八年级函数教学设计

合集下载

数学八年级上册《函数》教案

数学八年级上册《函数》教案

基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。

学的活动1观看洋葱数学有关函数的数学史。

活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。

举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。

浙教版数学八年级上册《5.2 函数》教学设计1

浙教版数学八年级上册《5.2 函数》教学设计1

浙教版数学八年级上册《5.2 函数》教学设计1一. 教材分析《5.2 函数》是浙教版数学八年级上册的一个重要内容。

这部分内容主要介绍函数的概念、性质和简单的应用。

在本节课中,学生将学习函数的定义、函数的图像以及函数的性质。

教材通过丰富的实例和 activities 来帮助学生理解和掌握函数的概念,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,包括一元一次方程、一元二次方程等。

他们对数学概念和性质有一定的理解能力,但可能对函数的概念和性质还不够熟悉。

因此,在教学过程中,教师需要关注学生的认知水平,通过适当的引导和解释,帮助学生理解和掌握函数的概念和性质。

三. 教学目标1.了解函数的定义和性质,能够判断一个关系是否是函数。

2.能够绘制和分析函数的图像,理解函数的单调性、奇偶性等性质。

3.能够应用函数的概念和性质解决一些实际问题。

四. 教学重难点1.函数的定义和性质的理解。

2.函数图像的分析。

3.函数性质的应用。

五. 教学方法1.实例教学:通过具体的实例引入函数的概念,帮助学生直观地理解函数的定义和性质。

2.问题驱动:通过提出问题,引导学生思考和探索函数的性质,激发学生的学习兴趣和主动性。

3.合作学习:通过小组讨论和合作,培养学生的团队合作能力和交流能力。

4.实践操作:通过绘制函数图像和分析实际问题,培养学生的实践操作能力和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,包括函数的定义、性质和实例等内容。

2.教学素材:准备一些实际的例子和问题,用于引导学生思考和探索。

3.练习题:准备一些练习题,用于巩固学生对函数概念和性质的理解。

七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如“一辆汽车以每小时60公里的速度行驶,行驶3小时后的路程是多少?”引导学生思考和探索函数的定义和性质。

2.呈现(10分钟)呈现函数的定义和性质,通过PPT和实例进行解释和说明。

初中数学函数备课教案

初中数学函数备课教案

初中数学函数备课教案知识与技能:1. 学生能理解函数的概念,掌握常量和变量的定义。

2. 学生能够通过实际问题建立函数模型,解决简单的生活问题。

过程与方法:1. 学生通过实例感受函数的模型思想,培养观察、交流、分析的思想意识。

2. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。

情感、态度与价值观:1. 学生培养对数学的兴趣和积极参与数学活动的热情。

2. 学生在解决问题的过程中体会数学的应用价值,感受成功的喜悦,建立自信心。

二、教学重难点重点:认识函数的概念,了解常量与变量的含义。

难点:对函数中自变量取值范围的确定。

三、教学准备教具:PPT、黑板、粉笔、函数图像展示板。

学具:每人一份函数实例材料、练习题。

四、教学过程1. 导入:以生活中的实例引入,如“气温与海拔的关系”、“票价与购票数量的关系”等,让学生感受到函数在日常生活中的应用。

2. 探索函数概念:让学生通过实例,分析常量与变量的关系,引导学生发现函数的定义。

3. 理解函数概念:通过PPT展示函数的定义,让学生明确自变量与函数的关系。

4. 函数模型的建立:让学生通过实例,建立函数模型,如“y = 2x + 1”。

5. 函数图像的展示:通过函数图像展示板,展示函数图像,让学生直观地理解函数。

6. 练习与巩固:让学生通过练习题,巩固所学知识,提高解题能力。

7. 总结与反思:让学生总结本节课所学内容,反思自己的学习过程。

五、教学评价1. 学生能正确理解函数的概念,掌握常量和变量的定义。

2. 学生能通过实际问题建立函数模型,解决简单的生活问题。

3. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。

4. 学生培养对数学的兴趣和积极参与数学活动的热情。

《函数》教学设计

《函数》教学设计

《函数》教学设计一、教学目标分析教学目标:●知识与技能目标1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。

●过程与方法目标1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型思想;3.通过对函数概念的学习,培养学生的语言表达能力。

●情感与态度目标1.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神●教学重点:1.掌握函数的概念,以及函数的三种表示方法;2.会判断两个变量之间是否是函数关系。

●教学难点:1.对函数概念的理解;2.把实际问题抽象概括为函数问题。

二、教学准备教具:教材,课件,电脑学具:教材,笔,练习本三、教学过程设计本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业第一环节:创设情境、导入新课内容:展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k 线图等,提请学生思考问题。

意图:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

效果:生活实例,激发了学生的研究热情,起到很好的导入效果。

第二环节:展现背景,提供概念抽象的素材内容:问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h 与旋转时间t 之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h (米)之间的关系.你能从上图观察出,有几个变化的量吗?当t 分别取3,6,10时,相应的h 是多少?给定一个t 值,你都能找到相应的h 值吗?问题2 .在平整的路面上,某型号汽车紧急刹车后仍将滑行S 米,一般地有经验公式2300v s ,其中v 表示刹车前汽车的速度(单位:千米/时). (1)公式中有几个变化的量?计算当v 分别为50,60,100时,相应的滑行距离s 是多少?(2)给定一个v 值,你都能求出相应的s 值吗?问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n个正方形,需要多少根火柴棒?意图:通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等).效果:通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.第三环节:概念的抽象内容:1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值.一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.点明函数概念中的两个关键词:两个变量,一个x值确定一个y值,它们是判断函数关系的关键。

冀教版数学八年级下册20.2《函数》教学设计2

冀教版数学八年级下册20.2《函数》教学设计2

冀教版数学八年级下册20.2《函数》教学设计2一. 教材分析冀教版数学八年级下册20.2《函数》是学生在学习了初中阶段函数基础知识后进一步深入学习的章节。

本节内容主要包括函数的性质、函数图像的特点以及函数与方程的关系等。

通过本节的学习,使学生能够更深入地理解函数的概念,掌握函数的基本性质和图像特点,提高解决实际问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了函数的基本概念、一次函数和二次函数的知识。

但学生在理解函数的性质和图像特点方面还存在一定的困难,需要通过实例和练习进一步巩固。

三. 教学目标1.知识与技能:使学生掌握函数的基本性质,了解函数图像的特点,理解函数与方程的关系。

2.过程与方法:培养学生运用函数解决实际问题的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生积极向上的学习态度,体会数学在生活中的应用。

四. 教学重难点1.教学重点:函数的性质,函数图像的特点,函数与方程的关系。

2.教学难点:函数图像的分析和应用,函数与方程的转化。

五. 教学方法1.情境教学法:通过生活实例引入函数的概念,让学生感受函数在生活中的应用。

2.案例教学法:分析典型例题,引导学生总结函数的性质和图像特点。

3.问题驱动法:提出问题,引导学生思考和探索,培养学生解决问题的能力。

4.小组合作学习:分组讨论和交流,提高学生的合作意识和团队精神。

六. 教学准备1.教学PPT:制作精美的PPT,展示函数的性质、图像特点和实例分析。

2.教学案例:准备具有代表性的例题,供学生分析和讨论。

3.教学素材:收集生活中的函数实例,用于引入和巩固所学知识。

4.作业布置:提前布置相关作业,让学生提前预习和复习。

七. 教学过程1.导入(5分钟)利用生活实例引入函数的概念,激发学生的学习兴趣。

如:讲解气温随时间的变化规律,引导学生思考函数在生活中的应用。

2.呈现(10分钟)展示PPT,讲解函数的性质、图像特点和实例分析。

初中《函数》教案设计

初中《函数》教案设计

初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。

2. 掌握函数的表示方法,包括解析式和表格法。

3. 能够运用函数解决实际问题,提高解决问题的能力。

教学重点:1. 函数的概念及组成部分。

2. 函数的表示方法。

教学难点:1. 函数概念的理解。

2. 函数表示方法的运用。

教学准备:1. 教学课件或黑板。

2. 函数相关例题和练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。

2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。

2. 解释函数的各个组成部分,如定义域、值域、对应关系等。

3. 举例说明函数的表示方法,包括解析式和表格法。

4. 引导学生通过实例理解函数的实际应用。

三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。

2. 选取部分学生的作业进行讲解和点评。

四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。

2. 引导学生观察图像,分析函数的特点和性质。

五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。

六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。

2. 强调函数在实际生活中的重要性。

教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。

同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。

函数教案(教学设计)

函数教案(教学设计)

函数【教学目标】1.使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。

2.能分清实例中的常量与变量,了解自变量与函数的意义,了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系。

3.掌握用描点法画出一些简单函数的图象。

4.理解解析法和图象法表示函数关系的相互转换。

【教学重难点】1.重点:能找出一个变化过程中的变量与常量。

2.难点:结合实际问题,经历探索用图象表示函数的过程。

【教学过程】2课时【教学过程】【第一课时】情景引入:在学习与生活中,经常要研究一些数量关系,先看下面的问题。

例1:如图是某地一天内的气温变化图。

看图回答:(1)这天的6时、10时和16时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温。

(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解:(1)这天的6时、10时和14时的气温分别为-1℃、2℃、4℃;(2)这一天中,最高气温是5℃最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高,0时~3时和14时~24时的气温在逐渐降低。

从图中我们可以看到,随着时间t (时)的变化,相应地气温T (℃)也随之变化那么在生活中是否还有其它类似的数量关系呢?例2:下表是某市2017年统计的该市男学生各年龄组的平均身高。

(1)从表中你能看出该市16岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解:(1)平均身高是162.9cm ;(2)约从14岁开始身高增加特别迅速;(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量。

例3:写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C 与半径r 的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s (千米)和所用时间t (时)的关系式。

苏科版数学八年级上册《6.1 函数》教学设计3

苏科版数学八年级上册《6.1 函数》教学设计3

苏科版数学八年级上册《6.1 函数》教学设计3一. 教材分析《苏科版数学八年级上册》第六章第一节“函数”是学生在学习了初中数学基础知识后,进一步深入研究数学概念的重要内容。

这部分内容主要让学生理解函数的概念,了解函数的性质,以及会运用函数解决实际问题。

本节课的内容是学生对函数知识体系的初步构建,对于学生形成完整的数学知识结构具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、不等式等基础知识,具备一定的逻辑思维能力和抽象思维能力。

但是对于函数这一概念,由于其抽象性,学生可能存在一定的理解难度。

因此,在教学过程中,需要教师针对学生的实际情况,采取适当的教学策略,帮助学生理解和掌握函数的知识。

三. 教学目标1.了解函数的定义,理解函数的概念和性质。

2.能够运用函数解决实际问题,提高解决问题的能力。

3.培养学生的抽象思维能力和逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.函数的概念和性质的理解。

2.运用函数解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等教学方法,引导学生主动探究,合作交流,提高学生的问题解决能力。

六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生理解和运用函数。

2.准备教学课件,帮助学生直观地理解函数的概念和性质。

七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的兴趣,引导学生思考函数的概念。

例如,教师可以提出这样一个问题:“在现实生活中,我们经常会遇到一些变化的关系,如何用数学语言来描述这种关系呢?”从而引出函数的概念。

2.呈现(10分钟)教师通过展示相关的教学案例,让学生直观地理解函数的概念和性质。

例如,教师可以展示一些实际的函数图像,让学生观察和分析函数的性质。

3.操练(10分钟)教师提出一些有关函数的问题,让学生进行思考和解答。

例如,教师可以提出这样一个问题:“已知函数f(x) = 2x + 1,求f(3)的值。

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。

你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。

函数的基本性质教学设计

函数的基本性质教学设计

《函数的基本性质》教学设计(4)一、教学目标设计1.掌握增函数、减函数、单调函数及单调区间的概念;2.学会判断函数的单调性并能加以证明;3.学会“由具体到抽象”、“数形结合”的思维方法;4.通过形式化的表达,让学生懂得数学既是从现实原型中抽象出来的,又随着数学本身的发展而逐步得到完善的,并树立严格定义的思维。

二、教学重点及难点 1.教学重点掌握函数单调性的概念,能判断一些简单函数的单调性。

2.教学难点判断函数的单调性并求函数的单调区间。

三、教学流程设计四、教学过程设计(一)复习引入1. 复习:我们在初中已经学习了函数图像的画法.为了研究函数的性质,我们按照列表、描点、连线等步骤先设置情境导入 引导探索研究归纳总结提炼组织评价回馈布置课外作业 适时练习巩固分别画函数2y x =和3y x =图像. 函数2y x =的图像如图1,函数3y x =的图像如图2.⒉ 引入:(叫学生看图总结)从函数2y x =的图像(图1)看到: 图像在y 轴的右侧部分是上升的,也就是说, 当在区间[)0+∞,上取值时,随着的增大,相应的值也随着增大,即如果取12x x ∈、[)0+∞,,得到()()1122y f x y f x ==,,那么当12x x <时,有12y y <. 这时我们就说函数2y x =在[)0+∞,上是增函数.图像在轴的左侧部分是下降的,也就是说,当在区间()0-∞,上取值时,随着的增大,相应的值反而随着减小,即如果取12x x ∈、()0-∞,,得到()()1122y f x y f x ==,那么当12x x <时,有12y y >.这时我们就说函数2y x =在()0-∞,上是减函数.函数的这两个性质,就是今天我们要学习讨论的. (二)学习、讲解新课 ⒈ 增函数与减函数定义:对于函数()f x 的定义域I 内某个区间上的任意两个自变量的值12x x 、. (1)若当12x x <时,都有()()12f x f x <,则说 在这个区间上是增函数(如图3);(2)若当12x x <时,都有()()12f x f x <,则说 在这个区间上是减函数(如图4).[说明]:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数2y x =(图1),当[)0x ∈+∞,时是增函数,当()0x ∈-∞,时是减函数.⒉ 单调性与单调区间若函数()y f x =在某个区间是增函数或减函数,则就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做函数()y f x =的单调区间.此时也说函数是这一区间上的单调函数.在单调区间上,增函数的图像是上升的,减函数的图像是下降的. [说明]:(1)函数的单调区间是其定义域的子集;(2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在12x x 、那样的特定位置上,虽然使得()()12f x f x <,但显然此图像表示的函数不是一个单调函数; ⒊ 例题评价例1: 图6是定义在闭区间[]55-,上的函数()y f x =的图像,根据图像说出()y f x =的单调区间,以及在每一单调区间上,函数()y f x =是增函数还是减函数.解:函数()y f x =的单调区间有[)52--,,[)21-,,,,其中()y f x =在区间[)52--,,上是减函数,在区间[)21-,,是增函数. [说明]:1)函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题;另外,中学阶段研究的主要是连续函数或分段连续函数,对于闭区间上的连续函数来说,只要在开区间上单调,它在闭区间上也就单调,因此,在考虑它的单调区间时,包括不包括端点都可以;还要注意,对于在某些点上不连续的函数,单调区间不包括不连续点.2)要了解函数在某一区间是否具有单调性,从图像上进行观察是一种常用而又较为粗略的方法,严格地说,它需要根据增(减)函数的定义进行证明,下面举例说明.例2: 证明函数()32f x x =+在上是增函数.证明:设12x x 、是上的任意两个实数,且12x x <,则()()()()()12121232323f x f x x x x x -=+-+=-, 由12x x <,得120x x -<,于是()()120f x f x -<,即()()12f x f x <.()32f x x ∴=+在上是增函数.练习:判断函数()32f x x ∴=-+在上是增函数还是减函数?并证明你的结论. (减函数:证明略)例3:判断函数()1f x x=在区间()0-∞,上是增函数还是减函数?并证明你的结论.解:设()120x x ∈-∞、,,且12x x <,()()2112121211x x f x f x x x x x --=-=, 由()120x x ∈-∞、,,得120x x >,又由12x x <,得210x x ->,()()120f x f x ∴->,即 ()()12f x f x ∴>.()1f x x∴=在()0-∞,上是减函数. 能否说函数()1f x x=在()-∞+∞,上是减函数? 答:不能. 因为属于()1f x x=的定义域.[说明]:通过观察图像,对函数是否具有某种性质,作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法.(三)课堂小结1.讨论函数的单调性必须在定义域内进行,即函数的单调区间是其定义域的子集,因此讨论函数的单调性,必须先确定函数的定义域;2.根据定义证明函数单调性的一般步骤是:(1)设12x x 、是给定区间内的任意两个值,且12x x <; (2)作差()()12f x f x -,并将此差式变形(要注意变形的程度); (3)判断()()12f x f x -的正负(要注意说理的充分性);(4)根据()()12f x f x -的符号确定其增减性. (四)作业布置。

湘教版(2012)初中数学八年级下册 4.1.1 函数 教案

湘教版(2012)初中数学八年级下册 4.1.1 函数 教案

教学设计《函数》的教学设计《函数》的教学设计一、学情分析:在七年级上册学习了用字母表示数,体会了用字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用字母进行了表示。

在七年级下册有学习了”变量之间的关系“,使学生在具体的情景,体会了变量之间相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并积累了研究变量之间的关系的一些一方法和初步经验,为学习本章的函数知识奠定了一定的基础。

二、教学目标:1.知识与技能目标:(1).初步掌握函数概念,能判断两个变量间的关系是否为函数关系。

(2).了解函数的三种表示方法,引导学生通过对比不同表示方法,从而理解函数概念的实质.2.过程与方法目标:通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神.3.情感与态度价值观目标:采用自学与小组合作学习相结合的方法,激发学生对数学的好奇心及求知欲,培养学生主动参与、勇于探究的精神.三、教学的重点与难点:1、重点:理解函数的概念,会判断两个变量间的关系是否是函数关系.2、难点:函数概念的形成过程,能把实际问题抽象概括为函数问题.四、关于教法与学法:学生是学习的主人,教师是组织者、引导者、合作者。

学生对变量有一定的了解,为调动学生的积极参与,我采用的教法是:引导发现法、实验法、讨论法、练习法等多种教学方法优化组合。

学法是:自主探索、合作交流的学习方式。

五、教学过程二、尝试探究一尝试探究二用模型,了解变量之间的关系可以帮助我们更好地认识世界,服务于我们的生活.因此,让我们一起走进函数天地吧!你坐过摩天轮吗?你坐在摩天轮上时,随着时间的变化,你离开地面的高度是如何变化的?下图反映了摩天轮上一点的高度h(米)与旋转时间t(分)之间的关系。

问题1、图象表示的是哪些量之间的关系?其中哪个量是自变量,哪个是因变量?问题2、根据图像填写下表:问题3、对于给定的时间t,相应的高度h确定吗?问题4、对于t的每一个值,h都有唯一确定的值与之对应吗?罐头盒等圆柱形的物体,常常如右图这样堆放,随着层数的增加,物体的总数是如何变。

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节主要介绍了函数的概念、性质和简单的函数图像。

函数是初中数学的重要内容,也是高中数学的基础。

通过本节的学习,学生能够理解函数的基本概念,了解函数的性质和图像,为后续学习更复杂的函数知识打下基础。

二. 学情分析八年级的学生已经学习了代数和几何的基础知识,具备一定的逻辑思维能力和空间想象能力。

但是,对于函数这一概念,学生可能比较陌生,难以理解函数的的本质。

因此,在教学过程中,需要引导学生从实际问题中抽象出函数的概念,并通过大量的例子让学生感受函数的性质和图像。

三. 教学目标1.了解函数的概念,能够说出函数的定义。

2.了解函数的性质,能够判断一个函数的性质。

3.能够画出一些简单函数的图像,了解函数图像的特点。

4.能够运用函数解决实际问题。

四. 教学重难点1.函数的概念和性质。

2.函数图像的画法和特点。

五. 教学方法1.情境教学法:通过实际问题引入函数的概念,让学生感受函数的应用。

2.实例教学法:通过大量的例子让学生理解函数的性质和图像。

3.小组合作学习:让学生在小组内讨论和探究函数的问题,培养学生的合作能力。

六. 教学准备1.PPT课件:制作相关的PPT课件,展示函数的定义、性质和图像。

2.实例材料:准备一些实际的例子,让学生分析和探究。

3.练习题:准备一些练习题,让学生巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如电梯的运行、温度变化等,引导学生思考这些问题背后的数学模型。

通过学生的思考和讨论,引出函数的概念。

2.呈现(10分钟)用PPT课件呈现函数的定义,让学生了解函数的基本概念。

然后,用PPT课件展示一些简单函数的图像,让学生观察和分析函数图像的特点。

3.操练(10分钟)让学生分组讨论和探究,分析给定的实际问题中的函数关系。

每组选择一个实际问题,分析其中的函数关系,并画出函数的图像。

初中数学初二数学上册《函数》教案、教学设计

初中数学初二数学上册《函数》教案、教学设计
2.分层次教学,循序渐进:针对学生的不同水平,设计不同难度的教学活动。对于基础薄弱的学生,重点帮助他们理解函数的基本概念;对于基础较好的学生,引导他们探索函数的性质和图像特点,提高他们的数学思维能力。
3.多元化教学方法,提高教学效果:
a.采用问题驱动法,引导学生自主探究,发现函数的性质。
b.利用信息技术,如几何画板、Excel等软件,辅助教学,让学生ቤተ መጻሕፍቲ ባይዱ观地观察函数图像的变化。
1.什么是函数?它与我们之前学过的数学概念有什么联系和区别?
2.函数在现实生活中有哪些应用?它有什么作用和价值?
3.我们如何表示和描述函数?有哪些方法可以表示函数?
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.给出函数的定义,解释函数的概念,让学生理解函数是一种特殊的关系,描述两个变量之间的依赖关系。
3.学生在数形结合方面的能力。函数的学习涉及图像和解析式的结合,部分学生可能在这方面的能力较弱,需要加强训练。
4.学生的合作交流能力。在教学过程中,教师应注重培养学生的合作交流能力,提高学生的小组合作效率。
针对以上学情,教师应结合学生的实际情况,采用多样化的教学策略,帮助学生克服学习难点,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.函数概念的理解:函数是描述两个变量之间依赖关系的数学模型,对于初二学生来说,理解函数的定义及其内涵是本章学习的重点和难点。如何让学生从具体的例子中抽象出函数的一般规律,形成对函数的准确理解,是教学中的关键。
2.函数图像的识别与分析:掌握不同类型函数的图像特点,能够通过图像分析函数的性质,是本章学习的另一个重点。特别是一次函数、二次函数的图像及其变化规律,需要学生通过观察、思考、实践来深入理解。

新课标函数的概念教学设计

新课标函数的概念教学设计

新课标函数的概念教学设计
一、教学目标:
1.了解函数的概念。

2.掌握函数的定义和表示方法。

3.熟练掌握函数的基本性质。

二、教学重点:
1.函数的定义和表示方法。

2.函数的基本性质。

三、教学难点:
函数的图像、性质的深入认识。

四、教学方法:
1.示范教学法。

2.探究式教学法。

3.情境教学法。

五、教学过程:
Ⅰ.导入
1.导入课堂气氛。

2.学生对函数的一些容易出现的误解进行讨论。

3.引入新课。

Ⅱ.讲授
教师自主教学:概念、定义和表示方法。

Ⅲ.操作
1.学生对函数的一些基本概念和表示方法进行练习。

2.让学生通过上下左右移动、缩放等操作,感受函数的图像和性质。

Ⅳ.概念认知
1.让学生总结函数的概念、定义和表示方法。

2.让学生总结和掌握函数的基本性质。

Ⅴ.巩固练习
1.课堂问答练习。

2.课后作业。

Ⅵ.反思
本堂课教师采用了哪些教学方法、学生表现如何,再针对不足之处进行反思。

苏科版数学八年级上册《6.1 函数》教学设计2

苏科版数学八年级上册《6.1 函数》教学设计2

苏科版数学八年级上册《6.1 函数》教学设计2一. 教材分析苏科版数学八年级上册《6.1 函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用进行深入学习的内容。

本节课的教学内容主要包括函数的定义、函数的性质和函数图像的特点。

通过本节课的学习,使学生了解函数的概念,学会用函数的视角看待问题,培养学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式、方程等基础知识,具备一定的逻辑思维能力和抽象思维能力。

但对于函数的概念和性质,学生可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出函数的概念,并通过实例让学生感受函数的性质和图像的特点。

三. 教学目标1.理解函数的概念,掌握函数的性质和图像的特点。

2.学会用函数的视角看待问题,提高解决实际问题的能力。

3.培养学生的抽象思维能力和逻辑思维能力。

四. 教学重难点1.函数的概念和性质。

2.函数图像的特点。

五. 教学方法1.情境教学法:通过实际问题引入函数的概念,让学生感受函数在生活中的应用。

2.实例教学法:通过具体实例讲解函数的性质和图像的特点,让学生深刻理解函数。

3.问题驱动法:引导学生提出问题,并自主探究,培养学生的解决问题的能力。

4.小组合作法:学生进行小组讨论,分享学习心得,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示函数的定义、性质和图像。

2.实例材料:准备一些实际问题,用于引入函数的概念。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如物体运动的速度与时间的关系、商品的销售价格与销售数量的关系等,引导学生从实际问题中抽象出函数的概念。

2.呈现(10分钟)介绍函数的定义,讲解函数的性质(如单调性、奇偶性等)和图像的特点(如直线、曲线等)。

通过实例让学生感受函数的性质和图像的特点。

3.操练(10分钟)让学生分组讨论,每组选择一个实例,分析实例中的函数性质和图像特点。

《函数的概念》教学设计

《函数的概念》教学设计

《函数的概念》教学设计第一篇:《函数的概念》教学设计《函数的概念》教学设计教材分析:函数作为初等数学的核心内容,贯穿于整个初等数学体系之中函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。

在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段对函数的概念加入“对应”,这一章内容渗透了函数的思想、特殊到一般,数形结合思想,从感性到理性,数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响教学目标:知识与技能:(1)理解函数的概念,;(2)能够正确使用“区间”的符号表示某些集合。

2过程与方法:通过学生自身对实际问题分析、抽象与概括,培养了抽象、概括、归纳知识以及建模等方面的能力;3情感与价值观:以熟知的生活实例引入,激发了学习数学的兴趣,增强其数学应用意识、创新意识。

相互合作学习,增强其合作意识体会合作学习的重要性。

教法:启发探究为主,讨论法为辅学法:观察分析、自主探究、合作交流教学重点:理解函数的实际背景,用集合与对应的语言来刻画函数教学难点:理解函数的实际背景,用集合与对应的语言来刻画函数教学过程:一、复习引入:.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和,对于x的每一个值,都有唯一确定的值与之对应,此时是x的函数,x是自变量,是因变量。

表示方法有:解析法、列表法、图象法二、概念情景引入:思考1:(本P1)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为84米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。

B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。

(见本P1图).国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。

“八五”计划以来我们城镇居民的恩格尔系数如下表。

北师大版八年级数学上册:4.1《函数》教学设计3

北师大版八年级数学上册:4.1《函数》教学设计3

北师大版八年级数学上册:4.1《函数》教学设计3一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节课主要介绍函数的概念、性质及表示方法。

函数是数学中的一个重要概念,也是初中数学的核心内容之一。

通过本节课的学习,使学生理解函数的基本概念,掌握函数的表示方法,能够判断两个相关联的变量之间的关系是否为函数,并为后续学习函数的图像和性质打下基础。

二. 学情分析八年级的学生已经学习了初中数学的大部分内容,对于一些基本的数学概念和运算规则有一定的掌握。

但是,对于函数这一概念,学生可能还存在一些模糊的认识,对于函数的表示方法也较为陌生。

因此,在教学过程中,需要引导学生从实际问题出发,理解函数的概念,掌握函数的表示方法。

三. 教学目标1.理解函数的概念,掌握函数的表示方法。

2.能够判断两个相关联的变量之间的关系是否为函数。

3.培养学生的数学思维能力,提高学生解决问题的能力。

四. 教学重难点1.函数的概念及判断两个相关联的变量之间的关系是否为函数。

2.函数的表示方法。

五. 教学方法1.情境教学法:通过实际问题引入函数的概念,使学生能够从实际问题中感受到函数的存在。

2.实例教学法:通过具体的实例,使学生理解函数的表示方法。

3.小组合作学习:引导学生分组讨论,培养学生的合作意识和团队精神。

六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解。

2.实例材料:准备一些具体的实例,用于解释和展示函数的表示方法。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如:“某商店举行打折活动,原价为100元的商品打8折,求打折后的价格。

”让学生思考并回答问题,引出函数的概念。

2.呈现(10分钟)讲解函数的定义,用PPT展示函数的表示方法,如列表法、图象法、解析法等。

通过具体的实例,让学生理解函数的表示方法。

3.操练(10分钟)让学生分组讨论,每组选择一个实例,用所学的表示方法表示函数。

函数 初中八年级下册数学教案教学设计课后反思 人教版

函数 初中八年级下册数学教案教学设计课后反思 人教版

【知识与技能】: 1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

 3、会对一个具体实例进行概括抽象成为数学问题。

 【过程与方法】 1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

 2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

 【情感 态度与价值观】 1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识 的理解和有效的学习模式。

苏科版数学八年级上册《6.1 函数》教学设计4

苏科版数学八年级上册《6.1 函数》教学设计4

苏科版数学八年级上册《6.1 函数》教学设计4一. 教材分析《6.1 函数》是苏科版数学八年级上册的一个重要内容。

这部分内容主要介绍了函数的概念、性质和简单的函数图像。

在本节课中,学生将学习函数的定义、函数的域和值域、函数的单调性等概念,并通过实例来理解函数的意义。

教材通过丰富的例子和实际问题,引导学生探究函数的性质,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经学习了初中阶段的一元一次方程、一元二次方程等基础知识,对数学的逻辑推理和抽象思维有一定的基础。

但是,函数的概念和性质较为抽象,学生可能难以理解和接受。

因此,在教学过程中,需要结合学生的实际情况,采用生动形象的例子和实际问题,帮助学生理解和掌握函数的知识。

三. 教学目标1.理解函数的概念,掌握函数的定义域和值域。

2.理解函数的单调性,并能判断函数的单调性。

3.能够运用函数的知识解决实际问题。

四. 教学重难点1.函数的概念和性质的理解。

2.函数的单调性的判断。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探究,激发学生的学习兴趣。

2.使用多媒体教学,通过动画和图像,帮助学生直观地理解函数的性质。

3.采用小组合作学习的方式,让学生在讨论和合作中,共同解决问题,培养学生的团队合作能力。

六. 教学准备1.多媒体教学设备。

2.相关的教学PPT。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)通过提出一个问题:“什么是函数?”引起学生的思考,引导学生回顾已学的知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍函数的定义,通过示例来解释函数的概念。

同时,讲解函数的定义域和值域,让学生理解函数的基本概念。

3.操练(10分钟)让学生通过解决一些实际问题,运用函数的知识,判断函数的单调性。

在解决问题的过程中,引导学生理解和掌握函数的性质。

4.巩固(10分钟)让学生做一些相关的练习题,巩固所学的内容。

同时,通过练习题的解答,帮助学生进一步理解和掌握函数的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级函数教学设计
函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。

以下是八年级函数教学设计从,欢迎阅读。

一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。

因此反比例函数的概念与意义的教学是基础。

二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式
14631000(2)y=tx
k可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数实际.由于是分式,当x=0时,分式无意义,所以x≠0。

当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。

此时y就不是反比例函数了。

举例:下列属于反比例函数的是
(1)y=(2)xy=10(3)y=k-1x(4)y=-
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
kx1
k已知y+1与x成反比例,则可设y与x的函数关系式为
y+1=xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为
y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。

之后引导学生书写过程。

能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。

而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

相关文档
最新文档