光敏电阻特性测试实验
光敏电阻特性测定实验及分析(最全)word资料
光敏电阻特性测定实验及分析(最全)word资料光敏电阻特性测定实验及分析何乾伟1张钰2摘要:随着电子技术的不断发展,光敏电阻作为一种重要的电子元件,由于其具有灵敏度高、反应速度快、体积小和可靠性好等特点而不断被开发,但科学研究以及市场应用对光敏电阻的性能要求也越来越高。
首先简单介绍了光敏电阻的工作原理及主要参数,然后针对光敏电阻的伏安特性和光照特性的测量需要进行了实验设计,完成了对光敏电阻暗电阻、亮电阻、灵敏度、光谱特性、响应时间和频率特性等参数的测量,并分析其中的规律。
关键词:光敏电阻特性分析实验0引言光敏电阻是利用材料或器件的电导率会随外加光源的改变而变化的性质制作的一种不同于普通定值电阻的可变电阻。
由于其灵敏度高、反应速度快、体积小和可靠性好等原因,被广泛运用于各种光控电路之中。
作为一种重要的电子元件,光敏电阻具有许多特性参数。
光敏电阻在无光照的条件下电阻一般很大,当存在光照时,其电阻便会大大下降。
本文针对光敏电阻的伏安特性和光照特性的测量需要进行了实验设计,完成了对光敏电阻暗电阻、亮电阻、灵敏度、光谱特性、响应时间和频率特性等参数的测量,并分析其中的规律,为以后对光敏电阻的研究提供了资料。
1光敏电阻的工作原理及主要参数1.1光敏电阻的工作原理材料或器件受到光照时电导率发生变化的现象称为内光效应。
当光源存在时,发生内光效应,材料或器件吸收的能量使部分价带电子变迁到导带,与此同时,在价带中便形成了空穴,由于载流子个数的增加,材料或器件的导电率也随之增加。
光源消失后,由光子激发产生的电子──空穴对将逐渐复合,光敏电阻的阻值也将恢复原值。
光敏电阻的制作材料为半导体,它是利用内光效应原理而制作的光电元件。
在光照条件下阻值一般会减小,这种现象称之为光导效应。
光敏电阻是一个可变电阻器件,没有极性,在直流电和交流电压下都可以正常工作。
1.2主要参数暗电流:在一定温度下,光敏电阻不受光照时,通过的电流称为暗电流。
光敏电阻特性研究实验报告
课程名称:大学物理实验(一)实验名称:光敏电阻特性研究图3 光敏电阻光照特性光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光(可见光)的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
在黑暗条件下,它的阻值(暗阻)可图4 无光照时的光敏电阻原理示意图图5 有光照时的光敏电阻原理示意图光敏电阻是一种能够感知光的电子元件,其原理在于光照射到光敏电阻表面时,会激发其中的电子发生跃迁,导致电阻值发生变化。
具体来说,光敏电阻中含有一种半导体材料的物质作为感光元件如硒化铋、硫化镉等,当光线照射到这种材料上时,会让一些电子从价带跃迁到导带,使得电子数量增加,从而导致电阻值降低。
导体材料在没有光照射时,其中的电子处于价带中,不能自由移动。
因此,当光线强度增加时,电阻值就会相应地减小;反之,当光线强度减小或消失时,电阻值则会增大。
4.光敏电阻的伏安特性:光敏电阻在光强一定的情况下(偏振片角度θ不变)时,电阻是一个定值电阻。
根据R = U/I,可得到光强不变时电阻是一条直线,它的斜率就是电阻的阻值。
图1 光敏电阻特性研究实验装置图图2偏振片角度θ=30°时光敏电阻的伏安特性曲线由图可知:直线斜率即为此时的光敏电阻的阻值。
由于电压单位是(V)而电流单位是(mA),根据欧姆定律,其中U的单位是(V),I的单位是(A),故此时光敏电阻阻值为1505Ω。
变形式R=UI3.光敏电阻的光照特性和电阻特性研究表3 光敏电阻电流随相对光照强度变化数据表θ0º10º20º30º40º50º60º70º80º90º图3 光敏电阻光照特性曲线由图可知:电压一定时,当相对光强增大时,电流也逐渐增大。
当相对光照强度达到最大时,电流也取到最大值。
当相对光照强度为0时,电流不为0,但接近0,因为光敏电阻的暗阻较大。
除此之外,实验时电压恒定为2V,故可根据欧姆定律变形式R=UI计算不同相对光照强度时的电阻。
光敏电阻特性研究实验报告
光敏电阻特性研究实验报告光敏电阻是一种能够根据光照强度改变电阻值的元件,它在光敏元件中具有重要的应用价值。
本实验旨在研究光敏电阻的特性,通过实验数据的采集和分析,探讨光敏电阻在不同光照条件下的电阻变化规律,为光敏电阻在实际应用中的选型和设计提供参考依据。
实验一,光照强度对光敏电阻的影响。
在实验室条件下,我们利用可调光源和万用表进行了一系列实验。
首先,我们将光敏电阻置于黑暗环境中,记录下此时的电阻值;随后,逐渐增加光源的亮度,每隔一定时间记录光敏电阻的电阻值。
实验结果表明,光照强度与光敏电阻的电阻值呈现出负相关的关系,即光照强度越大,光敏电阻的电阻值越小。
这一结果与光敏电阻的基本特性相符,也为后续实验提供了重要的数据支撑。
实验二,光敏电阻的响应速度。
为了研究光敏电阻的响应速度,我们设计了一组实验。
在实验中,我们利用光敏电阻和示波器搭建了一个简单的实验电路,通过改变光源的亮度,观察光敏电阻电阻值的变化情况。
实验结果显示,光敏电阻的响应速度较快,当光源亮度发生变化时,光敏电阻的电阻值能够迅速做出相应调整。
这一特性使得光敏电阻在光控自动调节系统中具有广泛的应用前景。
实验三,光敏电阻的温度特性。
在实验室条件下,我们对光敏电阻的温度特性进行了研究。
通过改变环境温度,记录光敏电阻的电阻值,得出了光敏电阻在不同温度下的电阻变化规律。
实验结果表明,光敏电阻的电阻值随着温度的升高而减小,这一特性需要在实际应用中进行合理的温度补偿,以确保系统的稳定性和可靠性。
结论。
通过本次实验,我们深入研究了光敏电阻的特性,并取得了一系列有意义的实验数据。
光敏电阻在光照强度、响应速度和温度特性等方面表现出了一系列重要的特点,这些特性为光敏电阻在光控自动调节系统、光电传感器等领域的应用提供了重要的理论依据。
同时,我们也发现了一些需要进一步深入研究的问题,比如光敏电阻的光谱特性、长期稳定性等方面的研究仍有待深入。
希望通过本次实验,能够为光敏电阻的应用和研究提供一定的参考价值,推动光敏电阻领域的进一步发展和应用。
光敏电阻特性测试实验(精)
光敏电阻特性测试实验一、实验目的1、学习掌握光敏电阻工作原理2、学习掌握光敏电阻的基本特性3、掌握光敏电阻特性测试的方法4、了解光敏电阻的基本应用三、实验内容1、光敏电阻的暗电阻、暗电流测试实验2、光敏电阻的亮电阻、亮电流测试实验3、光敏电阻光电流测试实验;4、光敏电阻的伏安特性测试实验5、光敏电阻的光电特性测试实验6、光敏电阻的光谱特性测试实验7、光敏电阻的时间响应特性测试实验三、实验仪器1、光电探测综合实验仪 1个2、光通路组件 1套3、光敏电阻及封装组件 1套4、光照度计 1台5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1. 光敏电阻的结构与工作原理光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。
一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。
实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。
光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。
在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。
半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。
为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最金属电极半导体电源检流计R LE I(a)(b)(c)R a玻璃底板大。
为了提高灵敏度,光敏电阻的电极一般采用梳状图案, 如图1-1(b )所示。
图1-1(c )为光敏电阻的接线图。
2. 光敏电阻的主要参数 光敏电阻的主要参数有:(1) 暗电阻 光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。
光敏电阻基本特性测量
实验报告课程名称:大学物理实验(一)实验名称:光敏电阻基本特性测量
五:数据处理
1、伏安特性:当保持偏振片夹角为0不变时(即光照强度不变),根据测量得出的电压与电流值绘制电阻的伏安特性曲线,如下图
I/mA
将偏振片夹角变为30°(改变光强)所测得的伏安特性曲线如下图:
I/mA
由图可以得出,当光照不变时,电流随着电压线性增长,在实验误差允许范围内,电阻阻值R=U/I保持不变。
2、光照特性:当保持电阻电压不变时,通过改变偏振片夹角来改变光照强度,选取电压等于2.00V时绘制曲线,如下图:
由图可知,电压不变时,随着光照强度减小电流逐渐变小,而后趋于稳定,相同光照强度下,电压越大,对应光电流越大。
即光敏电阻阻值随光照强度的减小而增大,随光照强度增大而减小。
光敏电阻特性实验报告.doc
光敏电阻特性实验报告.doc一、实验目的通过光敏电阻特性实验掌握光敏电阻的基本性质和特性。
二、实验仪器数字万用表、光源、光敏电阻、稳压电源、电阻箱等。
三、实验原理1、光敏电阻的原理及特性:光敏电阻即是光敏电阻器,是一种光感受元件。
光敏电阻是将半导体材料做成的电阻器,当光照射在半导体上时、光子就会激发半导体内产生的载流子,从而填充其价带和导带,形成电子空穴对。
这些电子空穴对导致了电阻值的变化。
光敏电阻的特点:具有灵敏度高、响应速度快、能量浅等优点。
具有宽波长响应范围,以及随着光照强度的提高,光敏电阻阻值会减小,这种特性称为“阻值下降”。
2、该实验中使用的光敏电阻为CdS电阻,其特点是响应范围为400-800nm波长,特别是在寒冷气候中,其响应速度和稳定性均表现出惊人的性能和耐用性。
四、实验步骤1、连接电路:将CdS光敏电阻两端连接在电阻箱上的白色断路口的3号和5号针脚处;在电路与电源之间串联一块2.5KΩ稳压电源,并将其与外部电源连接。
2、测量电路状态:测量电源电压为9.0V,万用表选择电阻档位并相应选择电流档位,测量此时光敏电阻的阻值。
3、测量光敏电阻特性:用光源照射光敏电阻,测量此时的电压和电阻。
4、更换稳压电源,重复以上步骤。
五、实验数据记录以下实验数据基于步骤3和4中所获得的测量数据。
SerialNo. | E (V) | I (mA) | R (Ω) | U1 (V) | U2 (V) | R (Ω)1 | 9.0 | 5.5 | 1636 | 2.447 | 2.743 | 902 | 12.0 | 7.3 | 1644 | 4.320 | 4.796 | 1043 | 6.0 | 3.68 | 1630 | 1.112 | 1.284 | 32六、实验结果分析1、电源电压试验:可以看出电源电压的增加可使光敏电阻的电阻值增大,说明此时光敏电阻在该电流下的响应能力基本一直。
2、光源亮度测试:可以看出在光源发光强度越大、光照时间越长时,光敏电阻的电阻值会逐渐减小,说明在光的作用下,光敏电阻的电阻值会随光照强度的提高而下降,这种变化程度也越大。
光敏电阻特性测量实验报告
光敏电阻特性测量实验报告光敏电阻特性测量实验报告引言:光敏电阻是一种能够根据光照强度变化而改变电阻值的电子元件。
它广泛应用于光电传感器、光控开关等领域。
本实验旨在通过测量光敏电阻的特性曲线,了解其在不同光照条件下的电阻变化规律。
实验装置:本实验所用的装置包括一个光敏电阻、一个可变电阻、一个电压表、一个电流表和一个光源。
光敏电阻的两个引脚分别连接在电路的两个端点,可变电阻则用于调节电路中的电流。
实验步骤:1. 将实验装置搭建好后,先调节可变电阻,使电路中的电流达到一个适当的范围。
2. 将光源照射在光敏电阻上,并记录下此时的电流和电压值。
3. 逐渐增加光源的亮度,重复步骤2,记录不同光照强度下的电流和电压值。
4. 根据实验数据,绘制光敏电阻的特性曲线。
实验结果与讨论:通过实验测量,我们得到了光敏电阻在不同光照强度下的电流和电压值。
根据这些数据,我们可以绘制出光敏电阻的特性曲线。
特性曲线的形状与光敏电阻的材料和结构有关。
一般情况下,当光照强度增加时,光敏电阻的电阻值会减小,电流值会增大。
这是因为光照能量激发了光敏电阻中的载流子,使其在材料中移动,导致电阻减小。
而当光照强度减小时,电阻值会增加,电流值会减小。
光敏电阻的特性曲线可以用来描述其在不同光照条件下的工作状态。
通过观察特性曲线,我们可以了解到光敏电阻的灵敏度和响应速度。
灵敏度指的是光敏电阻对光照强度变化的响应程度,而响应速度则表示光敏电阻从接收到光照信号到产生响应的时间。
实验中,我们还可以通过改变可变电阻的值,观察光敏电阻的特性曲线是否发生变化。
可变电阻的作用是调节电路中的电流,当电流变化时,光敏电阻的特性曲线也会发生相应的变化。
这可以帮助我们更好地理解光敏电阻的工作原理。
结论:通过本次实验,我们成功测量了光敏电阻的特性曲线,并了解了其在不同光照强度下的电阻变化规律。
光敏电阻的特性曲线可以用来描述其工作状态,帮助我们了解其灵敏度和响应速度。
此外,通过改变可变电阻的值,我们还可以观察到光敏电阻特性曲线的变化。
光敏电阻特性实验报告
光敏电阻特性实验报告实验目的:通过实验研究光敏电阻的特性,并探究光敏电阻的光照度对电阻值的影响。
实验器材:1.光敏电阻2.电阻箱3.多用电表4.正弦波信号发生器5.光源6.PPT实验执行时序图实验原理:光敏电阻是一种根据光照强度变化而改变电阻值的电子元件。
光敏电阻由光敏材料制成,其电阻值与光照强度成反比。
当光敏电阻暴露在光线下时,光敏材料吸收光子,并产生载流子,从而使电阻值减小。
实验步骤:1.将光敏电阻与电阻箱和电源相连,组成电路。
2.将多用电表设置为电阻测量模式,并连接到电路中,用于测量光敏电阻的电阻值。
3.使用正弦波信号发生器,连接到电路中的电源,提供交流电源。
4.将光源对准光敏电阻,并调整光照强度。
5.分别测量不同光照强度下光敏电阻的电阻值。
6.记录测量结果,并对实验数据进行分析和总结。
实验结果:根据实验数据测量结果,在不同光照强度下记录了光敏电阻的电阻值。
随着光照强度的增加,光敏电阻的电阻值逐渐减小。
这表明光敏电阻的电阻值与光照强度成反比。
实验总结与分析:通过本次实验,我们了解了光敏电阻的特性,并验证了光敏电阻的电阻值与光照强度的关系。
光敏电阻在光线下表现出明显的特性变化,可以被应用于光敏开关、自动调光等领域。
在实际应用中,我们还可以通过调整光敏电阻的参数来满足不同的要求。
然而,本实验还存在一些限制和改进空间。
首先,光敏电阻的光照度与电阻值的关系是非线性的,在高光照强度时,电阻值接近零,而在低光照强度时,电阻值较大。
因此,我们可以进一步研究光敏电阻在不同光照强度下的电阻值变化曲线,探索其非线性特性。
此外,本实验的光照强度调节仅使用了光源的近距离调节,可以尝试使用不同光源、不同距离和不同角度进行光照度的变化,以进一步研究光敏电阻的响应特性。
综上所述,实验结果表明,光敏电阻的电阻值受光照强度的影响,并且具有非线性特性。
进一步研究光敏电阻的特性可以为其在光电领域的应用提供更多可能性。
光敏电阻特性实验报告
光敏电阻特性实验报告光敏电阻特性实验报告引言:光敏电阻是一种能够根据光照强度变化而改变电阻值的电子元件。
在本次实验中,我们将对光敏电阻的特性进行研究和分析。
通过测量光敏电阻在不同光照条件下的电阻值,并绘制出其电阻-光照强度曲线,我们可以深入了解光敏电阻的工作原理和应用。
实验目的:1. 掌握光敏电阻的基本特性和工作原理;2. 理解光敏电阻与光照强度之间的关系;3. 学会使用光敏电阻进行光照强度的测量。
实验步骤:1. 准备实验所需材料:光敏电阻、电阻箱、电流表、电压表、光源等;2. 搭建实验电路:将光敏电阻与电阻箱、电流表和电压表连接,接通电源;3. 调节电阻箱的阻值,使得光敏电阻的电流和电压在一定范围内;4. 使用光源照射光敏电阻,并记录相应的电流和电压数值;5. 重复步骤4,改变光源的距离或光照强度,记录不同条件下的电流和电压数值;6. 根据记录的数据,绘制出光敏电阻的电阻-光照强度曲线。
实验结果与分析:根据实验记录的数据,我们得到了光敏电阻在不同光照强度下的电流和电压数值。
通过计算,我们可以得到光敏电阻的电阻值。
进一步分析数据,我们可以得到以下结论:1. 光敏电阻的电阻值随光照强度的增加而减小。
这是因为光敏电阻的电阻值与光照强度呈反比关系,即光照强度越大,电阻值越小。
2. 光敏电阻的电阻-光照强度曲线呈非线性关系。
在低光照强度下,电阻值变化较小;而在高光照强度下,电阻值变化较大。
这是由于光敏电阻的材料特性决定的,其电阻值的变化不是线性的。
3. 光敏电阻的灵敏度取决于光源的距离和光照强度。
当光源距离光敏电阻较近或光照强度较大时,光敏电阻的电阻值变化更为显著。
实验应用:光敏电阻在实际应用中有着广泛的用途。
由于其能够根据光照强度的变化而改变电阻值,因此可以用于光照强度的测量和控制。
以下是一些光敏电阻的应用案例:1. 光敏电阻在自动照明系统中的应用。
通过检测光敏电阻的电阻值,可以实现自动调节室内照明的亮度,提高能源利用效率。
光敏电阻特性测试实验
光敏电阻特性测试实验一、实验目的:1、了解光敏电阻的基本原理和特性。
2、掌握使用本仪器测定光敏电阻的特性。
二、实验设备:光电传感器实验模块、直流稳压电源、恒流源、万用表,计算机三、实验原理:光敏电阻的工作原理是基于光电导效应。
在无光照时,光敏电阻具有很高的阻值,在有光照时,当光子的能量大于材料的禁带宽度,价带中的电子吸收光子能量后跃迁到导带,激发出电子—空穴对,使电阻降低;入射光愈强,激发出的电子—空穴对越多,电阻值越低;光照停止后,自由电子与空穴复合,导电性能下降,电阻恢复原值。
由于存在非线性,因此光敏电阻一般用在控制电路中,不适用作测量组件。
光敏电阻的光照度—电阻值的典型特性曲线如下图所示。
光敏电阻照度—电阻特性曲线图低照度a区曲线斜率较大,中间照度区b区可近似视为直线区,也是光敏电阻的主要工作区,光电流随着光照度增长较快,在高照度区,电阻值随照度下降较慢,光电流随照度增长也变慢。
本实验用恒流源控制光敏电阻上的电流大小,从而改变光敏电阻光照度的大小。
发光二极管输出光功率P与驱动电流I的关系由下式确定:P=ηE p I/e其中,η为发光效率,E p为光子能量,e为电子电荷常数。
输出光功率与驱动电流呈线性关系,因此本实验用一个驱动电流可调的红色超高亮度发光二极管作为实验用光源。
四、实验内容与步骤:1、光敏电阻置于光电传感器模块上的暗盒内,其两个引脚引出到面板上。
暗盒的另一端装有发光二极管,通过驱动电流控制暗盒内的光照度。
2、如图连接实验台恒流源输出到光电传感器模块驱动LED,电流大小通过直流毫安表内测检测,用万用表的欧姆档测量光敏电阻阻值。
光敏电阻试验电路连接图3、打开LabVIEW程序“光敏电阻特性测试实验”,在步长中输入每次采样输入电流的变化量为2mA。
4、开启实验台电源,通过改变LED的驱动电流,按设定的步长调节驱动电流的大小,并将光敏电阻阻值记录到电阻值一栏中,点击采样,经过十次采样后得到电阻-电流曲线,然后确定光敏电阻的线性工作区域5、根据确定下的光敏电阻的线性工作区域确定初始位移、步长,重复上述试验得到电阻-电流曲线及灵敏度等信息。
光敏电阻特性实验
实验一光敏电阻特性实验一:;实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器二:实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
3、光敏电阻的光谱特性:用不同的材料制成的光敏电阻有着不同的光谱特性,见图(2)光敏电阻的光谱特性曲线。
当不同波长的入射光照到光敏电阻的光敏面上,光敏电阻就有不同的灵敏度。
按照图(3)接线,电源电压可采用直流稳压电源的负电源。
用高亮度LED(红、黄、绿、蓝、白)作为光源,其工作电源可选用直流稳压电源的正电源。
发光管的接线可参照图(15)。
限流电阻用选配单元上的1K~100K档电位器,首先应置电位器阻值为最大,打开电源后缓慢调小阻值,使发光管逐步发光并至最亮,当发光管达到最高亮度时不应再减小限流电阻阻值,确定限流电阻阻值后不再改变。
依次将各发光管接入光电器件模板上的发光管插座,发光管与光敏电阻顶端可用附件中的黑色软管连接。
实验1 光敏电阻基本特性实验
实验一 光敏电阻特性实验一.实验目的:1.认识学习光敏电阻,掌握光敏电阻的基本工作原理。
2.掌握使用本仪器测定光敏电阻的各种特性.3.达到会用光敏电阻器件进行光电检测方面应用课题的设计。
二.实验原理:利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示,光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在日常生活中随处可见,当内光电效应发生时,光敏电阻电导率的改变量为:p n p e n e σμμ∆=∆⋅⋅+∆⋅⋅图(1)在上式中,e 为电荷电量,p ∆为空穴浓度的改变量,n ∆为电子浓度的改变量,μ表示迁移率,当两端加上电压U 后,光电流为:ph AI U dσ=⋅∆⋅ 式中A 为与电流垂直的表面,d 为电极间的间距。
在一定的光照度下,σ∆为恒定的值,因而光电流和电压成线性关系。
光敏电阻在未受到光照射时的阻值称为暗电阻,此时流过的电流称为暗电流,光敏电阻受到光照射时的阻值称为亮电阻,此时流过的电流称为亮电流,亮电流与暗电流之差称为光电流,一般暗电阻越大,亮电阻越小,光敏电阻的灵敏度越高,光敏电阻的暗电阻一般在兆欧数量级,亮电阻在几千欧以下,暗电阻与亮电阻之比一般在102~106之间。
一般光敏电阻(如硫化铅、硫化铊)的伏安特性曲线如图(2)所示,由该曲线可知,所加的电压越高,光电路越大,而且没有饱和现象,在给定的电压下,光电流的数值将隋光照增强而增大,在设计光敏电阻变换电路时,应使光敏电阻的工作电压或电流控制在额定功耗线之内。
图(2)光敏电阻伏安特性曲线光敏电阻的光电流与光照强度之间的关系,称为光敏电阻传感器的光照特性,不同类型的光敏电阻,其光照特性也不同,多数光敏电阻传感器光照特性类似于图(3)的特性曲线,光敏电阻的光照特性呈现出一定程度的非线性特性,光敏电阻的光照度—-电阻值的典型特性曲线如图(4)所示,低照度a区曲线斜率较大,中间照度区b区可近似视为直线区,也是光敏电阻的主要工作区,因而光电流随光照度增长较快,在高照度区,电阻值随照度下降慢,光电流随照度增长也变慢。
光敏电阻测试实验报告
光敏电阻测试实验报告本实验旨在研究光敏电阻的特性和性能,探究其在实际应用中的应用。
实验所用仪器设备包括光敏电阻、直流电源、电阻箱、万用表等。
实验步骤如下:1. 搭建实验电路:将光敏电阻与电阻箱串联,再将串联电路并联于直流电源。
通过万用表对电路进行检测,确保电路无误。
2. 测量光敏电阻的电气特性:改变电阻箱的电阻值,分别测量不同电阻下光敏电阻的电阻值和电流值,并记录数据。
3. 测量光敏电阻的光电特性:在固定电阻下,改变光照强度,测量不同光照强度下光敏电阻的电阻值和电流值,并记录数据。
实验结果如下:1. 光敏电阻的电气特性:电阻值(Ω) 光敏电阻电阻值(Ω) 电流值(mA)50 46.2 9.6100 91.5 4.8200 184.2 2.4500 461.7 1.01k 938.5 0.52. 光敏电阻的光电特性:光照强度(lx) 光敏电阻电阻值(Ω) 电流值(mA)10 50.3 9.450 113.2 4.2100 212.3 2.2500 856.7 0.61000 1735.6 0.3分析与讨论:从实验结果中可以发现,光敏电阻的电阻值和电流值都与电阻箱的电阻值和光照强度呈反比例关系,即电阻值和电流值随着电阻箱的电阻值和光照强度的增大而减小。
这说明光敏电阻的电性能很好,具有比较稳定的电阻值和电流值。
同时,从光敏电阻的光电特性的测量结果来看,光敏电阻对光照强度有很好的响应能力,光照强度越大,光敏电阻的电阻值和电流值越小。
这为光敏电阻的应用提供了良好的基础。
总之,本次实验成功地探究了光敏电阻的特性和性能,在实际应用中具有广泛的应用前景。
光敏电阻基本特性测量实验报告
光敏电阻基本特性测量实验报告光敏电阻基本特性测量实验报告引言:光敏电阻是一种能够感知光线强度并将其转化为电阻变化的器件。
它在光电传感、光控开关和光电自动控制等领域有着广泛的应用。
本实验旨在通过测量光敏电阻的基本特性,了解其工作原理和性能。
一、实验目的通过测量光敏电阻在不同光照条件下的电阻变化,了解光敏电阻的光敏特性和光照强度与电阻之间的关系。
二、实验器材1. 光敏电阻:采用具有高灵敏度的光敏电阻器件,如CdS光敏电阻。
2. 光源:使用恒定光源,如白炽灯或LED灯。
3. 变阻器:用于调节电阻值,以控制电路中的电流。
4. 电流表:用于测量电路中的电流。
5. 电压表:用于测量光敏电阻两端的电压。
三、实验步骤1. 搭建电路:将光敏电阻与变阻器、电流表和电压表连接成电路,确保电路连接正确。
2. 测量电阻:通过调节变阻器的阻值,使电流表读数保持恒定,记录此时光敏电阻的电阻值。
3. 测量电压:调节光源的亮度,记录光敏电阻两端的电压值。
4. 重复步骤2和步骤3,分别在不同的光照条件下进行测量。
四、实验结果与分析根据实验步骤所得到的数据,我们可以绘制光敏电阻的电阻-光照强度曲线。
根据实验结果,我们可以得出以下结论:1. 光敏电阻的电阻随光照强度的增加而减小。
这是因为光敏电阻的材料在光照下会发生光致电离,导致载流子浓度增加,从而降低了电阻值。
2. 光敏电阻的响应速度较快,但存在一定的时间延迟。
当光源亮度发生变化时,光敏电阻的电阻值并不会立即改变,而是在一定时间内逐渐调整到新的稳定值。
3. 光敏电阻的灵敏度取决于材料的特性和制造工艺。
不同的光敏电阻材料对不同波长的光源具有不同的响应特性,因此在实际应用中需要根据具体需求选择合适的光敏电阻。
五、实验误差分析在实验过程中,可能存在以下误差源:1. 光源的稳定性:光源的亮度可能会随时间变化,导致光敏电阻的测量结果存在一定的误差。
2. 电路接线的稳定性:电路接线不牢固或接触不良可能会导致电流和电压的测量值不准确。
光敏电阻特性实验报告
一、实验目的1. 了解光敏电阻的基本工作原理。
2. 探究光敏电阻的光照特性、光谱特性和伏安特性等基本特性。
3. 掌握光敏电阻特性测试的方法。
4. 分析光敏电阻在电路中的应用。
二、实验原理光敏电阻(Photoresistor),又称光导管或光电导,是一种利用半导体的光电效应制成的电阻值随入射光强度变化的电阻器。
其工作原理是:在光照作用下,半导体材料中的价带电子吸收光子的能量,跃迁到导带,形成自由电子和空穴对,从而增加材料的电导率。
光敏电阻通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成。
三、实验仪器与材料1. 光敏电阻:CdS光敏电阻(3mm直径)2. 信号源:直流稳压电源3. 测量仪器:数字多用表(DMM)4. 电路连接线5. 激光笔6. 光强计四、实验内容1. 光照特性测试(1)将光敏电阻接入电路,设置直流稳压电源输出电压为1V。
(2)用激光笔照射光敏电阻,记录不同光照强度下的电阻值。
(3)绘制光照强度与电阻值的关系曲线。
2. 光谱特性测试(1)将光敏电阻接入电路,设置直流稳压电源输出电压为1V。
(2)用不同波长的激光笔照射光敏电阻,记录不同波长下的电阻值。
(3)绘制波长与电阻值的关系曲线。
3. 伏安特性测试(1)将光敏电阻接入电路,设置直流稳压电源输出电压从0V逐渐增加至10V。
(2)记录不同电压下的电阻值。
(3)绘制电压与电阻值的关系曲线。
五、实验结果与分析1. 光照特性测试实验结果显示,光敏电阻的电阻值随光照强度的增加而减小,符合光敏电阻的光照特性。
在实验中,光敏电阻的电阻值在光照强度为0 lx时约为1MΩ,在光照强度为1000 lx时约为10kΩ。
2. 光谱特性测试实验结果显示,光敏电阻对可见光范围内的波长较为敏感,其电阻值随波长的变化较为明显。
在实验中,光敏电阻在波长为550 nm(绿色光)时的电阻值约为20kΩ,而在波长为700 nm(红色光)时的电阻值约为30kΩ。
3. 伏安特性测试实验结果显示,光敏电阻的电阻值随电压的增加而减小,符合其伏安特性。
光敏电阻特性测定实验及分析
光敏电阻特性测定实验及分析光敏电阻是一种基于光电效应的元件,当受光照射时,电阻值会发生变化。
光敏电阻的特性测定实验可以通过改变光照强度、波长和角度等条件,来研究光敏电阻的响应特性。
实验步骤:1.搭建电路:将光敏电阻与电源和电阻串联,将电流表与光敏电阻并联。
2.调节电源电压:通过调节电源的电压,使光敏电阻的工作在合适的电压范围内,一般在3V~5V之间。
3.测量光照强度和电流:使用光照度计测量光敏电阻所处环境的光照强度,并使用电流表测量流过光敏电阻的电流。
4.改变光照条件:依次改变光照强度、波长和角度等条件,记录每次的光照强度和电流数值。
5.数据处理和分析:根据测量到的数据,画出光照强度与电流的关系曲线,分析其规律。
实验所需仪器和材料:1.光敏电阻:选择具有较高灵敏度和稳定性的光敏电阻。
2.电源:提供适当的电压供给光敏电阻。
3.电流表:用于测量流过光敏电阻的电流。
4.光照度计:测量光照强度。
实验需要注意的问题:1.光敏电阻的工作电压范围要合适,过高的电压可能导致光敏电阻烧毁,而过低的电压可能使光敏电阻失去响应能力。
2.测量过程中需保证实验环境的稳定性,避免外界光照干扰实验结果。
3.为了获得更准确的结果,需要多次测量并取平均值。
实验结果分析:通过实验可以得到光敏电阻对不同光照条件的响应规律。
一般情况下,光敏电阻的电阻值随着光照强度的增加而减小,即光敏电阻对光的强度呈负相关。
这是因为光敏电阻受光照射时,内部光电效应引起的载流子的产生和迁移,使电阻值发生变化。
随着光照强度的增大,载流子的产生和迁移速度加快,电阻值变小。
另外,光敏电阻对不同波长的光的响应也有所差异。
不同波长的光子能量不同,因此光子在光敏电阻中产生的影响也不同。
以宽禁带的半导体材料为基础的光敏电阻,在不同波长的光照下,载流子密度和迁移规律不同,导致光敏电阻电阻值的改变也不同。
此外,光敏电阻对光照的角度也有一定的响应特性。
光照角度的改变会导致光在光敏电阻中入射深度的变化,进而影响载流子的密度和迁移情况,从而改变光敏电阻的电阻值。
光敏电阻特性实验报告
光敏电阻特性实验报告 LELE was finally revised on the morning of December 16, 2020光敏电阻特性实验一、实验目的:了解光敏电阻的光照特性、光谱特性和伏安特性等基本特性。
二、基本原理:1、光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。
2、光电导效应是半导体材料的一种体效应。
光照愈强,器件自身的电阻愈小。
基于这种效应的光电器件称光敏电阻。
3、光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。
三、需用器件与单元:主机箱、安装架、普通光源、各种滤光镜、光电器件实验(一)模板、光敏电阻探头、照度计模板、光照度探头。
四、实验步骤:1、亮电阻和暗电阻测量(1)光敏电阻实验原理图(2)调节光敏电阻工作电压:(3)亮电阻测试:(4)暗电阻测试:实验结果:分析:一般情况下,实用的光敏电阻的暗电阻往往超过1MΩ,甚至高达100MΩ,而亮电阻则在几kΩ以下,可见测量数据有效。
2 光照特性测试光敏电阻的工作电压一定时(5V),它的阻值(光电流)随光照度变化而变化。
按表3-2进行测量,作图3-2.。
分析:理论上,光敏电阻在弱光照下,光电流I与光照度E具有良好的线性;在强光照下则为非线性。
根据测试数据所画得的光照特性曲线较好地满足上述情况,说明实验操作准确。
3 伏安特性测试光敏电阻在一定的光照度下,光电流随外加电压的变化而变化(1)调节光源电压为100Lx时对应的电压值(2)调节光敏电阻工作电压的值读取相应的光电流(3)重复测试不同照度的伏安特性,将测量数据填入表3-3,并作图3-3。
分析:(1)、由图3-3可知,在给定光照下,光敏电阻的阻值与外加电压无关,仅由光敏电阻本身性质决定,但是不同光照情况下的伏安特性具有不同的斜率,即光照强度不同,阻值不同。
(2)、当光敏电阻承受的功率超过它本身的额定功率,曲线开始变弯,说明光电流趋向饱和。
光敏电阻特性测试实验
光敏电阻特性测试实验一、实验目的了解光敏电阻工作原理、光照特性及伏安特性。
二、实验内容1、光敏电阻暗电阻和亮电阻的测量;2、光敏电阻光照特性测量;3、光敏电阻伏安特性测量;三、实验器件简介光敏电阻又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;一般情况下入射光强,电阻减小,入射光弱,电阻增大。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。
通常光敏电阻都制成薄片结构,以便吸收更多的光能。
当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。
光敏电阻的主要参数有亮电阻,暗电阻,光电特性,光谱特性,频率特性,温度特性。
在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。
没有极性,属于纯电阻器件,使用时可加直流也可以加交流。
用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。
通常采用涂敷、喷涂、烧结等方法,在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。
在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的价带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。
光照愈强,阻值愈低。
入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。
四、实验原理光敏电阻是用光电导体制成的光电器件,又称光导管。
它是基于半导体光电效应工作的。
当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。
光敏电阻的暗电阻越大,亮电阻越小,则性能越好,也就是说,暗电流要小,光电流要大,这样的光敏电阻的灵敏度就高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光敏电阻特性测试实验一、实验目的1、学习掌握光敏电阻工作原理2、学习掌握光敏电阻的基本特性3、掌握光敏电阻特性测试的方法4、了解光敏电阻的基本应用三、实验内容1、光敏电阻的暗电阻、暗电流测试实验2、光敏电阻的亮电阻、亮电流测试实验3、光敏电阻光电流测试实验;4、光敏电阻的伏安特性测试实验5、光敏电阻的光电特性测试实验6、光敏电阻的光谱特性测试实验7、光敏电阻的时间响应特性测试实验三、实验仪器1、光电探测综合实验仪 1个2、光通路组件 1套3、光敏电阻及封装组件 1套4、光照度计 1台5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1. 光敏电阻的结构与工作原理光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。
一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。
实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。
光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。
在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。
半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。
为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最金属电极检流计E大。
为了提高灵敏度,光敏电阻的电极一般采用梳状图案, 如图1-1(b )所示。
图1-1(c )为光敏电阻的接线图。
2. 光敏电阻的主要参数有:(1) 暗电阻 光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。
(2) 亮电阻 光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。
(3) 光电流 亮电流与暗电流之差称为光电流。
3.(1) 伏安特性 在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。
光敏电阻在一定的电压范围内,其I -U 曲线为直线。
(2)光照特性 光敏电阻的光照特性是描述光电流I 和光照强度之间的关系,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。
(3) 光谱特性 光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。
光敏电阻的相对光敏灵敏度与入射波长的关系称为光敏电阻的光谱特性,亦称为光谱响应。
图2-4 为几种不同材料光敏电阻的光谱特性。
对应于不同波长,光敏电阻的灵敏度是不同的,而且不同材料的光敏电阻光谱响应曲线也不同。
(4)时间特性 实验证明,光敏电阻的光电流不能随着光强改变而立刻变化,即光敏电阻产生的光电流有一定的惰性,这种惰性通常用时间常数表示。
大多数的光敏电阻时间常数都较大, 这是它的缺点之一。
不同材料的光敏电阻具有不同的时间常数(毫秒数量级), 因而它们的频率特性也就各不相同。
五、注意事项1、实验之前,请仔细阅读光电探测综合实验仪说明,弄清实验箱各部分的功能及拨位开关的意义;2、当电压表和电流表显示为“1_”是说明超过量程,应更换为合适量程;3、连线之前保证电源关闭。
4、实验过程中,请勿同时拨开两种或两种以上的光源开关,这样会造成实验所测试的数据不准确。
六、实验步骤1、光敏电阻的暗电阻、暗电流测试实验(1)将光敏电阻完全置入黑暗环境中(将光敏电阻装入光通路组件,不通电即为完全黑暗),使用万用表测试光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R 暗。
(注:由于光敏电阻个性差异,某些暗电阻可能大于200M欧,属于正常。
)(2)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(3)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1,S2,S3,S4,S5,S6,S7均拨下。
(4)将直流电源2正负极与电压表头对应相连,打开电源,将直流电流调到12V,关闭电源,拆除导线。
(5) 按照如下电路连接电路图,RL取RL=RL20=10M。
(6)打开电源,记录电压表的读数,使用欧姆定理I=U/R得出支路中的电流值I暗(注:在测量光敏电阻的暗电流时,应先将光敏电阻置于黑暗环境中30分钟以上,否则在测量暗电流时,电压表的读数会较长时间后才能稳定)图1-2 光敏电阻暗电流测试电路2、光敏电阻的亮电阻、亮电流、光电阻、光电流测试实验(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(3)打开电源,缓慢调节光照度调节电位器,直到光照为300lx(约为环境光照),使用万用表测试光敏电阻引脚输出端,即可得到光敏电阻的亮电阻R亮。
(4)将直流电源两极与电压表两端相连,调节直流电源到12V,关闭电源;(5) 按照如下电路连接电路图,RL取RL8=5.1K欧。
(6)打开电源,记录此时电流表的读数,即为光敏电阻在300lx的亮电流I亮;图1-3 光敏电阻测量电路(7)亮电阻与暗电阻之差即为光电阻,R光=R暗-R亮,光电阻越大,灵敏度越高。
(8)亮电流与暗电流之差即为光电流,I光=I亮-I暗,光电流越大,灵敏度越高。
(9)实验完成,关闭电源,拆除各导线。
3. 光敏电阻伏安特性测试光敏电阻伏安特性即为光敏电阻两端所加的电压与光电流之间的关系。
(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(3) 按照图1-3连接电路图,直流电源选用电源2,RL取RL6=1K,直流电源电位器调至最小(4)打开电源,将光照度设置为200lx不变,调节电源电压,分别测得电压表显示为2V、4V、6V、8V、10V、12V时的光电流填入下表。
(5)按照上述步骤(4),改变光源的光照度为400lx,分别测得偏压为2V、4V、6V、8V、(6)根据表中所测得的数据,在同一坐标轴中做出V-I曲线,并进行分析比较。
(7)实验完成,关闭电源,拆除各导线。
4.光敏电阻的光电特性测试实验在一定的电压作用下,光敏电阻的光电流与照射光照度的关系为光电特性。
(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(3) 按照图1-3连接电路图,RL取RL2=100欧。
(4)打开电源,将电压设置为8V不变,调节光照度电位器,依次测试出光照度在50lx、100lx、200lx、300lx、400lx、500lx、600lx、700lx、800lx、900lx并测得光电流填入下表(5)根据所测试得到数据,描出光敏电阻的光电特性曲线。
5、光敏电阻的光谱特性测试实验用不同的材料制成的光敏电阻有着不同的光谱特性,当不同波长的入射光照到光敏电阻的光敏面上,光敏电阻就有不同的灵敏度。
(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1拨上,S2,S4,S3,S5,S6,S7均拨下。
(3)打开电源,缓慢调节光照度调节电位器到最大,依次将S2,S3,S4,S5,S6,S7拨上后拨下,记下照度计最小值E作为参考。
(注意:请不要同时将两个拨位开关拨上)(4)S2拨上,缓慢调节电位器直到照度计显示为E,使用万用表测试光敏电阻的输出端,将测试所得的数据填入下表,再将S2拨下;(5)按照步骤(4),分别测试出橙光,黄光,绿光,蓝光,紫光在光照度E下时光敏电阻的阻值,填入下表。
(6)根据所测试得到的数据,做出光敏电阻的光谱特性曲线:(注:不同的光敏电阻曲线略有不同,属正常现象,峰值在蓝光附近)(7)实验完成,关闭电源,拆除各导线。
6、光敏电阻时间特性测试(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“脉冲”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(3)打开电源,将直流电流调到6V,关闭电源(4)如图1-3连接电路图,RL取RL=10K示波器的测试点应为光敏电阻两端,为了测试方便,可把示波器的测试点使用迭插头对引至信号测试区的TP1(电源地)和TP2。
(5)打开交流开关,白光对应的发光二极管亮,其余的发光二极管不亮。
缓慢调节直流电源电位器,用示波器的第一通道与接TP和GND(即为输入的脉冲光信号),用示波器的第二通道接TP2(6)观察示波器两个通道信号的变化,并作出实验记录(描绘出两个通道的U-T曲线)。
(7)缓慢增大输入脉冲的脉冲信号的宽度,观察示波器两个通道信号的变化,并作出实验记录(描绘出两个通道的U-T曲线),拆去导线,关闭电源。