高中数学必修三第二章统计复习 优质
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明: 1.抽样公平性原则—等概率—随机性;
2.抽签法适用与总体中个数N不大的情形.
例题 1 系统抽样(等距抽样) 例子—— . 为了解高一年级 500名同学的视力情况,试用系 统抽样从中抽取50名同学进行检查。 编号 分段
S1:把500人从1到500编号;
500 S2:计算分段间隔为 k= 50 =10 人。把编号从小
(1)对总体中的个体进行编号(每个号码位数一致); (2)在随机数表中任选一个数作为开始; (3)从选定的数开始按一定的方向读下去,得到的数码 若不在编号中,则跳过;若在编号中,则取出;如果得到 的号码前面已经取出,也跳过;如此继续下去,直到取满 为止; (4)根据选定的号码抽取样本.
ቤተ መጻሕፍቲ ባይዱ
将总体中的N个个体编号时可以从0开始,例如当N=100时, 编号可以是00,01,02, …,99.这样,总体中的所有个体均可用两位 数字号码表示,便于使用随机数表. 当随机地选定开始的数后,读数的方向可以向右,也可以向 左、向上、向下等.由此可见,用随机数表法抽取样本的步骤是:
2.系统抽样:
系统抽样的步骤为: (1)采用随机的方式将总体中的个体编号; (2)将整个的编号按一定的间隔(设为k)分段, N 当 n (N为总体中的个体数,n为样本容量)是整数 N N 时,k= n ;当 n 不是整数时,从总体中剔除一些个 体,使剩下的总体中个体的个数N′能被n 整除,这 N 时k= n ,并将剩下的总体重新编号; (3)在第一段中用简单随机抽样确定起始的个体编 号l ; (4)将编号为l , l +k,l +2k,…, l +(n-1)k的个 体抽出.
人教A版必修③
第二章 统计复习
本章回顾 本章介绍了从总体中抽取样本的常用方法,并通过 实例,研究了如何利用样本对总体的分布规律、整体 水平、稳定程度及相关关系等特性进行估计和预测. 总体 抽样 简 单 随 机 抽 样 系 统 抽 样 分 层 抽 样 分析 样 本 分 布
估计 样 本 特 征 数
总 体 分 布 总 体 特 征 数
1
例; 某单位在岗职工共624人,为了调查工人用于上班途 中的时间,决定抽取10%的工人进行调查.如何采用系统 抽样方法完成这一抽样?
2.1 抽样方法 1.简单随机抽样
(1)抽签法 1.将总体中的所有个体编号(号码可以从1到 N); 2.将1到N 这N 个号码写在形状、大小相同的号签上 (号签可以用小球、卡片、纸条等制作); 3.将号签放在同一箱中,并搅拌均匀; 4.从箱中每次抽出1个号签,并记录其编号,连续抽 取k次; 5.从总体中将与抽到的签的编号相一致的个体取出.
(1)对总体中的个体进行编号(每个号码位数一致); (2)在随机数表中任选一个数作为开始; (3)从选定的数开始按一定的方向读下去,得到的数码 若不在编号中,则跳过;若在编号中,则取出;如果得到 的号码前面已经取出,也跳过;如此继续下去,直到取满 为止; (4)根据选定的号码抽取样本.
例子:
下面我们用随机数表法求解本节开头的问题. (1)对50个同学进行编号,编号分别为01,02,03,…,50; (2)在随机数表中随机地确定一个数作为开始,如第8行第29列的 数7开始.为便于说明,我们将附表中的第6行至第10行摘录如下: 第29列
(3)从数7开始向右读下去,每次读两位,凡不在01到50中的数跳过 去不读,遇到已经读过的数也跳过去,便可依次得到
12,07,44,39,38,33,21,34,29,42
这10个号码,就是所要抽取的10个样本个体的号码.
小结:
1.抽样无放回; 2.抽样公平性; 3.抽签法,随机数表法—简单的随机抽样.
第8行
16 22 77 94 39 84 42 17 53 31 63 01 63 78 59 33 21 12 34 29 57 60 86 32 44 49 54 43 54 82 57 24 55 06 88 16 95 55 67 19 78 64 56 07 82 09 47 27 96 54 17 37 93 23 78 77 04 74 47 67 98 10 50 71 75 52 42 07 44 38 49 17 46 09 62 87 35 20 96 43 21 76 33 50 25 12 86 73 58 07 15 51 00 13 42 90 52 84 77 27 84 26 34 91 64 83 92 12 06 76 44 39 52 38 79 99 66 02 79 54 08 02 73 43 28
当总体容量大或检测具有一定的破坏性时,可以从总体 中抽取适当的样本,通过对样本的分析、研究,得到对总体 的估计,这就是统计分析的基本过程.而用样本估计总体就 是统计思想的本质. 要准确估计总体,必须合理地选择样本,我们学习的是 最常用的三种抽样方法.获取样本数据后,将其用频率分布 表、频率直方图、频率折线图或茎叶图表示后,蕴含于数据 之中的规律得到直观的揭示.运用样本的平均数可以对总体 水平作出估计,用样本的极差、方差(标准差)可以估计总 体的稳定程度. 对两个变量的样本数据进行相关性分析,可发现存在于 现实世界中的回归现象.用最小二乘法研究回归现象,得到 的线性回归方程可用于预测和估计,为决策提供依据. 总之,统计的基本思想是从样本数据中发现统计规律, 实现对总体的估计.
到大依次分成
50 段,每段 10 人;
定首号 S3:在第一段1~10号中用的 简单随机抽样 的方法
抽取一个号码,比如3;
取余号 S4:依次抽取 3,13,23,33,
……这50个号码。
这样就得到了一个容量为50的样本。
2.1 抽样方法
(2).随机数表法:
将总体中的N个个体编号时可以从0开始,例如当N=100时, 编号可以是00,01,02, …,99.这样,总体中的所有个体均可用两位 数字号码表示,便于使用随机数表. 当随机地选定开始的数后,读数的方向可以向右,也可以向 左、向上、向下等.由此可见,用随机数表法抽取样本的步骤是: