物理学 原子的核式模型结构

合集下载

原子核式结构模型

原子核式结构模型
根据汤姆孙模型计算的结果:电子 质量很小,对 α 粒子运动的影响 完全可以忽略不计;1 由于正电荷均 匀分布在原子内,α 粒子穿过原子 时受到的各方向正电荷的斥力基本 上会相互平衡,因此对α 粒子运动 的影响不会很大。
创新微课
原子核式结构模型
五、卢瑟福核式结构模型
创新微课
在原子的中心有一个很小的核,叫做原子核。原子的全 部正电荷和几乎全部质量都集中在原子核里,带负电的 电子在核外空1间绕着核旋转。
原子核式结构模型
根据卢瑟福的原子核式结构模型,原子内部是十 分“空旷”的,举一个简微课
原子核
原子核式结构模型
创新微课
六、原子核的电荷和大小
根据卢瑟福的原子核式结构模型和 α 粒子散射实验数据,可以推算 出各种元素原子核的电荷数,还可以估计出原子核的大小。 (1)原子半径的数量1 级为 10 ─ 10 m、原子核半径的数量级为 10 ─14 m, 原子核的体积只占原子体积的万亿分之一。 (2)原子核所带正电荷数与核外电子数以及该元素在周期表内的原子 序数相等。 (3)电子绕核旋转所需向心力就是核对它的库仑力。
创新微课 现在开始
原子核式结构模型
原子核式结构模型
创新微课
一、汤姆孙的原子模型
在汤姆孙的原子模型中,原子是一个球体,正电荷均匀分布在 整个球体内,电子镶嵌其中。
1
电子
英国物理学家 汤姆孙
汤姆孙原子模型 (枣糕模型)
原子核式结构模型
二、α粒子散射实验
1909~1911年,英国物理学家卢瑟福和他的 助手们进行了 α 粒子散射实验。
同学,下节再见
1
创新微课
原子核式结构模型
1
创新微课
原子核式结构模型

【高中物理】高中物理-第十八章-2原子的核式结构模型教案-新人教版选修3-5

【高中物理】高中物理-第十八章-2原子的核式结构模型教案-新人教版选修3-5

原子的核式结构模型(一)知识与技能1.了解原子结构模型建立的历史过程及各种模型建立的依据。

2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。

(二)过程与方法1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力。

2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。

3.了解研究微观现象。

(三)情感、态度与价值观1.通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。

2.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。

★教学重点1.引导学生小组自主思考讨论在于对α粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构;2.在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法;★教学难点引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构★教学方法教师启发、引导,学生讨论、交流。

★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课讲述:汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。

学生活动:师生共同得出汤姆生的原子葡萄干布丁模型。

点评:用动画展示原子葡萄干布丁模型。

(二)进行新课1.α粒子散射实验原理、装置(1)α粒子散射实验原理:汤姆生提出的葡萄干布丁原子模型是否对呢?原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。

而α粒子具有足够的能量,可以接近原子中心。

它还可以使荧光屏物质发光。

如果α粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。

18.2原子的核式结构模型(DIY)

18.2原子的核式结构模型(DIY)
1. 原子的核式结构模型
1.在原子的中心有一个很小的核,叫做原子核.
2.原子的全部正电荷和几乎全部质量都集中在原子 核里. 3.带负电的电子在核外空间绕着核旋转.
四.原子核的电荷与尺度
根据卢瑟福的原子核式模型和α粒子散射的实验数据, 可以推算出各种元素原子核的电荷数,还可以估计出原 子核的大小。
正电荷数 核外电子数 原子序数 质子数
后造成的? 电子质量很小,对α 粒子的运动方向不会
发生明显影响 (2)按照枣糕模型,α粒子在原子附近或穿越原子内 部后有没有可能发生大角度偏转?
由于正电荷均匀分布,α粒 子所受库仑力也很小,故α
粒子偏转角度不会很大。
实验结果却是有八千分之一 的粒子发生了大角度偏转 ! 原子结构模型必须重新构思!
二.α粒子散射实验
二. α粒子散射实验
2.实验现象
绝大多数α粒子穿过金
箔后仍沿原来方向前进
少数α粒子(约占8000
分之一)发生了较大的 偏转, 偏转的角度甚至大于 90°,也就是说它们几 乎被“撞了回来 ”
二.α粒子散射实验
3.实验分析 汤姆逊枣糕原子模型能否解释?
(1)α粒子出现大角度散射有没有可能是与电子碰撞
原子核半径约是10-15m, 原子的半径约为10-10m
根据卢瑟福的原子结构模型,原子内部是 十分“空旷”的,举一个简单的例子:

原子
体育场
原子核
1.在α粒子散射实验中,没有考虑α粒子跟电子的
碰撞,其原因是( B )
A.α粒子不跟电子发生相互作用.
B.α粒子跟电子相碰时,损失的能量极少,可忽略
C.电子的体积很小,α粒子不会跟电子相碰.
【解析】选B。对于原子核是由质子和中子组成的结论是涉及原子核的结构,与核式 结构无关,核式结构说的是原子结构,不是原子核结构,选项B错。

原子核式结构模型

原子核式结构模型

原子核式结构模型
1 什么是原子核式结构模型
原子核式结构模型是指以原子核为中心,以其结构核素为外围组成的一种模型,是现代物理学提出的一种量子力学模型。

根据这种模型,原子核由质子和中子构成,其外围有质子、中子和费米子存在,使原子核具有特殊的结构。

2 原子核式结构模型的特点
1、核子的发明:今年是发现原子核的百年纪念,由爱因斯坦和玻尔在1905年提出核子模型,只有由正质子、负质子和中子组成。

2、结构特性:原子核由核子和核质子共同构成,核子质量极小,要比中子大2000倍以上,构成原子核的核质子的构成数量为其质量的比例,有的原子核还带有中性的费米子。

3、区别:原子核式结构模型与物理学里的分子模型完全不同,分子模型是以分子的中心的分子键为中心的,原子核式结构模型是以原子核的结构核素构成一个完整的模型。

3 原子核式结构模型的应用
原子核模型对物理学、化学、核物理学等多领域有重大影响,它可以解释原子中核子的形成、核素的变异等现象,为大规模原子核研究奠定了坚实的理论基础。

此外,它还可以用来解释原子构型的形成
以及其价态间的相互作用等,广泛应用于原子核反应和量子表现、原子与微粒子的测定等。

4.3原子的核式结构模型 教案-2021-2022学年高中物理人教版(2019)选择性必修3

4.3原子的核式结构模型 教案-2021-2022学年高中物理人教版(2019)选择性必修3

4.3原子的核式结构模型〖教材分析〗首先通过实验说明阴极射线的存在,最后通过实验研究发现了电子。

电子的发现说明原子不是组成物质的最小微粒,对揭示原子结构有重大意义。

在此基础上汤姆孙提出了西瓜模型,a粒子散射实验结构否定了西瓜模型,提出了原子的核式结够模型。

〖教学目标与核心素养〗物理观念∶知道原子核式结够模型,体会物理模型建立的艰辛。

科学思维∶通过a粒子散射实验,知识通过宏观分析研究微观世界的方法。

科学探究:通过观察电子的发现过程实验和a粒子散射实验过程培养学生观察能力,感悟以实验为基础的科学探究方法。

科学态度与责任∶体会研究微观世界的一种科学方法,以及在科学方法论中的重要意义。

学习老科学家们的艰苦奋斗的精神,激发学生学习热情。

〖教学重难点〗教学重点:电子发现的过程、a粒子散射实验和原子核式结构。

教学难点:a粒子散射实验。

〖教学准备〗多媒体课件等。

〖教学过程〗一、新课引入科学家在研究稀薄气体放电时发现,当玻璃管内的气体足够稀薄时,阴极就发出一种射线。

它能使对着阴极的玻璃管壁发出荧光,这种射线的本质是什么呢?这种射线称为阴极射线。

历史上对阴极射线本质的认识有两种观点:德国科学赫兹认为原子就是最小的粒子,阴极射线是电磁波;英国科学汤姆孙他认为阴极射线是由运动的带电粒子组成的。

二、新课教学(一)电子的发现1.汤姆孙实验装置①K 产生阴极射线②A 、B 形成一束细细射线③D 1、D 2之间加电场或磁场检测射线的带电性质④荧光屏显示阴极射线到达的位置,可以研究射线的径迹。

问题:阴极射线的本质,通过什么原理来测定呢? 因为带电粒子会在电场或磁场中偏转。

所以让阴极射线沿垂直场的方向通过电场或磁场,观察它是否偏转。

如果阴极射线发生了偏转,那么阴极射线就是在电场力或洛伦兹力的作用下偏转的,说明阴极射线的本质是带电粒子流。

如果阴极射线没有发生偏转,表示阴极射线不带电,说明阴极射线的本质是电磁波。

2.汤姆孙发现电子汤姆孙发现,如果不加电场和磁场阴极射线就会直接打到p 1。

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型20世纪20年代,科学家们开始采取一种叫做原子核式结构模型的概念,以研究原子的形态与特性。

自此以后,原子的核式结构模型的发展与改进一直是原子理论的中心所在。

原子核式结构模型源于二十世纪初丹麦物理学家斯提威尔预言的原子模型,以及由罗伯茨橹和法国物理学家卢克提出的确定原子结构的结构模型。

该模型假设原子是一个由原子核中心外围由电子组成的球形均匀结构。

原子核模型表明,电子存在于原子核周围以布朗电子球结构排列,形成了一个空间结构,这种空间结构是原子构型的基本动力。

因此,原子的结构在不同的元素中可以有不同的形态。

原子核模型同时提出了电子层次结构的概念,表明电子在原子核周围也按照层次结构排列。

在每一层次中,电子能限的数量也不同。

例如,一些元素有七个电子层次,而另一些元素可能只有三层电子层次。

同样,在不同的电子层次中,电子具有不同的能量。

随着进一步发展,原子核式结构模型也发展出一系列新的理论,包括量子电子理论、费米能级理论、空间结构理论、电子能级理论、电子轨道理论等。

量子电子理论可以解释原子的可见光谱线,费米能级理论可以解释原子核内电子的序列,而空间结构理论可以描述原子核内电子的周期性结构,电子能级理论可以解释复杂的元素结构,而电子轨道理论则可以解释电子结构中不同能级之间的转变。

原子核式结构模型改变了人们对原子结构的认知,也改变了物质特性的认识,特别是特定元素的化学性质等的理解。

它的发展也为物理学、化学等其他学科的发展作出了重大贡献,也极大地拓展了物理世界的认知范围。

总的来说,原子核式结构模型为研究原子的结构和性质奠定了基础,在今天仍然是原子理论研究的基础。

随着科学技术的发展,原子核式结构模型也发生了很大的变化,以更好地满足研究的需要。

因此,原子核式结构模型仍然是科学研究原子结构和性质的重要参考模型。

原子的核式结构模型 课件

原子的核式结构模型 课件
分类例析
实验结论 (1)绝大多数的α粒子穿过金箔后 仍沿原来的方向前进; (2)少数α粒子发生了 较大的偏转; (3)极少数α粒子的偏转角θ超过 9,0°甚至有极个别α粒子被 反弹回来. 实验意义 (1)否定了 汤姆孙 的原子结构模型. (2)提出了 原子核式结构 模型,明确了 原子核大小 的数量 级.
分类例析
一、α粒子散射实验与核式结构模型 α粒子散射实验与汤姆孙的原子模型的冲突分析 (1)分析否定的原因 ①由于电子质量远小于α粒子质量,所以电子不可能使α粒 子发生大角度偏转.
分类例析
②使α粒子发生大角度偏转的只能是原子中带正电的部分, 按照汤姆孙原子模型,正电荷在原子内是均匀分布的,α粒 子穿过原子时,它受到的两侧斥力大部分抵消,因而也不 可能使α粒子发生大角度偏转,更不可能使α粒子反向弹回, 这与α粒子的散射实验相矛盾. ③实验现象表明原子绝大部分是空的,除非原子的几乎全 部质量和所有正电荷都集中在原子中心的一个很小的核上, 否则,α粒子大角度散射是不可能的.
分类例析
2.α粒子穿过金箔,受到电荷的作用力后,沿哪些方向前进的 可能性较大,最不可能沿哪些方向前进. 点拨 按照汤姆孙的模型,正电荷是均匀分布在整个原子 中的,当α粒子穿过原子时受到的各个方向上的正电荷的斥 力会相互抵消很多,沿直线运动的可能性最大,最不可能 沿着很大的角度甚至180°角发生偏转.除非原子核的大部 分质量和电荷集中在一个很小的核上,否则要发生大角度 的偏转是不可能的.
分类例析
解析 α粒子散射实验现象:绝大多数α粒子沿原方向前 进,少数α粒子有大角度散射.所以A处观察到的粒子多, B处观察到的粒子少,所以选项A、B错误.α粒子发生散 射的主要原因是受到原子核库仑斥力的作用,所以选项D 错误、C正确. 答案 C

卢瑟福的原子核式结构模型

卢瑟福的原子核式结构模型

卢瑟福的原子核式结构模型
卢瑟福的原子核式结构模型是20世纪初物理学研究的重要成果之一。

这一模型通过实验证明了原子不是一个均质的球体,而是由一个小而重的原子核和围绕它旋转的电子构成。

此模型的提出,对于人们理解原子结构的本质具有重要意义。

卢瑟福实验的基本原理是,通过将一个α粒子(即带有两个质子和两个中子的氦原子核)轰击到一个金箔上,通过观察α粒子的散射方向来确定原子的结构。

实验结果表明,大部分的粒子通过金箔而不受到偏转,但有一部分粒子受到了较大的偏转。

这表明原子中存在着一个小而重的原子核,而电子则围绕在原子核周围。

卢瑟福模型的核心思想是,原子结构由一个小而重的原子核和围绕其运动的电子构成。

原子核包含质子和中子,质子带有正电荷,中子不带电。

电子则带有负电荷。

原子核的大小约为10^-15米,而整个原子的大小约为10^-10米。

卢瑟福模型对于人们理解化学反应、放射性衰变等现象具有重要意义。

例如,核反应是指原子核之间的反应,而非电子之间的反应。

放射性衰变也是指原子核的变化,而非电子的变化。

此外,原子核式结构模型也为原子核物理学和核能技术的发展提供了重要的理论基础。

卢瑟福的原子核式结构模型是一项重要的物理学成果,它通过实验证明了原子结构由一个小而重的原子核和围绕其运动的电子构成。

这一模型对于人们理解化学反应、放射性衰变等现象具有重要意义。

高中物理选修三 新课改 学习笔记 第4章 3 原子的核式结构模型

高中物理选修三 新课改 学习笔记 第4章 3 原子的核式结构模型

3 原子的核式结构模型[学习目标] 1.知道阴极射线的组成,体会电子发现过程中所蕴含的科学方法,知道电荷是量子化的。

2.了解α粒子散射实验现象以及卢瑟福原子核式结构模型的主要内容(重难点)。

3.知道原子和原子核大小的数量级,知道原子核的电荷数。

一、电子的发现科学家在研究稀薄气体放电时发现,当玻璃管内的气体足够稀薄时,阴极就发出一种射线。

它能使对着阴极的玻璃管壁发出荧光,如何通过实验判断这种射线的本质呢?________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________1.阴极射线:________发出的一种射线。

它能使对着阴极的玻璃管壁发出荧光。

2.汤姆孙的探究根据阴极射线在电场和磁场中的________情况断定,阴极射线的本质是带________(填“正电”或“负电”)的粒子流,并求出了这种粒子的比荷。

组成阴极射线的粒子被称为电子。

3.密立根实验:电子电荷的精确测定是由密立根通过著名的“油滴实验”做出的。

目前公认的电子电荷e 的值为e =________________________(保留两位有效数字)。

4.电荷的量子化:任何带电体的电荷只能是________的整数倍。

5.电子的质量m e =____________________ kg(保留两位有效数字),质子质量与电子质量的比值为m p m e=________。

如图所示为汤姆孙的气体放电管。

(1)K 、A 部分起什么作用?(2)在金属板D 1、D 2之间加上如图所示的电场时,发现阴极射线向下偏转,说明它带什么性质的电荷?(3)在金属板D 1、D 2之间单独加哪个方向的磁场,可以让阴极射线向上偏转?________________________________________________________________________________________________________________________________________________________________ ________________________________________________________________________________ ________________________________________________________________________________(1)阴极射线实际上是高速运动的电子流。

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。

这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。

二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。

同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。

这一发现,彻底改变了我们对原子的理解。

三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。

原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。

因此,原子的大部分体积是由原子核占据的。

四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。

它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。

这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。

五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。

然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。

让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。

原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。

这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。

二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。

同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。

这一发现,彻底改变了我们对原子的理解。

三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。

原子的核式结构模型

原子的核式结构模型
薛定谔方程
描述微观粒子运动的基本方程, 用于求解原子中电子的波函数和
能量。
原子轨道
由量子力学计算得出的电子在原子 中的概率分布区域,决定了元素的 化学性质。
自旋和磁矩
电子自旋和轨道运动产生的磁矩是 原子磁性的来源。
多电子原子中电子排布规律研究进展
泡利原理
确定每个电子状态的独特性,保证电子排布的稳 定性。
原子中心有一个带正电的原子核,电子绕核旋转。该模型预测了α粒子散射实 验的结果,即大多数α粒子穿过原子时不受影响,少数α粒子受到大角度偏转, 极少数α粒子被反弹回来。
实验结果与预测一致
α粒子散射实验结果与卢瑟福的核式结构模型预测相符,从而验证了该模型的正 确性。同时,其他相关实验结果也支持了核式结构模型的理论预测。
局限性
玻尔理论虽然成功地解释了氢原子光谱和类氢离子光谱,但对于复杂原子(多电 子原子)的光谱现象却无法解释。此外,玻尔理论也无法解释原子的化学性质和 化学键的形成。
03
原子核式结构模型具体内容
原子核组成与性质
原子核位于原子的中心,由质子和中 子组成。
原子核的半径约为原子半径的万分之 一,但质量却占原子总质量的99.9% 以上。
04
电子云密度越大,表明 电子在该区域出现的概 率越高。
能量层级
原子中的电子按照能量高低分 布在不同的能级上,每个能级 对应一定的电子云形状和取向

当电子从一个能级跃迁到另一 个能级时,会吸收或释放能量 ,表现为光的吸收或发射。
电子跃迁遵循一定的选择定则 ,如偶极跃迁选择定则、自旋
原子核的发现
卢瑟福根据α粒子散射实验现象提出了原子核式结构模型。在 原子的中心有一个很小的核,叫原子核,原子的全部正电荷 和几乎全部质量都集中在原子核里,带负电的电子在核外空 间里绕着核旋转。

原子的核式结构模型(24张ppt)

原子的核式结构模型(24张ppt)

汤姆生的原子模型
十九世纪末,汤姆生发现了电子,并知道电 子是原子的组成部分.由于电子是带负电的, 而原子又是中性的,因此推断出原子中还有带 正电的物质.那么这两种物质是怎样构成原子 的呢?
了汤 枣姆 糕生 模提 型出
汤姆生
汤姆生的原子模型
在汤姆生的原子 模型中,原子是一个 球体;正电核均匀分 布在整个球内,而电 子都象枣核那样镶嵌 在原子里面.
质子
中子 质子数
核子
电荷数
四.原子核的电荷与尺度
原子核的电荷和大小 根据卢瑟福的原子核式模型和α粒子散射 的实验数据,可以推算出各种元素原子核 的电荷数,还可以估计出原子核的大小。 (1)原子的半径约为10-10m、原子核半径 约是10-15m,原子核的体积只占原子的体积 的万亿分之一。 (2)原子核所带正电荷数与核外电子数以 及该元素在周期表内的原子序数相等。 (3)电子绕核旋转所需向心力就是核对它 的库仑力。
2.2 原子的核式结构模型
1897年,汤姆孙对阴极 射线研究,发现了电子, 说明原子是可再分,原 子是中性,可推断出原 子中还有带正电的物 质.那么这两种物质是 怎样构成原子的呢?
汤姆孙
19世纪末到20世纪的三十年代,对于电子、光 谱的深入研究以及放射性现象、中子、质子的 发现,引起物理观念的重大变革,创立了新的 理论,导致人们对原子和原子核认识的升华.
第一条现象说明,原子中绝大部分是空的 第二、三现象可看出,α 粒子受到较大的库仑力作用 第四条现象可看出,α粒子在原子中碰到了比他质量大的多 的东西
粒子散射实验
对α 粒子的运动方向不会发生明显影响;由于正 电荷均匀分布,α 粒子所受库仑力也很小,故α 粒子偏转角度不会很大.
原子的核式结构

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型原子的核式结构模型是近代物理学重要的一部分。

这一模型的提出,不仅为我们理解原子的性质、构建了从微观层面认识物质结构的框架,而且为今天的量子力学、核物理、原子物理等领域的研究提供了坚实的理论基础。

接下来,我将详细介绍原子的核式结构模型。

20世纪初,英国物理学家汤姆孙(J.J. Thomson)提出了“西瓜布条糖果模型”,即“西瓜代表原子,软而大的苦瓜肉部分代表了电子,硬脆的绿色外壳由正电荷均匀分布。

” 这一模型的主要观点是:原子是一个均匀带正电荷的球体,电子均匀地分布在其中。

然而,后来的实验证明了这一模型有其局限性。

1909年,英国物理学家拉瑟福(Ernest Rutherford)进行了著名的“金箔散射实验”。

他将α粒子射向一个百万分之一毫米厚度的金箔,观察α粒子的散射情况。

根据经典电动力学理论,根本不能解释实验观测结果。

实验结果显示,大部分α粒子直接穿透金箔,并且只有极少数α粒子发生散射。

这一现象令人困惑,而拉瑟福进一步研究发现,如果假设原子有一个类似太阳系的结构,即中心有一个被电子包围的带正电荷的核,那么这一结果就可以得到自然解释。

据此,拉瑟福提出了著名的“核式结构模型”。

这一模型认为,原子主要由正电荷均匀分布的核和绕核运动的电子组成。

原子核占据原子的中心部位,质量非常集中,电子则围绕核运动。

通过核与电子之间的电磁相互作用,电子能保持在核的附近稳定运动。

从而解释了金箔散射实验中观察到的结果。

基于核式结构模型,我们可以进一步解释原子的一些性质。

例如,原子的大小主要由核的大小决定,因为电子的质量远小于核的质量。

但是,由于电子的运动轨道是不确定的,所以无法详细确定一个原子的大小。

此外,核式结构模型还解释了原子光谱的现象。

当原子受到能量激发后,电子会从较低能量轨道跃迁到较高能量轨道上,或者从较高能量轨道跃迁到较低能量轨道上。

当电子跃迁时,会吸收或发射特定能量的光子,形成特定波长的光谱线。

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型核式结构模型最早由英国物理学家卢瑟福在1911年提出。

他的实验是在散射实验的基础上进行的,通过让高能α粒子正入射到金箔上观察散射的粒子轨迹,研究原子的内部结构。

核式结构模型的基本假设是原子由一个带正电荷的中心核和围绕核运动的电子组成。

核中包含质子和中子,质子带正电荷,中子不带电荷。

电子带负电荷,具有质量,绕核轨道运动。

根据核式结构模型,核中的质子和中子集中在原子的中心,形成原子核,质子和中子的数量决定了元素的原子序数和质量数。

围绕核的是电子云,电子云具有质量很小的特点,且电子数与质子数相等,以达到整个原子中的总正电荷等于总负电荷的平衡。

核式结构模型的主要特点有以下几点:1.原子核是原子的中心,质子和中子集中在这个中心,形成一个紧密结合的核。

质子带正电荷,中子不带电荷,所以核带正电荷。

原子核是非常小而密集的,但也是非常重要的,因为其中的质子和中子决定了元素的化学性质和质量数。

2.电子围绕着原子核,形成电子云。

电子云由负电荷的电子组成,它们被正电荷的核吸引,使得整个原子中的正电荷和负电荷保持平衡。

电子云的位置和运动状态是不确定的,只有在特定距离和特定能级上才能稳定地存在。

3.不同元素的原子核中质子和中子的数量不同,决定了元素的原子序数和质量数。

原子序数是指元素中的质子数,决定了其在元素周期表中的位置。

质量数是指一种元素中质子和中子的总数,决定了元素的相对原子质量。

核式结构模型的提出对后来的原子结构研究和理解有着重要的意义。

虽然核式结构模型无法解释电子云的具体结构和能级分布,也无法解释更微观的原子核内部结构和核反应的发生机制,但它奠定了原子结构领域的基础,并为后来量子力学的发展提供了重要的思路和依据。

总结起来,核式结构模型是描述原子内部结构的模型,认为原子由带正电荷的中心核和围绕核运动的电子组成。

质子和中子集中在核中,电子围绕着核形成电子云。

核式结构模型的提出为后来对原子结构的研究奠定了基础,也为量子力学的发展提供了启示。

原子物理复习要点

原子物理复习要点

原子物理学复习要点第一章 原子的核式结构一、学习要点1.原子的质量和大小M A =A N A (g), R ~10-10 m ,N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2.原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论:库仑散射理论公式(会推导):θπεcot 422002Mv Ze b =卢瑟福散射公式: 2sin )Z ()41(4220220θπεσΩ=d Mv e d ,θθπd d sin 2=Ω实验验证:A N n Mv t d dN μρθ=⎪⎭⎫ ⎝⎛∝Ω-- ; )21(,Z ,,2sin 220214,μ靶原子的摩尔质量 (4)微分散射面的物理意义、总截面(5)原子核大小的估计 (会推导): 散射角θ:),2sin 11(Z 2412020θπε+⋅=Mv e r mα粒子正入射:20024Z 4Mv e r m πε= ,m r ~10-15-10-14m二、基本练习1.褚书课本P 20-212.选择(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.9⨯10-10B.3.05⨯10-12C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2.简答题(1)什么是电子?简述密立根油滴实验.(2)简述卢瑟福原子有核模型的要点.(3)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(4)什么是微分散射截面?简述其物理意义.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV ,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .第二章 玻尔氢原子理论一、学习要点:1.氢原子光谱:线状谱、五个线系(记住名称、顺序)、广义巴尔末公式)11(~22n m R -=ν、 光谱项()2nR n T =、并合原则:)()(~n T m T -=ν 2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……(3)实验验证:(a )氢原子五个线系的形成)11(Z ~,)4(222232042n m R c h e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁 )(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等) (1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动e e m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =. 能量2242202Z )41(n e E n μπε-=,里德伯常数变化Mm R R e A +=∞11 重氢(氘)的发现及相关理论计算4.椭圆轨道理论 索末菲量子化条件q q n h n pdq ,⎰=为整数a n nb n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,2220224220 ,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并5空间量子化:(1)旧量子论中的三个量子数n ,m n n =ψϕ,的名称、取值范围、物理量表达式、几何参量表达式名 称 取 值 物理量表达式 几何参量表达式 nn ϕψn(2)空间量子化(ϕP 空间取向)、电子的轨道磁矩(旧量子论)、斯特恩—盖拉赫实验6.玻尔对应原理及玻尔理论的地位二、基本练习(共29题)1.楮书P76--772.选择题(1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1B .n(n-1)/2C .n(n+1)/2D .n(2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(4)氢原子基态的电离电势和第一激发电势分别是:A .13.6V 和10.2V;B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V(5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:A.5.291010-⨯mB.0.529×10-10mC. 5.29×10-12mD.529×10-12m(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )?A.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?A.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A .0.66 eV B.12.09eV C.10.2eV D.12.57eV(10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A .3 B.10 C.1 D.4(11)有速度为1.875m/s 106⨯的自由电子被一质子俘获,放出一个光子而形成基态氢原子,则光子的频率(Hz )为:A .3.3⨯1015; B.2.4⨯1015 ; C.5.7⨯1015; D.2.1⨯1016.(12)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(13)玻尔磁子B μ为多少焦耳/特斯拉?A .0.9271910-⨯ B.0.9272110-⨯ C. 0.9272310-⨯ D .0.9272510-⨯(14)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A .3∞R /8 B.3∞R /4 C.8/3∞R D.4/3∞R(15)象μ-子(带有一个单位负电荷)通过物质时,有些在核附近的轨道上将被俘获而形成μ-原子,那么μ-原子基态轨道半径与相应的电子轨道半径之比为(μ-子的质量为m=206m e )A.1/206B.1/(206)2C.206D.2062(16)电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(17)根据玻尔理论可知,氦离子H e +的第一轨道半径是:A .20a B. 40a C. 0a /2 D. 0a /4(18)一次电离的氦离子 H e +处于第一激发态(n=2)时电子的轨道半径为:A.0.53⨯10-10mB.1.06⨯10-10mC.2.12⨯10-10mD.0.26⨯10-10m(19)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV 为单位至少需提供的能量为:A .54.4 B.-54.4 C.13.6 D.3.4(20)在H e +离子中基态电子的结合能是:A.27.2eVB.54.4eVC.19.77eVD.24.17eV(21)夫—赫实验的结果表明:A 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化(22)夫—赫实验使用的充气三极管是在:A.相对阴极来说板极上加正向电压,栅极上加负电压;B.板极相对栅极是负电压,栅极相对阴极是正电压;C.板极相对栅极是正电压,栅极相对阴极是负电压;D.相对阴极来说板极加负电压,栅极加正电压(23)处于基态的氢原子被能量为12.09eV 的光子激发后,其轨道半径增为原来的A .4倍 B.3倍 C.9倍 D.16倍(24)氢原子处于基态吸收1λ=1026Å的光子后电子的轨道磁矩为原来的( )倍:A .3; B. 2; C.不变; D.93.简答题(1)19世纪末经典物理出现哪些无法解决的矛盾?(1999长春光机所)(2)用简要的语言叙述玻尔理论,并根据你的叙述导出氢原子基态能量表达式.(1998南开大学)(3)写出下列物理量的符号及其推荐值(用国际单位制):真空的光速、普朗克常数、玻尔半径、玻尔磁子、玻尔兹曼常数、万有引力恒量. (2000南开大学)(4)解释下列概念:光谱项、定态、简并、电子的轨道磁矩、对应原理.(5)简述玻尔对原子结构的理论的贡献和玻尔理论的地位与不足.4.计算题(1)单色光照射使处于基态的氢原子激发,受激发的氢原子向低能级跃迁时可能发出10条谱线.问:①入射光的能量为多少?②其中波长最长的一条谱线的波长为多少?(hc=12400eV·Å)(2)已知一对正负电子绕共同质心转动会形成类似氢原子结构-正电子素.试求:①正电子素处于基态时正负电子间的距离;②n=5时正电子素的电离能(已知玻尔半径0a =0.529Å).(3)不计电子自旋当电子在垂直于均匀磁场B 的平面内运动时,试用玻尔理论求电子动态轨道半径和能级(提示: B v m E e n ⋅-=ϕμ221 ; n me 2 =ϕμ n p =ϕ) (4)氢原子巴尔末系的第一条谱线与He +离子毕克林系的第二条谱线(6→4)两者之间的波长差是多少?(R H =1.09678×10-3 Å, R He =1.09722×10-3 Å)(5)设氢原子光谱的巴耳末系的第一条谱线αH 的波长为αλ,第二条谱线βH 的波长为βλ,试证明:帕邢系的第一条谱线的波长为βαβαλλλλλ-=.(2000.上海大学)(6)一个光子电离处于基态的氢原子,被电离的自由电子又被氦原子核俘获,形成处于2=n 能级的氦离子He +,同时放出波长为500nm 的光子,求原入射光子的能量和自由电子的动能,并用能级图表示整个过程.(1997北京师大)(7)在天文上可观察到氢原子高激发态之间的跃迁,如108=n 与109=n 之间,请计算此跃迁的波长和频率. (1997.中科院)(8) He +离子毕克林系的第一条谱线的波长与氢原子的巴耳末系αH 线相近. 为使基态的He +离子激发并发出这条谱线,必须至少用多大的动能的电子去轰击它?(2001.中科院)(9)试用光谱的精细结构常数表示处于基态的氢原子中电子的速度、轨道半径、氢原子的电离电势和里德伯常数. (1999.中科院)(10)计算氢原子中电子从量子数为n 的状态跃迁到1-n 的状态时所发出谱线的频率. (2001.中科院固体所)第三章 量子力学初步一、学习要点轨道角动量()1,,2,1,0,1-=+=n l l l p l ,l 称为轨道角量子数,轨道角量子数l =0 1 2 3 4 …电 子 态 s p d f g …原 子 态 S P D F G …能量()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……轨道投影角动量()l l l l m m p l l lz ,1,,1,0,,1,,----== ,称轨道磁量子数,表征轨道角动量对外场方向的取向,轨道角动量对外场方向的投影图描述电子空间运动的三个量子数l m l n ,,的名称、取值范围、所表征的物理量表达式二、基本练习(1)按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数n 时,对应的状态数是:A .2n; B.2n+1; C.n 2; D.2n 2(2)按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.n 2;B.2n;C.l ;D.2l +1(3)按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.2(2l +1);B.2l +1;C. n;D.n 2(4)按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当nl m 确定后对应的状态数为:A.1;B.2;C.2l +1;D. n(5)试画出2=l 时电子轨道角动量在磁场中空间量子化示意图,并标出电子轨道角动量在外磁场方向z 的投影的各种可能值.(中山大学1993)第四章 碱金属原子一、学习要点1.碱金属原子光谱和能级(1)四个线系:主线系、第一辅线系(漫)、第二辅线系(锐)、柏格曼系(基)共振线、线系限波数、波数表达式(2)光谱项()()222222Z Z n R n R n R n RT l σ-==∆-==**;σ-=∆-=∆-=**Z Z ,ll n n n n (3)起始主量子数Li:n=2 ; Na:n=3 ; K:n=4 ; Rb:n=5 ;Cs:n=6 ; Fr:n=7(4)碱金属原子能级.选择定则1±=∆l(5)原子实极化和轨道贯穿是造成碱金属原子能级与氢原子不同的原因2.电子自旋(1)实验基础与内容:电子除具有质量、电荷外,还具有自旋角动量()21(,1=+=s s s p s 称自旋角量子数)和自旋磁矩B s s e s p m e μμμ3,=-= . 自旋投影角动量21,±==s s sz m m p 称自旋磁量子数 (2)单电子角动量耦合:总角动量()⎪⎪⎩⎪⎪⎨⎧=≠±=+=0,210,21,1l l l j j j p j ,称总角量子数(内量子数、副量子数;总角动量的投影角动量()j j j j m m p j j jz ,1,,1,,----== ,称总磁量子数(3)描述一个电子的量子态的四个量子数:强场:s l m m l n ,,,;弱场:j m j l n ,,,原子态(光谱项)符号 j s L n 12+S 态不分裂, ,,,,G F D P 态分裂为两层3.碱金属原子光谱和能级的精细结构:(1)原因:电子自旋—轨道的相互作用(2)能级和光谱项的裂距;(3)选择定则:1±=∆l ,1,0±=∆j画出锂、钠、钾原子的精细结构能级跃迁图4.氢原子光谱和能级的精细结构:(1)原因:相对论效应和电子自旋-轨道相互作用;(2)狄拉克能级公式;(3)赖曼系第一条谱线和巴尔末线系αH 线的精细分裂(4)蓝姆移动*二.基本练习:1.褚书P1432.选择题:(1)单个f 电子总角动量量子数的可能值为:A. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/2(2)单个d 电子的总角动量投影的可能值为:A.2 ,3 ;B.3 ,4 ;C. 235, 215; D. 3/2, 5/2 . (3)已知一个价电子的21,1==s l ,试由s l j m m m +=求j m 的可能值:A .3/2,1/2 ,-1/2 ,-3/2 ; B. 3/2 ,1/2 ,1/2, -1/2 ,-1/2,-3/2;C .3/2,1/2 ,0,-1/2, -3/2; D. 3/2,1/2 ,1/2 ,0,-1/2, -1/2,-3/2;(4)锂原子光谱由主线系.第一辅线系.第二辅线系及柏格曼系组成.这些谱线系中全部谱线在可见光区只有:A.主线系;B.第一辅线系;C.第二辅线系;D.柏格曼系(5)锂原子主线系的谱线在不考虑精细结构时,其波数公式的正确表达式应为: A.nP S -=2~ν; B. S nP 2~→=ν; C .nP S →=2~ν; D .S nP 2~-=ν (6)碱金属原子的光谱项为:A.T=R/n 2; B .T=Z 2R/n 2; C .T=R/n *2; D. T=RZ *2/n *2(7)锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)?A.一条B.三条C.四条D.六条(8)已知锂原子光谱主线系最长波长为6707埃,辅线系线系限波长为3519埃,则Li 原子的电离电势为:A .5.38V B.1.85V C.3.53V D.9.14V(9)钠原子基项3S 的量子改正数为1.37,试确定该原子的电离电势:A.0.514V;B.1.51V;C.5.12V;D.9.14V(10)碱金属原子能级的双重结构是由于下列哪一项产生:A.相对论效应B.原子实的极化C.价电子的轨道贯穿D.价电子的自旋-轨道相互作用(11)产生钠的两条黄谱线的跃迁是:A.2P 3/2→2S 1/2 , 2P 1/2→2S 1/2;B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2 , 2D 3/2→2P 3/2(12)若已知K 原子共振线双重成分的波长等于7698.98埃和7664.9埃,则该原子4p 能级的裂距为多少eV ?A.7.4×10-2; B .7.4×10-3; C .7.4×10-4; D .7.4×10-5.(13)对锂原子主线系的谱线,考虑精细结构后,其波数公式的正确表达式应为: A.ν~= 22S 1/2-n 2P 1/2 ν~= 22S 1/2-n 2P 3/2 B. ν~= 22S 1/2→n 2P 3/2 ν~= 22S 1/2→n 2P 1/2C. ν~= n 2P 3/2-22S 1/2 ν~= n 2P 1/2-22S 3/2D. ν~= n 2P 3/2→n 2P 3/2 ν~= n 2P 1/2→n 21/2(14)碱金属原子光谱精细结构形成的根本物理原因:A.电子自旋的存在B.观察仪器分辨率的提高C.选择定则的提出D.轨道角动量的量子化(15)已知钠光谱的主线系的第一条谱线由λ1=5890埃和λ2=5896埃的双线组成,则第二辅线系极限的双线间距(以电子伏特为单位):A.0;B.2.14⨯10-3;C.2.07⨯10-3;D.3.42⨯10-2(16)考虑电子自旋,碱金属原子光谱中每一条谱线分裂成两条且两条线的间隔随波数增加而减少的是什么线系?A.主线系;B.锐线系;C.漫线系;D.基线系(17)如果l 是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:A.0=∆l ;B. 0=∆l 或±1;C. 1±=∆l ;D. 1=∆l(18)碱金属原子的价电子处于n =3, l =1的状态,其精细结构的状态符号应为:A .32S 1/2.32S 3/2; B.3P 1/2.3P 3/2; C .32P 1/2.32P 3/2; D .32D 3/2.32D 5/2(19)下列哪种原子状态在碱金属原子中是不存在的:A .12S 1/2; B. 22S 1/2; C .32P 1/2; D. 32S 1/2.32D 5/2(20)对碱金属原子的精细结构12S 1/2 12P 1/2, 32D 5/2, 42F 5/2,22D 3/2这些状态中实际存在的是:A.12S 1/2,32D 5/2,42F 5/2;B.12S 1/2 ,12P 1/2, 42F 5/2;C.12P 1/2,32D 5/2,22D 3/2;D.32D 5/2, 42F 5/2,32D 3/2(21)氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于:A.自旋-轨道耦合B.相对论修正和极化贯穿C.自旋-轨道耦合和相对论修正D.极化.贯穿.自旋-轨道耦合和相对论修正(22)对氢原子考虑精细结构之后,其赖曼系一般结构的每一条谱线应分裂为:A.二条B.三条C.五条D.不分裂(23)考虑精细结构,不考虑蓝姆位移,氢光谱Hα线应具有:A.双线B.三线C.五线D.七线(24)氢原子巴尔末系的谱线,计及精细结构以后,每一条谱线都分裂为五个,但如果再考虑蓝姆位移其谱线分裂条数为:A.五条B.六条C.七条D.八条(25)已知锂原子主线系最长波长为λ1=67074埃,第二辅线系的线系限波长为λ∞=3519埃,则锂原子的第一激发电势和电离电势依次为(已知R =1.09729⨯107m -1)A.0.85eV,5.38eV;B.1.85V ,5.38V;C.0.85V ,5.38VD.13.85eV ,5.38eV(26)钠原子由nS 跃迁到3P 态和由nD 跃迁到3P 态产生的谱线分别属于:A.第一辅线系和基线系B.柏格曼系和锐线系C.主线系和第一辅线系D.第二辅线系和漫线系(27)d 电子的总角动量取值可能为: A. 215,235; B . 23,215; C. 235,263; D. 2,63.简答题(1)碱金属原子能级与轨道角量子数有关的原因是什么?造成碱金属原子精细能级的原因是什么?为什么S 态不分裂, ,,,,G F D P 态分裂为两层?(2)造成氢原子精细能级和光谱的原因是什么?(3)试由氢原子能量的狄拉克公式出发,画出巴尔末系第一条谱线分裂后的能级跃迁图,并写出各自成分的波数表达式(4)在强磁场下描述一个电子的一个量子态一般需哪四个量子数?试写出各自的名称、.取值范围、力学量表达式?在弱磁场下情况如何?试回答上面的问题.(5)简述碱金属原子光谱的精细结构(实验现象及解释).4.计算题(1)锂原子的基态光谱项值T2S=43484cm-1,若已知直接跃迁3P→3S产生波长为3233埃的谱线.试问当被激发原子由3P态到2S态时还会产生哪些谱线?求出这些谱线的波长(R =10972⨯10-3埃-1)(2)已知铍离子Be+主线系第一条谱线及线系限波长分别为3210埃和683埃,试计算该离子S项和P项的量子亏损以及锐线系第一条谱线的波长.(北大1986)(3)锂原子的基态是S2,当处于D3激发态的锂原子向低能级跃迁时,可能产生几条谱线(不考虑精细结构)?这些谱线中哪些属于你知道的谱线系的?同时写出所属谱线系的名称及波数表达式. 试画出有关的能级跃迁图,在图中标出各能级的光谱项符号,并用箭头都标出各种可能的跃迁. (中科院2001)(4)①试写出钠原子主线系、第一辅线系、第二辅线系和伯格曼系的波数表达式.②已知:35.1=∆s ,86.0=∆p,01.0=∆d,求钠原子的电离电势.③若不考虑精细结构,则钠原子自D3态向低能级跃迁时,可产生几条谱线?是哪两个能级间的跃迁?各对应哪个线系的谱线?④若考虑精细结构,则上问中谱线分别是几线结构?用光谱项表达式表示出相应的跃迁.(中科院1998)第五章多电子原子一、学习要点1.氦原子和碱土金属原子:(1)氦原子光谱和能级(正氦(三重态)、仲氦(单态))(2)镁原子光谱和能级2.重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.*复杂原子光谱的一般规律:位移律、交替律、三个电子的角动量耦合6.普用选择定则(电子组态的跃迁选择定则,又称宇称跃迁选择定则,或拉波特定则;L-S耦合选择定则等)6.氦氖激光器*二、基本练习1.褚书P168-169习题2.选择题(1)关于氦原子光谱下列说法错误的是:A.第一激发态不能自发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第一激发态能量相差很大;D.三重态与单态之间没有跃迁(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为:A.3;B.4;C.6;D.5(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(6)氦原子的电子组态为n1pn2s,则可能的原子态:A.由于n不确定不能给出确定的J值,不能决定原子态;B.为n1pn2s 3D2,1,0和n1pn2s 1D1;C.由于违背泡利原理只存单态不存在三重态;D.为n1pn2s 3P2,1,0和n1pn2s 1P1.(7)C++离子由2s3p 3P2,1,0到2s3s 3S1两能级的跃迁,可产生几条光谱线?A.6条;B.3条;C.2条;D.1条.(8)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和1s2s3S1是简并态(9)泡利不相容原理说:A.自旋为整数的粒子不能处于同一量子态中;B.自旋为整数的粒子能处于同一量子态中;C.自旋为半整数的粒子能处于同一量子态中;D.自旋为半整数的粒子不能处于同一量子态中.(10)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(11)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(12)一个p电子与一个 s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(13)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(14)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(15)硼(Z=5)的B+离子若处于第一激发态,则电子组态为:A.2s2pB.2s2sC.1s2sD.2p3s(16)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(17)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(18)今有电子组态1s2p,1s1p,2d3p,3p3s,试判断下列哪些电子组态是完全存在的:A.1s2p ,1s1pB.1s2p,2d3p C,2d3p,2p3s D.1s2p,2p3s(19)电子组态1s2p所构成的原子态应为:A1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(20)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(21)试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是完全存在的?A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 B .1s2p 3P 2 1s2p 1D 1C. 1s2p 3P 2 2s2p 3P 2D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 1(22)在铍原子中,如果3D 1,2,3对应的三能级可以分辨,当有2s3d 3D 1,2,3到2s2p 3P 2,1,0的跃迁中可产生几条光谱线?A .6 B.3 C.2 D.9(23)有状态2p3d 3P →2s3p 3P 的跃迁:A.可产生9条谱线B.可产生7条谱线C 可产生6条谱线 D.不能发生(24)已知Cl (Z=17)原子的电子组态是1s 22s 22p 63p 5,则其原子态是:A.2P 1/2;B.4P 1/2 ;C.2P 3/2;D.4P 3/2(25) 原子处在多重性为5,J 的简并度为7的状态,试确定轨道角动量的最大值: A. 6; B. 12; C. 15; D. 30(26)试确定D 3/2谱项可能的多重性:A.1,3,5,7;B.2,4,6,8; C .3,5,7; D.2,4,6.(27)某系统中有三个电子分别处于s 态.p 态.d 态,该系统可能有的光谱项个数是:A .7; B.17; C.8; D.18(28)钙原子的能级应该有几重结构?A .双重; B.一、三重; C.二、四重; D.单重3.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则.(2)L-S 耦合的某原子的激发态电子组态是2p3p ,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p 向2p3s 可能产生的跃迁.(首都师大1998)(3)写出两个同科p 电子形成的原子态,那一个能级最低?(4)写出两个同科d 电子形成的原子态,那一个能级最低?(5)写出5个同科p 电子形成的原子态,那一个能级最低?(6)写出4个同科p 电子形成的原子态,那一个能级最低?(7)汞原子有两个价电子,基态电子组态为6s6s 若其中一个电子被激发到7s 态(中间有6p 态)由此形成的激发态向低能级跃迁时有多少种可能的光谱跃迁?画出能级跃迁图.(8)某系统由一个d 电子和一个2P 3/2原子构成,求该系统可能的光谱项.(9)某系统由spd 电子构成,试写出它的光谱项.(10)碳原子的一个价电子被激发到3d 态,①写出该受激原子的电子组态以及它们在L —S 耦合下形成的原子态; ②画出对应的能级图并说明这些能级间能否发生电偶极跃迁?为什么?第六章 磁场中的原子一、学习要点1.原子有效磁矩 J J P m e g2-=μ, )1(2)1()1()1(1++++-++=J J S S L L J J g (会推导) 2.外磁场对原子的作用:(1)拉莫尔进动圆频率(会推导): B m e g eL 2=ω(2)原子受磁场作用的附加能量:B g M B E B J J μμ=⋅-=∆附加光谱项()1-m 7.464~,~4B mc eB L L g M mc eB g M T J J ≈===∆ππ 能级分裂图(3)史—盖实验;原子束在非均匀磁场中的分裂B J g M v L dz dB m s μ221⎪⎭⎫ ⎝⎛-=,(m 为原子质量) (4)塞曼效应:光谱线在外磁场中的分裂,机制是原子磁矩与外磁场的相互作用,使能级进一步的分裂所造成的. 塞曼效应的意义①正常塞曼效应:在磁场中原来的一条谱线分裂成3条,相邻两条谱线的波数相差一个洛伦兹单位L ~Cd 6438埃 红光1D 2→1P 1氦原子 66781埃 1D 2→1P 1②反常塞曼效应:弱磁场下:Na 黄光:D 2线 5890埃 2P 3/2→2S 1/2(1分为6);D 1线5896埃 2P 1/2→2S 1/2(1分为4)Li ( 2D 3/2→2P 1/2)格罗春图、相邻两条谱线的波数差、能级跃迁图选择定则 )(1);(0);(1+-+-=∆σπσJ M 垂直磁场、平行磁场观察的谱线条数及偏振情况③帕邢—贝克效应:强磁场中反常塞曼效应变为正常塞曼效应()()B M M B E B S L S L μμμ2+=⋅+-=∆ ,()L M M SL ~2~∆+∆=∆ν,1,0,0±=∆=∆L S M M ()L L ~,0,~~~0-+=νν (5)顺磁共振、物质的磁性二、基本练习1.楮书P1972.选择题(1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; B.1; C.2; D.3(2)正常塞曼效应总是对应三条谱线,是因为:A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同;C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁(3)B 原子态2P 1/2对应的有效磁矩(g =2/3)是 A. B μ33; B. B μ32; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ∆除正比于B 之外,同原子状态有关的因子有:A.朗德因子和玻尔磁子B.磁量子数、朗德因子C.朗德因子、磁量子数M L 和M JD.磁量子数M L 和M S(5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A ;)(0);(1πσ±=∆J M B. )(1);(1σπ+-=∆J M ;0=∆J M 时不出现;C. )(0σ=∆J M ,)(1π±=∆J M ;D. )(0);(1πσ=∆±=∆S L M M(6)原子在6G 3/2状态,其有效磁矩为:A .B μ315; B. 0; C. B μ25; D. B μ215- (7)若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值:A .1和2/3; B.2和2/3; C.1和4/3; D.1和2(8)由朗德因子公式当L=S,J≠0时,可得g 值:A .2; B.1; C.3/2; D.3/4(9)由朗德因子公式当L=0但S≠0时,可得g 值:A .1; B.1/2; C.3; D.2(10)如果原子处于2P 1/2态,它的朗德因子g 值:A.2/3; B.1/3; C.2; D.1/2(11)某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为:A .2个; B.9个; C.不分裂; D.4个(12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:A.4D 3/2分裂为2个;B.1P 1分裂为3个;C.2F 5/2分裂为7个;D.1D 2分裂为4个(13)如果原子处于2P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:A.3个B.2个C.4个D.5个(14)态1D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?A.3个B.5个C.2个D.4个(15)钠黄光D 2线对应着32P 3/2→32S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:A.3条B.6条C.4条D.8条(16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2P 3/2)在磁场中发生塞曼效应,光谱线发生分裂,沿磁场方向拍摄到的光谱线条数为A.3条B.6条C.4条D.9条(17)对钠的D 2线(2P 3/2→2S 1/2)将其置于弱的外磁场中,其谱线的最大裂距max~ν∆和最小裂距min~ν∆各是 A.2L 和L/6; B.5/2L 和1/2L; C.4/3L 和2/3L; D.5/3L 和1/3L(18)使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成A.不分裂B.3条C.5条D.7条(19)(1997北师大)对于塞曼效应实验,下列哪种说法是正确的?A .实验中利用非均匀磁场观察原子谱线的分裂情况;B .实验中所观察到原子谱线都是线偏振光;C .凡是一条谱线分裂成等间距的三条线的,一定是正常塞曼效应;D .以上3种说法都不正确.3.计算题。

原子的核式结构模型

原子的核式结构模型

b
总功等于零
D .加速度先变小,后变大
a
课后作业Biblioteka 1.完成教科书本节课后的问题与练习1-5题。 2.卢瑟福的核式结构模型正确地指出了原子核 的存在,很好地解释了a粒子散射实验。请同学们查 阅资料思考一下,为什么用经典物理学无法解释原子 的稳定性。
=2.7×10-14 m。
课堂练习
如图所示,根据α粒子散射实验,卢瑟福提出了原子的 核式结构模型。图中虚线表示原子核所形成的电场的等势线, 实线表示一个α粒子的运动轨迹。在α粒子从a运动到b、再运
动到c的过程中,下列说法中正确的是 ( C )
A .动能先增大,后减小
c
B .电势能先减小,后增大
C .电场力先做负功,后做正功,
显微镜——通过显 微镜观察闪光,且 可360°转动观察不 同角度α粒子的到达
情况。
二、α粒子散射实验
4.实验现象
原因分析
结论
(1)绝大多数α粒子穿过金箔 后基本上沿原来的方向前进
绝大多数α粒子穿过金箔时没 有受到很大的力的作用。
原子内存在空大 的空的区域
(2)少数α粒子(约占 八千分之一) 发生了大 角度偏转
电子
卢瑟福
二、α粒子散射实验
1.实验原理
原子的结构非常紧密,要认识原子的结构,需要用高能
粒子轰击原子。因为α粒子具有足够的能量,可以接近原子
中心。而且α粒子还可以使荧光物质发光。如果α粒子与其他 粒子发生相互作用,改变了运动方向,被散射的 α粒子打在 荧光屏上会有微弱的闪光。统计散射到各个方向的α粒子所占 的比例,就可以推知原子中电荷的分布情况。
荷和几乎全部质量集中在一个很小的核上 D.相同条件下,换用原子序数越小的物质做实验,沿同一偏

高中物理必备知识点原子的核式结构模型总结

高中物理必备知识点原子的核式结构模型总结

1. 电子的发现2. 原子的核式结构3. 氢原子光谱4. 玻尔的原子模型二. 知识归纳、总结:(一)电子的发现1、阴极射线(1)产生:在研究气体导电的玻璃管内有阴、阳两极,当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线。

(2)阴极射线的特点:碰到荧光物质能使其发光。

2、汤姆孙的发现(1)阴极射线电性的发现为了研究阴极射线的带电性质,他设计了如图18-1-2所示装置,从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷。

(2)测定阴极射线粒子的比荷。

图18-1-3如图18-1-3所示,从阴极K发出的阴极射线通过一对平行金属板P、P'间的匀强电场,发生偏转,偏转角θ与电场强度E、极板长度L以及带电粒子的速度v的关系:tanθ=①然后再加一垂直于电场方向的匀强磁场,使粒子所受到的电场力与磁场力平衡,不发生偏转,由此可得:②将②式代入①式,并代入实验数据,求得这种粒子的比荷为说明:①汤姆孙通过进一步的实验,发现当改变阴极材料时,测得的比荷都相同,表明这种粒子是各种材料的共有成分,1898年,汤姆孙测出这种粒子所带电荷与氢离子的电荷数值接近,从而证明这种粒子的质量约是氢离子的千分之一,至此,这种粒子的“身份”已经明确;它是一种带负电的质量很小的粒子,物理学家把这种粒子叫做电子。

②现在测得电子的比荷为e/m=1.75881×1011C/kg.电子的电荷量为e=1.60219×10-19C,从而计算出电子的质量为m=9.10953×10-31kg.③电子的质量约为氢原子质量的(二)原子的核式结构1、汤姆孙的枣糕式模型图18-2-1J·J·汤姆孙于1904年提出来的模型,汤姆孙在发现电子后,便投入了对原子内部结构的探索,他运用丰富的想象,提出了原子枣糕模型(图18-2-1),在这个模型里,汤姆孙把原子看作一个球体,正电荷均匀地分布在整个球内,电子像枣糕上的枣子一样嵌在球中,被正电荷吸引着,原子内正、负电荷相等,因此原子的整体呈中性,汤姆孙的模型是第一个有一定科学依据的原子结构模型,而不是哲学思辨的产物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 由于金箔原子中的带电粒子对 粒子的库仑力作用,
发生了 粒子的散射。统计散射到各个方向的 粒
子所占的比例,可以推知原子内电荷的分布情况。
汤姆孙模型中的散射
侧视图
俯视图
粒子散射实验装置
(1) 大角度的偏转不可能是电子造成的;
(2) 离球心越近,所受力越小; (3) 不可能产生大角散射的,只有小角
度散射。
• 一般的原子核,实验确定的核半径的数量级为 10-14m ,而整个原子半径的数量级是 10-10m,两 者相差十万倍之多,可见原子内部是十分“空” 的。
测验
1. 物质是原子构成的,原子半径的数量级为埃米 (10-10m),原子核半径的数量级为飞米 (10-15m), 下列说法 哪个正确? (1)原子大小之于苹果相当于苹果大小之于月球; (2)原子大小是原子核大小的一万多倍; (3)不同物质的原子及原子核,其大小也千差万别; (4)物质的固、液、气相均可由原子概念来统一描述。
3. 卢瑟福核式结构模型
• 1911 年卢瑟福提出另外一种模型:原子中带正 电部分很小,电子在带正电部分的外边。
核式模型中的散射
• 正电体(称之为原子核)很小,所受的力就可 以很大,就能产生大角度散射-----核式结构模型。
4. 原子核的电荷与大小
• 粒子到达离原子核最小的距离,就是原子核半 径的理论上限。
12.2 原子的核式模型结构
1. 汤姆孙的模型 2. 粒子散射实验 3. 卢瑟福核式结构模型 4. 原子核的电荷与大小
1. 汤姆孙的模型
• 1903年,汤姆孙假设,原子的是电子镶嵌在一个正 电荷均匀分布、具有原子大小、弹性冻胶状的球内 或球上-----“西瓜模型”。
汤姆孙的原子模型,小圆点代表正 电荷,大圆点代表电子。
ቤተ መጻሕፍቲ ባይዱ
• 勒纳德的电子散射实验表明汤姆孙模型的困难。
2. 粒子散射实验
• 粒子是放射性物质(如铀和镭)发射出来的快 速运动粒子,带两个单位的正电荷,质量为氢原 子质量的 4倍、电子质量的 7300倍。
• 1909 年卢瑟福的 粒子受金箔的薄膜散射实验 表明: • 绝大多数 粒子穿过金箔后,基本上沿原来的运 动方向前进,平均只有 的偏转 ,但有的 粒 子偏转大于 ,有的甚至接近 。
相关文档
最新文档