上转换材料及其发光机理资料
上转换材料及其发光机理
无辐射弛豫达到发光能级,由此跃迁到基态放出一可见
光子,
发光要求 为了有效实现双光子或多光子效应,发光中心的
亚稳态需要有较长的能级寿命,稀土离子能级之间的跃迁属 于禁戒的f-f 跃迁,因此有长寿命,符合此条件,
能级3-2之间能量差与能级2-1之间的能量差相等,若某一辐射的 能量与上述能量差一致,则会发生激发,离子会从1激发到2,如果 能级2的寿命不是太短,则离子从2激发到3.最后就发生了从3到1 的发射,
1、样品制备与光谱测试
NaOH吸收SiF4
11
2、激发机理
Er3+的绿色发射,由基态经由4I11/2到4F7/2能记得 两步激发,随后无辐射衰减到2I11/2和4S3/2能级, 最后辐射跃迁回基态,发出绿光
Er3+的红色发射: A、由4S3/2能级经无辐射衰减到红色发射的 4F9/2能级 B、 Er3+接受Yb 3+传递来的三个光量子,由 4S3/2能级激发至2G7将多余能量逆传递给 Yb 3+ C、 Er3+在第一步激发后,从4I11/2无辐射衰减到 4I13/2,再激发到红色发射的4F9/2能级
4
实际的上转换过程
能量传 递机理, 离子A 将能量 传递给 离子B, 从而能 够从更 高能级 发射
两步 吸收 机理, 仅由 一个 离子 完成
协同敏 化机理, 两个A离 子将能 量传递 给C离子, 由C的激 发产生 发射
协同发光 机理,将两 个A离子 的激发能 量结合,形 成一个产 生发射的 光量子
上转换材料及其发光机理
主要内容
1
上转换机理
2
上转换材料
3
实例分析
2
一、上转换机理
上转换材料 是一种红外光激发下能发出可见光的发光材
上转化发光实验报告
实验名称:共沉淀法制备NaYF4 ∶Tm3 + , Yb3 +的上转换发光近来许多三价稀土离子如Er3 +, Tm3 +等被掺杂到各种基质材料中作为发光中心, 而Yb由于其特殊的能级结构和长激发态寿命, 被用作敏化中心。
以NaYF4 为基质的上转换发光材料是近年来发现的并迄今为止上转换发光效率最高的材料体系之一, 其中六方相晶体对上转换荧光材料的发光效率有很大的贡献。
Tm3 + , Er3 +掺杂NaYF4 等氟化物材料早在20世纪70年代中期就有了研究, 因其在固体激光、三维平板显示和生物探针等方面有着潜在的应用, 近来更加受到关注.目前,以NaYF4为基质的上转换材料已有很多报道。
本实验是制备NaYF4:Tm,Yb的上转换材料。
在近红外光激发下,发出蓝绿色光,其上转换过程为间接敏化发光。
一.实验目的1.了解上转换发光的机理2.掌握制备上转换的试验方法3.通过上转化实验操作初步了解实验的流程4.通过初步的实验学习掌握实验室仪器的使用二.实验原理与传统典型的发光过程(只涉及一个基态和一个激发态)不同,上转换过程需要许多中间态来累积低频的激发光子的能量。
其中主要有三种发光机制:激发态吸收、能量转换过程、光子雪崩。
这些过程均是通过掺杂在晶体颗粒中的激活离子能级连续吸收一个或多个光子来实现的,而那些具有f电子和d电子的激活离子因具有大量的亚稳能级而被用来上转换发光。
然而高效率的上转换过程,只能靠掺杂三价稀土离子实现,因其有较长的亚稳能级寿命。
上转换发光,即:反-斯托克斯发光(Anti-Stokes),由斯托克定律而来。
斯托克定律认为材料只能受到高能量的光激发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。
比如紫外激发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外光。
但是后来人们发现,其实有些材料可以实现与上述定律正好相反的效果,于是我们称其为反斯托克斯发光,又称上转换发光。
上转换发光材料
1966年, 法国科学家Auzel在研究钨酸镱 钠玻璃时,意外发现,当基质材料中掺入 Yb3+ 离子时,Er 3+、 Ho3+和 Tm3+离子 在红外光激发时,可见发光几乎提高了两 个数量级,由此正式提出了“上转换发光” 的概念
发展 历程
1968年,制出第一个有实用价值的上 转换材料LaF3,一时间Yb,Er 成为研 究热点; 20世纪 90年代初: 在低温下(液氮温 度)在掺Er3+:CaF2晶体中上转换发光 效率高达25%
• 其中就上转换发光效率而言,一般认为氯化物>氟化物> 氧化物,这是单纯从材料的声子能量方面来考虑的,这个 顺序恰与材料的结构稳定性顺序相反。
• NaYF4是目前上转换发光效率最高的基质材料
发展历程
1959年,Bloeberge用960nm的红外 光激发多晶ZnS ,观察到 525nm的 绿色发光。 1962年,此种现象又在硒化物中得 到了进一步的证实。
分类
• 根据掺杂离子分类可将上转换材料可分为单掺和双掺两种
• 单掺材料利用稀土离子f-f禁戒跃迁,效率不高。 • 双掺稀土离子则是以高浓度掺入一个敏化离子,其激发态
高于激活离子激发亚稳态,因此可将吸收的红外光子能量 传递给这些激活离子,发生双光子或多光子加和,从而实 现上转换过程。
分类
• 根据基质材料可分为5类,包括氟化物、氧化物、氟氧化 物、卤化物和含硫化合物。
上转换发光材料的应用(一)
• 基ቤተ መጻሕፍቲ ባይዱ上转换发光的活体成像技术
上转换发光材料的应用(一)
• 上转化纳米材料料在 肿瘤靶向成像中的应用
上转换发光材料的应用
• 生物成像 • 防伪技术 • 红外探测 • 显示技术
上转换发光材料
上转换发光材料上转换发光的概念:上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。
本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。
斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。
比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。
但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。
上转换发光技术的发展:早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。
1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。
迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。
80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。
1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。
2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。
上转换发光材料及发光效率研究及展望
上转换发光材料及发光效率研究及展望在现代的光电子技术领域,上转换发光材料是一种十分重要的材料,其可以将低能量的光转换为高能量的光,并且具有高效率的特点。
上转换发光材料在LED制造、激光技术以及生物分析等领域都有着广泛的应用,并且在未来还有很大的发展潜力。
上转换发光材料的主要原理是通过吸收低能量的光,并将其能量由非辐射跃迁转移到高能级激发态,从而发射出高能量的光。
一种常见的上转换发光材料是稀土离子掺杂材料,如YAG:Ce材料。
在这个材料中,铈离子可以吸收紫外光,并将其转移到高能级的氧空位,然后通过辐射跃迁释放出蓝光。
为了提高上转换发光材料的发光效率,目前的研究主要集中在两个方面:一是优化材料的结构和组分,二是改善能量传输的过程。
对于材料的结构和组分的优化,研究人员通过调节材料的晶格结构、掺杂浓度以及添加辅助剂等方式来提高发光效率。
例如,研究人员改变YAG材料的晶格结构,将其转变为纳米晶体,可以增强材料的上转换发光效率。
此外,通过调节掺杂浓度和添加适量的辅助剂,也可以有效地改善材料的上转换效果。
另一方面,改善能量传输的过程也是提高上转换发光效率的关键。
目前,研究人员主要采用能量转移杂化的方法来实现高效能量传输。
通过将异质结构、量子点等功能层引入上转换发光材料中,可以实现能量转移的优化,从而提高发光效率。
例如,在稀土离子掺杂材料中引入量子点层,可以实现能量级间的匹配,从而提高发光效率。
展望未来,上转换发光材料的研究还有很大的发展潜力。
一方面,随着材料科学与纳米技术的不断发展,研究人员可以设计和合成更加高效的上转换发光材料。
另一方面,随着激光技术、光通信以及生物分析等领域的快速发展,对于高效的发光材料的需求不断增加,这将进一步推动上转换发光材料的研究。
综上所述,上转换发光材料是一种具有广泛应用前景和发展潜力的材料。
通过优化材料的结构和组分以及改善能量传输的过程,可以提高材料的发光效率。
展望未来,上转换发光材料的研究将在材料设计和合成、激光技术等领域取得更大的突破,为光电子技术的发展做出更大的贡献。
稀土上转换发光材料应用文章
稀土上转换发光及其光电产品推荐目录一、什么是上转换发光?二、镧系掺杂稀土上转换发光的发光原理三、稀土上转换发光材料的应用四、相关光电产品推荐五、几个容易混淆的“上转换”概念一、什么是上转换发光?斯托克斯(Stokes)定律认为材料只能受到高能量的光激发,发射出低能量的光,即经波长短、频率高的光激发,材料发射出波长长、频率低的光。
而上转化发光则与之相反,上转换发光是指连续吸收两个或者多个光子,导致发射波长短于激发波长的发光类型,我们亦称之为反斯托克斯(Anti-Stokes)。
Figure 1.常规发光和上转换发光能级跃迁图Figure 2.样品被绿光激光激发之后产生荧光(左边样品为Stokes emission,右边样品为Anti-stokes emission)上转换发光在有机和无机材料中均有所体现,但其原理不同。
有机分子实现光子上转换的机理是能够通过三重态-三重态湮灭(Triplet-triplet annihilation,TTA),典型的有机分子是多环芳烃(PAHs)。
无机材料中,上转换发光主要发生在镧系掺杂稀土离子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的纳米晶体。
NaYF4是上转换发光材料中的典型基质材料,比如NaYF4:Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。
本应用文章我们着重讲讲稀土掺杂上转换发光材料(Upconversion nanoparticles,UCNPs)。
二、镧系掺杂稀土上转换发光的发光原理无机材料有三个基本发光原理:激发态吸收(Excited-state absorption, ESA),能量传递上转换(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。
Figure 3.稀土上转换发光材料的发光原理(a)激发态吸收激发态吸收过程(ESA)是在1959年由Bloembergen等人提出,其原理是同一个离子从基态通过连续多光子吸收到达能量较高的激发态的过程,这是上转换发光最基本的发光过程。
上转换发光的五种机制
上转换发光的五种机制好嘞,咱们聊聊上转换发光的五种机制。
这可是个有趣的话题哦,听起来可能有点复杂,但其实简单得很。
你有没有想过,为什么有些材料在特定条件下能够发光,像是变魔术一样?嗯,今天就带你一起揭开这个神秘的面纱。
咱们说说上转换发光。
这种发光机制就像在夜空中闪烁的星星,明亮又迷人。
它的基本原理是低能量的光子通过一些特殊的“魔法”被转化成高能量的光子,最终让我们看到那种美丽的光。
就好比你把一瓶水晃晃,水面上会反射出阳光,波光粼粼,闪闪发亮。
可别小看这上转换发光,实际上它在很多领域都能找到身影,比如太阳能电池、显示器,甚至在医疗上也有广泛的应用。
我们来说说能量传递机制。
这玩意儿就像是一个“接力赛”。
在这里,能量从一个离子传递到另一个离子,就像传球一样。
这一传,你传我接,最终能量就被转换成光了。
想象一下,几个人围成一圈,手中传递着一个球,直到最后那个小伙伴接到球,咻的一声,球就变成了光。
这种机制的效率可是相当高,常常能让我们看到令人惊叹的发光效果。
然后咱们得提提激发态机制。
这个机制听起来有点高深,但其实很简单。
它就像你在聚会上一样,突然被气氛感染,瞬间热情高涨,开始尽情舞动。
激发态就是材料中的电子被激发到更高的能量状态,然后在返回到低能量状态时,就会释放出光。
就像一颗星星在闪烁,发出耀眼的光辉。
没错,这就是激发态的魅力所在。
再来说说辐射跃迁机制。
这听起来有点拗口,但实际上就像一颗弹簧。
在这里,电子从一个能级跳跃到另一个能级,释放出的能量以光的形式表现出来。
这种机制让人联想到那些在春天里的花儿,争先恐后地绽放,发出绚丽的色彩。
辐射跃迁就像是花开的瞬间,绚烂夺目,让人忍不住想多看几眼。
咱们要提的就是非辐射机制。
这种机制就像是一个无声的舞者,虽然没有华丽的表演,但却有着不可小觑的能量。
在这个机制中,能量并不是通过光的形式释放,而是以热的形式散发出去。
这就像是在炎热的夏天,热气蒸腾,虽然看不见,但却能感受到它的存在。
上转换发光
上转换技术的应用进展
上转换发光材料在诸领域有着潜在的应 用前景。目前国际国内研究工作主要是 围绕在上转换激光器、三维立体显示、 生物荧光标记等方面进行。
(一)上转换激光器
能量转移 ( ET)
光子雪崩过程( PA)
1979 年Chivian等研 究Pr 3 + 离子在 LaCl 3 晶体中的上转换发光 时首次提出。 “光 子雪崩”是 ESA 和 ET 相结合的过程
上转换发光分类
上转换发光优点
降低光致电离作用引起基质材料的衰退 ; 不需要严格的相位匹配, 对激发波长的稳
定性要求不高; 输出波长具有一定的可调谐性。
掺杂Er3+的材料
通过两步或者更多步 的光子吸收实现上转 换过程。单掺Er3+的 材料,吸收 800 nm 的辐射,跃迁至可产 生绿色发射的4S3/2能 级。
图 800nm条件下 Er 3+ 离子的上转换发光机制
Bi2 WO6 ∶Er 3+
范等利用用水热法合成了花状 Bi2 WO6 ∶Er 3+球 型样品具有纯绿色上转换荧光, Er 3+ 离子的掺 杂提高了罗丹明 B 的吸附量以及 Bi2 WO6光催化 活性。
The end Thank you!
上转换材料的发展前景
节能环保是当今世界的主流, 扩大上转 换材料的应用范围自然也要以此为出发 点, 因此以上转换材料作为白光LED的荧 光物质是个不错的选择。目前, 市场上 的白光LED都是以紫外光激发的下转换材 料为荧光物质, 存在专利垄断、荧光物 质性能要求高、价格昂贵等问题。如果 能够研制出白光LED用上转换荧光物质, 将填补红外激发白光LED的空白, 市场前 景巨大。
上转换发光基本知识资料讲解
上转换发光分类
上转换材料的合成
上转换合成的方法: 1.高温固相法合成法 2.水热合成法 3.溶胶-凝胶法 4.共沉淀法
上转换材料的合成
(一)高温固相法合成法
利用所需氧化物高纯粉料,按化学计量比配料 混合均匀, 经高温煅烧后形成具有一定粒度的上转 换发光粉料[16]。是目前合成上转换材料的主要方 法之一。
1966年,Auzel在研究钨酸镱钠玻璃时, 发现当基质材料中掺入Yb3+离子时,在 红外光激发下Er3+、Ho3+和Tm3+离子的可 见发光提高了两个数量级,由此正式提 出了“上转换发光”的观点。
上转换发光的概念
上转换发光又称为反-斯托克斯发光(AntiStokes),斯托克斯定律认为材料只能受到 高能量波长短的光激发,发出低能量长波 长的光。而上转换发光认为长波长光激发 下,可持续发射波长比激发波长短的光。
上转换材料的合成
(三)溶胶-凝胶法 用含高化学活性组分的化合物前驱体, 在液相下
将这些原料均匀混合, 并进行水解、缩合反应, 在溶液中 形成稳定的透明溶胶体系。溶胶经陈化胶粒间缓慢聚合, 形成三维网络结构的凝胶, 凝胶经干燥、烧结得到所需产 品[17]。是一种湿化学合成法。
分类:水溶液溶胶-凝胶法、醇盐溶液-凝胶法
上转换过程形式
(四)共沉淀法 又称“化学沉积法”,以水溶性物质为原料,通
过液相化学反应,生成难溶物质前驱化合物从水溶液中沉 淀出来,经过洗涤、过滤、煅烧热分解而制得超细粉体发 光材料。
影响因素:溶液组成、浓度、温度、时间等。
上转换过程形式
优点:操作简单、流程短、能直接得到化学成分均一的粉体 材
料,可精确控制粒子的成核和长大,得到粒度可控、 分
上转换发光材料的制备、性能及应用研究
上转换发光材料的制备、性能及应用研究上转换发光材料是一种具有广阔应用前景的新兴材料。
本文将介绍上转换发光材料的制备方法、性能特点以及其在不同领域中的应用研究进展。
上转换发光材料是一种能够将低能量的激发光转换为高能量的发光现象的材料。
它与传统的下转换发光材料不同,后者是将高能量的激发光转换为低能量的发光。
上转换发光材料在生物医学成像、显示技术、能源转换等众多领域具有广泛的应用前景。
上转换发光材料的制备主要包括物理法和化学法两种方法。
物理法主要利用高能粒子注入或离子注入的方式在晶格中引入能级,从而实现上转换发光。
化学法则是通过掺杂或配位原子的方式,改变晶格结构或能带结构,实现上转换发光效果。
这两种制备方法各有特点,可以根据具体需求选择合适的方法。
上转换发光材料的性能特点主要体现在以下几个方面。
首先,上转换发光材料具有较高的上转换效率,能够将低能量的激发光转换为高能量的发光,从而提高能量利用效率。
其次,上转换发光材料具有较宽的光谱范围,可以实现多色发光,满足不同应用的需求。
另外,上转换发光材料具有较长的激发寿命,对于进行长时间激发发光的应用具有较大优势。
最后,上转换发光材料还具有较高的光学稳定性和化学稳定性,能够在不同环境下稳定发光,具有较长的使用寿命。
在生物医学成像领域,上转换发光材料被广泛应用于生物标记和活体成像。
由于其较长的激发寿命和较宽的光谱范围,上转换发光材料可以通过激发发光的方式实现对生物样本的高对比度成像。
同时,上转换发光材料具有较高的光学稳定性和化学稳定性,能够在生物体内稳定发光,对生物体无毒副作用。
在显示技术领域,上转换发光材料能够实现全彩色显示。
由于其较宽的光谱范围,上转换发光材料可以发射多种颜色的发光,从而实现更丰富的显示效果。
另外,由于其较高的光学稳定性和化学稳定性,上转换发光材料能够在长时间使用中保持较好的显示效果。
在能源转换领域,上转换发光材料被应用于太阳能电池和发光二极管中。
上转换发光材料
8.3 稀土离子上转换发光机理
8.3.1 激发态吸收(ESA, Excited State Absorption)
激发态吸收过程(ESA)是在1959 Bloembergen等人提出的,其原理是同 一个离子从基态能级通过连续的多光子 吸收到达能量较高的激发态能级的一个 过程,这是上转换发光的最基本过程。
是ESA和ET相结合的过程,其主要特征为:
泵浦波长对应于离子的某一激发态能级与
其上能级的能量差而不是基态能级与其激 发态能级的能量差;
其次,PA引起的上转换发光对泵浦功率有
明显的依赖性,低于泵浦功率阀值时,只 存在很弱的上转换发光,而高于泵浦功率 阀值时,上转换发光强/ Yb3+ 共掺的硫属化物
(Ga2S3∶La2O3) 的上转换研究表明,当 把样品加热到155 ℃时,上转换发光的强 度达到极大值。高于或低于这个温度,发 光强度都有不同程度的降低。
这与传统的观点—温度越低越有利于提
高发光强度并不十分相符。
YVO4 晶体
YVO4 晶体在诸多方面所显示的优良性质,使其 作为激光晶体材料颇受重视。用808nmLD 和 658nm 染料激光器激发,都以553nm 附近绿 色上转换荧光为最强,410nm附近上转换荧光 峰相对较弱,两种情况下都不足绿光的10 %。 且绿光有较长的荧光寿命,在所测定的浓度范围 内随Er3 + 浓度的增加而减少;蓝光寿命较短, 且不随浓度变化。
近年来采用氟氧化物微晶玻璃(玻璃陶瓷) 来
当基体是一种既方便又有效的方法。利用成核 剂诱发氟化物形成微小的晶相,并使稀土离子优 先富集到氟化物微晶中,稀土离子就被氟化物微 晶所屏蔽,而不与包在外面的氧化物玻璃发生作 用。这样,掺杂的氟氧化物微晶玻璃既具有了氟 化物的高转换效率,又具有了氧化物的较好的稳 定性。
上转换发光材料
上转换发光:
连续能量转移
交叉弛豫
合作上转换
应用
近红外量子计数器 激光器 三维立体显示 荧光粉 传感器 生物标记
2020/3/2
免疫分析及生物传感
基于FRET的UCNPs/siRNA-BOBO-3 复合物体系
研究了siRNA在活体细胞内的释放与生物稳定 性Langmuir, 2010, 26: 6689-6694
II. 各种上转换材料产生的阶段,对上转换材料的组成及其特 性做了系统的研究,得到了各种类型的优质上转换材料
III. 新的上转换机制以及上转换性能与材料的组成、结构、 形成工艺条件的对应关系的研究
上转换发光机理
激发态吸收
连续能量转移
交叉弛豫
合作上转换
“光子雪崩”过程
稀土发光材料的发光机理
按照能量转换方式不同,稀土发光材可以分为下转换发光和上转换
• 采用近红外连续激发光 源激发还使其具有较大 的光穿透深度、无光闪 烁和光漂白、无生物组 织自发荧光以及对生物 组织几乎无损伤
稀土发光材料的组成
基质材料:激活离子提供适合的发射晶体
晶态: 单晶(YVO4、YAG、BaY2F8等)
纳米晶粉末(稀土的氟化物、氧化物、磷酸盐等),
非晶态:陶瓷和玻璃
激活剂(发光中心):改善纯基质材料的发光性能
UCNPs 和AuNPs 之间FRET过程 用于Goat anti-human IgG 的免疫分析
Anal. Chem., 2009, 81: 8783
980nm 激发时pH 传感器在不同pH值下的上 转换发光光谱
Chem. Commun., 2009, 5000
光导开关
上转换荧光开关原理图
上转换发光材料的组成
上转换发光材料的组成发光材料是指在外部激发下能够发射出可见光的物质。
在现代科技中,发光材料的应用范围非常广泛,从电视,手机屏幕到荧光车漆等等,几乎涉及到了人们生活和工作的各个方面。
而上转换发光材料的组成也是多种多样的,下面就来一一介绍。
一、荧光材料荧光材料是一种上转换发光材料,它的基本原理是:荧光材料吸收它外界的能量(如紫外线),然后将这些能量转化成更高的能量状态,最终将这些能量以可见光的形式释放出来。
荧光材料组成的种类很多,其中比较常见的有:铝石榴石,钐铝石榴石,钡钛矿等。
荧光材料的应用非常广泛,如生物荧光探针、灯具、车漆、显示器、激光医疗和光腔探测等等。
二、半导体材料半导体材料是指在温度为25℃时,导电性介于导体和绝缘体之间的材料。
它们的上转换发光原理是:当电子从价带跃迁到导带时,会释放出光子,从而实现上转换发光。
半导体材料组成的种类也很多,如GaN(氮化镓)、InGaN(氮化镓镓)、ZnS(硫化锌)等等。
半导体材料的应用范围非常广泛,如LED照明、OLED显示、光电子器件、光伏发电和半导体激光等等。
三、稀土材料稀土材料是指由稀土元素组成的材料,它们的上转换发光原理是:当能量被输入到稀土离子中时,离子的电子进入了激发态,通过非辐射跃迁或辐射跃迁,最终传递给基态,从而发出上转换发光。
稀土材料组成的种类也很多,如YVO4:Eu3+(钇钒酸铕)、Y2O3:Eu3+(氧化钇铕)等等。
稀土材料的应用范围也很广泛,如高功率激光器、LED照明、显示器和荧光试剂等等。
四、量子点材料量子点是一种尺度在纳米级别的半导体晶体,在近年来发展迅猛,其上转换发光原理是:当电子从载流子到达量子点表面时,会形成束缚态,这种态的能级结构导致了比原材料更高的激发和发射效率。
量子点材料组成的种类也很多,如CdSe(硒化镉)、CdTe(碲化镉)等等。
量子点材料的应用范围也非常广泛,如LED照明、生物检测、医学成像、显示及光电子器件等等。
上转换纳米粒子的原理
上转换纳米粒子的原理上转换纳米粒子,又称为上转换纳米材料,是一种能够将低能量光转换为高能量光的材料。
其基本原理是通过上转换过程,将两个或多个低能量光子吸收并转换成一个高能量光子。
这一过程违背了通常根据能量守恒原理的光致发光传统理论,而被称为“上转换”。
上转换纳米粒子具有广泛的应用潜力,包括生物医学成像、光催化、太阳能电池、显示器、激光技术等领域。
下面我将详细介绍上转换纳米粒子的原理。
上转换纳米粒子的核心材料主要包括稀土离子、钙钛矿和金属纳米结构等。
其中,稀土离子是最常用的材料,因为它们具有特殊的能级结构,可以完成光子的上转换。
稀土离子通过吸收光子,跃迁到高能级态,随后经过非辐射跃迁,将能量转移到低能级态的纳米晶体基体中。
在纳米晶体基体中,通过激发电子跃迁等过程,原先吸收的能量最终以高能量光子的形式重新辐射出来。
具体来说,上转换纳米粒子的工作原理可以分为两个步骤。
首先是吸收和存储能量的过程,也称为上转换单元。
在这个过程中,纳米晶体基体中的稀土离子吸收低能量光,并且由于能级结构的特殊性质,不会直接发射辐射能量。
而是通过非辐射跃迁的方式,将能量转移到纳米晶体基体中的其他激发态电子。
这些激发态电子会在基底中进行多次碰撞,使得能量被存储下来。
第二个步骤是能量释放和光发射的过程,也称为光发射单元。
在这个过程中,存储的能量在一定条件下被释放,并转化为高能量的光子。
当周围环境中存在足够高能级的基底激发态时,这些存储的能量将会在光子的作用下被激发,从而使得原先存储的能量以高能量光子的形式重新辐射出来。
上转换纳米粒子的工作过程受到多种因素的影响,如材料的能级结构、激发态的寿命、材料的结构和形貌等。
合理选择合适的材料以及优化材料的结构和形貌,可以有效提高上转换的效率和增强光子的发射强度。
总结起来,上转换纳米粒子通过吸收能量并存储下来,然后在特定条件下释放存储的能量,转化为高能量的光子。
这一原理被广泛应用于各种领域,为现代科技的发展提供了重要的支持和推动。
稀土上转换发光材料
稀土上转换发光及其光电产品推荐目录一、什么是上转换发光?二、镧系掺杂稀土上转换发光的发光原理三、稀土上转换发光材料的应用四、相关光电产品推荐五、几个容易混淆的“上转换”概念一、什么是上转换发光?斯托克斯(Stokes)定律认为材料只能受到高能量的光激发,发射出低能量的光,即经波长短、频率高的光激发,材料发射出波长长、频率低的光。
而上转化发光则与之相反,上转换发光是指连续吸收两个或者多个光子,导致发射波长短于激发波长的发光类型,我们亦称之为反斯托克斯(Anti-Stokes)。
Figure 1.常规发光和上转换发光能级跃迁图Figure 2.样品被绿光激光激发之后产生荧光(左边样品为Stokes emission,右边样品为Anti-stokes emission)上转换发光在有机和无机材料中均有所体现,但其原理不同。
有机分子实现光子上转换的机理是能够通过三重态-三重态湮灭(Triplet-triplet annihilation,TTA),典型的有机分子是多环芳烃(PAHs)。
无机材料中,上转换发光主要发生在镧系掺杂稀土离子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的纳米晶体。
NaYF4是上转换发光材料中的典型基质材料,比如NaYF4:Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。
本应用文章我们着重讲讲稀土掺杂上转换发光材料(Upconversion nanoparticles,UCNPs)。
二、镧系掺杂稀土上转换发光的发光原理无机材料有三个基本发光原理:激发态吸收(Excited-state absorption, ESA),能量传递上转换(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。
Figure 3.稀土上转换发光材料的发光原理(a)激发态吸收激发态吸收过程(ESA)是在1959年由Bloembergen等人提出,其原理是同一个离子从基态通过连续多光子吸收到达能量较高的激发态的过程,这是上转换发光最基本的发光过程。
上转换发光材料的激发波长
上转换发光材料的激发波长上转换发光材料的激发波长是指将较低能级的荧光物质转换为较高能级的发光材料时所需的波长。
这个过程是通过吸收低能量的光子,然后释放出高能量的光子来实现的。
上转换发光材料在光学传感、生物医学成像以及光学通信等领域有着广泛的应用。
在本篇文章中,我们将一步一步地回答上转换发光材料的激发波长这一主题。
第一步:理解上转换发光原理上转换发光是一种非线性光学效应,它的基本原理可以通过考虑荧光剂的能级结构来解释。
荧光剂通常包含两个能级:基态和激发态。
在常规的荧光(下转换发光)过程中,荧光剂吸收高能量的光子,跃迁到激发态,然后通过非辐射跃迁回到基态,释放出低能量的光子。
然而,在上转换发光过程中,荧光剂先吸收低能量的光子,跃迁到更低的激发态。
然后它再次通过吸收高能量的光子,从这个更低的激发态跃迁到更高的激发态。
最后,荧光剂通过非辐射跃迁回到基态,释放出高能量的光子。
第二步:确定上转换发光材料确定适合上转换发光的材料是实现该效应的第一步。
一些常见的上转换发光材料包括硫化锌(ZnS)、硫化铜(CuS)和氯化银(AgCl)等。
这些材料具有特殊的能级结构,可以实现上转换发光效应。
第三步:选择激发波长选择适当的激发波长是实现上转换发光的关键。
通常情况下,激发波长应该与荧光剂的吸收峰值相匹配。
这样可以最大程度地提高上转换发光效率。
激发波长的选择也受到材料的能带结构以及光学参数的影响。
第四步:调节激发条件在实际应用中,激发条件的调节对于实现高效的上转换发光至关重要。
常见的调节手段包括改变激发波长强度、调节激发光束的直径和改变激发光的脉冲宽度等。
这些调节条件可以影响到上转换发光的强度和效率。
第五步:优化材料性能除了选择适当的激发波长和调节激发条件,优化材料性能也是实现高效上转换发光的重要因素之一。
这可以通过改变材料的结构、控制材料的纯度,以及添加掺杂物等方式来实现。
优化材料性能可以提高上转换发光的效率,并降低其他非辐射跃迁损失。
上转换发光材料
上转换发光材料上转换发光的概念:上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。
本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。
斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。
比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。
但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。
上转换发光技术的发展:早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。
1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。
迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。
80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。
1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。
2000年Chen 等对比研究了Er/Yb:FOG 氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。
上转换发光 荧光强度增强 综述
上转换发光(Upconversion Luminescence,UCL)是一种具有特殊光学性质的发光材料,它能够将低能量的光转换成高能量的光,从而使荧光强度增强。
近年来,上转换发光材料在生物医学成像、生化传感、光催化等领域展现出了巨大的应用潜力。
在本文中,我们将对上转换发光原理、材料与应用进行深入的综述,帮助读者全面了解这一领域的最新进展和发展趋势。
一、上转换发光原理上转换发光原理是一种非线性光学过程,它基于能级跃迁和能量转移的原理。
当上转换材料受到辐射光激发时,发生能级跃迁,从而使得低能级的光子被转换成高能级的光子。
这一过程可以通过多种机制实现,包括能级跃迁、受激辐射和多光子吸收等。
通过精心设计材料的结构和成分,可以实现不同波长的上转换发光,从可见光到近红外光甚至紫外光。
二、上转换发光材料目前已经发现的上转换发光材料种类繁多,包括稀土离子掺杂的纳米颗粒、配位聚合物、过渡金属配合物等。
这些材料在上转换发光过程中具有不同的光学特性和应用潜力。
稀土离子掺杂的纳米颗粒具有较高的上转换效率和发光稳定性,适用于生物医学成像和生化传感。
而配位聚合物和过渡金属配合物则具有较宽的光学带隙,适用于光催化和光储能等领域。
三、上转换发光应用上转换发光材料在生物医学成像、生化传感、光催化、光储能等领域具有重要的应用价值。
在生物医学成像方面,上转换发光材料可以实现多模态成像,同时具有较高的空间分辨率和深度穿透能力,有望成为下一代生物成像技术的主要发展方向。
在生化传感方面,上转换发光材料可以实现高灵敏度和高选择性的生化分析,有望应用于临床诊断和药物筛选等领域。
在光催化和光储能方面,上转换发光材料可以实现可见光响应的高效能量转换,具有巨大的环境和能源应用前景。
四、个人观点与展望从我个人的角度来看,上转换发光作为一种新型发光材料,具有广阔的应用前景和科研价值。
我认为,未来上转换发光材料将在生物医学成像、生化传感、光催化、光储能等领域发挥重要作用,并引领光学材料和光电器件的发展方向。
上转换材料及其发光机理
2、掺杂Yb3+和Tm3+的材料
通过三光子上转换过程,可以 将红外辐射转换为蓝光发射。 第一步传递之后,Tm3+的3H5 能级上的粒子数被积累,他又 迅速衰减到3F4能级。在第二 步传递过程中,Tm3+从3F4能 级跃迁到3F2能级,并又快速 衰减到3H4。紧接着,在第三 步传递中,Tm3+从3H4能几月 前到1G4能级,并最终由此产 生蓝色发射。
10-6
10-8 10-11 10-13
YF3;Yb3+,Tb3+
YbPO4 KH2PO4 CaF2;Eu2+
二、上转换材料
1、掺杂Yb3+和Er3+的材料
Yb3+(2F7/2→2F5/2)吸收近红外辐射, 并将其传递给Er3+,因为Er3+的 4I 4 11/2能级上的离子被积累,在 I11/2 能级的寿命为内,又一个光子被 Yb3+吸收,并将其能量传递给Er3+, 使Er3+离子从4I11/2能级跃迁到4F7/2 能级。快速衰减,无辐射跃迁到 4S ,然后由4S 能级产生绿色发 3/2 3/2 射( 4S3/2 → 4I15/2 ),实现以近红 外光激发得到绿色发射。
发光要求
为了有效实现双光子或多光子效应,发光中心 的亚稳态需要有较长的能级寿命。稀土离子能级之间的跃迁 属于禁戒的f-f 跃迁,因此有长寿命,符合此条件。
能级3-2之间能量差与能级2-1之间的能量差相等。若某一辐射 的能量与上述能量差一致,则会发生激发,离子会从1激发到2, 如果能级2的寿命不是太短,则离子从2激发到3.最后就发生了 从3到1的发射。