=cos(pi*n.^2/200);stem(n,f);title('扫频正弦序列');xlabel('n');ylabel('f');扫频正弦序列n fM 文件sy2_5.m:n=[1:128];x=0.5-rand(1,128);f=1.5*sin(60*pi*0.001*n);f0=1.5*sin(60*pi*0.001*(n-1));f1=1.5*sin(60*pi*0.001*(n+1));y=x+f;y0=x+f0;y1=x+f1;z=1/3*(y0+y+y1);plot(n,y);title('平滑信号');xlabel('n');ylabel('y');020406080100120140平滑信号n y数据分析:扫频正弦序列没有清晰表现出图形,应将stem(n,f)改为plot(n,f)。

数字信号处理基础实验报告

数字信号处理基础实验报告

中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师李宏学院信息科学与工程学院专业班级学号姓名实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法; (2) 加深对常用离散时间信号的理解; (3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。

二、实验内容及要求(1)复习常用离散时间信号的有关内容;常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn b )单位阶跃序列⎩⎨⎧=01)(n u00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;()()n x n a u n =程序如下: 1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on得到图像如下:2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on得到图像如下:-20-15-10-50510152000.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on 得到图像如下:-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on得到图像如下:(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告(基础实验篇)实验一离散时间系统及离散卷积一、实验目的和要求实验目的:(1)熟悉MATLAB软件的使用方法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利用MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

(4)熟悉离散卷积的概念,并利用MATLAB计算离散卷积。

实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。

(4)至少要求一个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进行解释说明。

二、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输入为单位脉冲序列()n的单位脉冲响应()h n。

对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。

单位脉冲响应是系统的一种描述方法,若已知了系统的系统函数,可以利用系统得出系统的单位脉冲响应。

在MATLAB中利用impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωϕω。

离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输入序列的处理情况。

三、实验方法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析方法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分子系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1);plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h');subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析方法00.20.40.60.81 1.2 1.4 1.6 1.82102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验二 离散傅立叶变换与快速傅立叶变换一、实验目的和要求实验目的:(1)加深理解离散傅里叶变换及快速傅里叶变换概念; (2)学会应用FFT 对典型信号进行频谱分析的方法; (3)研究如何利用FFT 程序分析确定性时间连续信号; (4)熟悉应用FFT 实现两个序列的线性卷积的方法; 实验要求:(1)编制DFT 程序及FFT 程序,并比较DFT 程序与FFT 程序的运行时间。

数字信号处理实验报告_2_

数字信号处理实验报告_2_

实验四
实验目的
FIR 数字滤波器的设计
1. 掌握 FIR 数字滤波器的设计方法与步骤; 2. 理解系统频率响应的概念,学习编写计算系统频率响应的方法。
实验原理
1. FIR 数字滤波器设计的详细内容见教材第 4 章。 窗口法:窗口法设计 FIR 数字滤波器的步骤: A 给出希望的滤波器频率响应函数 H d (e j ) ; B 根据允许的过渡带宽度及阻带衰减确定所采用的窗函数和 N 值; C 做 H d (e
0.6 0.4 0.2 0 -0.2
|H(ejw )| h(n)
) 曲线。
0.6 0.4 0.2 0 -0.2
|H(ejw )| h(n)
1.5
1
0.5
0
5 n
10
15
0
0
0.2
0.4 f
0.6
0.8
1.5
1
0.5
0
5 n
10
15
0
0
0.2
0.4 f
0.6
0.8
grid; f=0:0.5/M:0.5-0.5/M; M1=M/4; for k=1:M1 hd(k)=1; hd(k+M1)=0; hd(k+2*M1)=0; hd(k+3*M1)=0; end subplot(222) plot(f,abs(h1),'b-',f,hd,'-'); xlabel('f');ylabel('|H(e^{jw})|'); grid; 2 给定一理想低通 FIR 滤波器的频率特性
e j , 0 c H d (e j ) c 0,
要求其最小阻带衰减为-45dB,过渡带宽为 8 / 51 , (1) 已知 c 0.5 ,求出 h(n) 并画出 20 lg H (e

数字信号处理实验报告

数字信号处理实验报告

物理与电子电气工程学院实验报告课程名称:数字信号处理院系:物理与电子电气工程学院专业:电子信息科学与技术班级:学号:姓名:物理与电子电气工程学院实验报告实验报告(1)实验名称实验一离散时间信号分析实验日期2013.10.19 指导教师(2)绘制单位跃阶)u序列(n解:MATLAB程序如下:>> n=-10:10;>> x=[zeros(1,10),ones(1,11)]; >> stem(n,x,'fill')>> grid on(4)正弦型序列)35sin()(ππ+=n A n x解:MATLAB 程序如下: >> n=-10:10; >> w=pi/5; >> ph=pi/3; >> A=2;(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: >> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> stem(n,x,'fill') >> grid on(2)实现任意序列(2)()(-+=n n n h δδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=circshift(x,[0,-4]); %左移四位>> stem(n,y,'fill') >> grid on(4)实现任意序列)(=n x (2)2()1(2)()(+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x+y; %两数列相加(5)实现任意序列)(=n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x.*y; %实现两序列的积 >> stem(n,k,'fill')(6)分别实现()(=n n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: ①>> n=-10:10;②>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=cumsum(x); %%实现函数自身的累加(由左向右累加)>> stem(n,y,'fill')>> grid on实验一实验心得:首先,第一次实验,我又开始重拾MATLAB方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都理工大学
《信号处理基础》实验
开设时间:2013—2014学年第2学期
题目1:信号的产生和显示
一、实验目的:
认识基本信号
通过使用MATLAB 设计简单程序, 掌握对MATLAB 的基本使用方法
二、实验原理:
找出下列表达式的信号与:正弦信号、最小相位信号、最大相位信号、零相位信号的对应关系。

1、sin60t
2、e-60t sin60t
3、(1- e-60t)sin60t
4、e60t sin60t
三、实验内容:
产生上述信号的信号并显示
(1)t=[-pi/30:0.001:pi/30];
f=sin(60*t);
plot(t,f)
产生图形如下:
(2)t=[0:0.001:pi/30];
f=exp(-60*t).*sin(60*t);
plot(t,f)
产生图形如下:
(3)t=[-5*pi/30:0.001:5*pi/30];
f=(1-exp(-60*t)).*sin(60*t);
plot(t,f)
产生图形如下:
(4) t=[-pi/30:0.001:pi/30];
f=exp(6*t).*sin(60*t);
plot(t,f)
产生如下波形:
四、实验结果与讨论:
讨论上述信号的特点
从第一个波形图可以看出,它的波形与正弦函数sin(t)的相像,只是相位上有改变,是一个正弦信号。

最大相位信号的能量集中在后面,最小相位能量集中在前面,所以第二个是一个最小相位,第四个是一个最大相位信号。

第三个由于波形在t>0时没有,所以是一个零相位信号。

题目2:频谱分析与显示
一、实验目的
初步认识频谱分析
二、实验原理
写出傅里叶变换公式对
三、实验内容
基于傅里叶变换,显示并分析下列信号的频谱:
1、s in60t
程序如下: t=(0:1/255:1);
y=sin(60*t);
f=fft(y);
rf=real(f);
a=abs(f);
plot(t,rf,'r-',t,a,'b--')
产生如下波形:
2、e-60tsin60t
程序如下:t=(0:1/255:1);
y=exp(-60*t).*sin(60*t);
f=fft(y);
rf=real(f);
a=abs(f);
plot(t,rf,'r-',t,a,'b--')
产生如下波形:
3、(1- e-60t)sin60t
程序如下: t=(0:1/255:1);
y=(1-exp(-60*t)).*sin(60*t);
f=fft(y);
rf=real(f);
a=abs(f);
plot(t,rf,'r-',t,a,'b--')
产生如下波形:
4、E xp(60t)sin60t
程序如下:t=(0:1/255:1);
y=exp(60*t).*sin(60*t);
f=fft(y);
rf=real(f);
a=abs(f);
plot(t,rf,'r-',t,a,'b--')
产生如下波形:
四、实验结果与讨论
第一个信号的频谱图与第三个相似,第二个与第四个相似。

题目3:滤波系统的设计与实现
一、实验目的
认识滤波系统
滤波器设计初步
二、实验原理
实用的FIR滤波系统
带通滤波器:⎪⎪⎩⎪⎪

⎧<<≤≤≤≤<<=1
4432211320
1f f f f f f f f g f f f f g f f f f H |||,|||)(||)
(||)(
⎪⎪⎩

⎪⎨
⎧--=--=)(sin )()(sin )(3
44
2121
1
2222f f f f f g f f f f f g ππ
三、 实验内容
设:x(n)= s 1(n-n 1)+ s 2(n-n 2)+ s 3(n-n 3)+ N(n) 式中:)sin()()(i n f n e n s ∆=∆-πα22
1,i=1,2,3,
i
f n ∆=
∆≤
≤2
20π Hz f Hz f Hz f ln f i 604020223212====,,),(α
s 0020.=∆
321n n n ,,为三个不同的移位值,可自信定义
N(n)为均匀分布的随机噪声信号,可由下列递推公式计算
取整].[.n n n a c a c a -=+1,N(n)=(2a n-1)r
r 为比例系数,按需要的信噪比取值,c=2045,a 0=0.999998
四、实验结果与讨论 1、显示滤波系统:H(f)
2、调用逆FFT ,显示时间滤波因子)())((t h f H FT =-1
3、改变各f 和∆,再显示H(f)和h(t),讨论各自变化的特点。

程序如下:
dt=0.002
T=50; n1=4*dt;
n2=30*dt;
n3=50*dt;
n=0:dt:dt*T;
f1=20;
f2=40;
f3=60;
f4=80;
a1=2*(f1.^2)*log(2);
a2=2*(f2.^2)*log(2);
a3=2*(f3.^2)*log(2);
s1=exp((-a1)*((n-n1).^2)).*sin(2*pi*f1*(n-n1));
s2=exp((-a2)*((n-n2).^2)).*sin(2*pi*f2*(n-n2));
s3=exp((-a3)*((n-n3).^2)).*sin(2*pi*f3*(n-n3));
x=s1+s2+s3;
plot(n,x);grid on;
产生如下波形:
五、收获与建议
收获:认识了信号的基本类型,对如何设计滤波系统有了一定的了解,掌握了matlab在处理信号上的基本应用,对于matlab上一些编程时应注意的东西有了了解。

建议:对于matlab这个软件很多同学还不是很熟悉,希望老师能多示范指导。

相关文档
最新文档