液压与气压传动知识点

合集下载

液压与气压传动复习要点知识讲解

液压与气压传动复习要点知识讲解

液压复习大纲一、填空题:1、液体在流动时产生的压力损失分为两种,一种是沿程压力损失,另一种是局部压力损失。

2、液压泵是一种能量转换装置,它将机械能转换为压力能,是液压传动系统中的动力元件。

4.液压泵的实际流量是考虑泄露下的输出流量。

5.液压缸按作用方式不同可分为单作用液压缸和双作用液压缸;按运动方式又可分为移动式液压缸和摆动式液压缸。

6.采用出口节流的调速系统,若负载减小,则节流阀前的压力就会增大。

7、液压缸是实现直线往复运动的执行元件,液压马达是实现连续旋转或摆动的执行元件。

8.顺序阀如果用阀的进口压力作为控制压力,则称该阀为内控式。

9.液压控制阀按其用途可分方向控制阀,压力控制阀,流量控制阀三大类。

10、液压与气压传动中工作压力取决于负载。

液压与气压传动的活塞运动速度取决于输入流量的大小,而与外负载无关。

11、液压油具有双重作用,一是传递能量的介质,二是作为润滑剂润滑零件的工作表面。

12、单作用叶片泵的叶片数取奇数,以减小流量脉动率。

13、气压传动由:气源装置、执行元件、控制元件、辅助元件、工作介质五部分组成。

14.液压传动系统由能源装置、执行元件、控制元件、辅助元件、工作介质和逻辑元件五部分组成。

15、减压阀按调节要求不同三种①定值减压阀、②定差减压阀、③定比减压阀。

16、顺序阀有内控外泄、内控内泄、外控外泄、外控内泄四种控制型式。

17、节流阀在液压系统中,主要有三个作用①节流调速作用②负载阻尼作用③压力缓冲作用。

18、蓄能器主要作用:辅助动力源、维持系统压力、减小液压冲击或压力脉动。

19、齿轮泵的几个突出问题是:泄漏、径向力不平衡、困油。

20、液压泵工作原理都是依靠液压泵密封工作容积大小交替变化来实现吸油和压油。

21.油液黏度因温度升高而降低,因压力增大而升高。

22.在液压缸中,为了减少活塞在终端的冲击,应采取缓冲措施。

23、空压站主要由空压机、后冷却器和贮气罐组成。

24、空气净化处理装置包括:后冷却器、油水分离器、干燥器、分水过滤器和油雾器。

(完整版)液压与气压传动知识点重点

(完整版)液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有3种:动力黏度,运动黏度,相对黏度。

4、液压油分为3大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流.液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

液压与气压传动知识点总结

液压与气压传动知识点总结

液压与气压传动知识点总结液压与气压传动知识点总结在平日的学习中,相信大家一定都接触过知识点吧!知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。

你知道哪些知识点是真正对我们有帮助的吗?以下是小编精心整理的液压与气压传动知识点总结,欢迎阅读与收藏。

液压与气压传动知识点总结篇11、液压传动的工作原理是(帕斯卡)定律。

即密封容积中的液体既可以传递(力),又可以传递(运动)。

(帕斯卡、力、运动)2、液压管路中的压力损失可分为两种,一种是(沿程压力损失),一种是(局部压力损失)。

(沿程压力损失、局部压力损失)3、液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。

(层流、紊流、雷诺数)4、我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。

(恩氏粘度、恩氏粘度计)5、在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现象称为(液压冲击)。

(液压冲击)6、齿轮泵存在径向力不平衡,减小它的措施为(缩小压力油出口)。

(缩小压力油出口)7、单作用叶片泵的特点是改变(偏心距e)就可以改变输油量,改变(偏心方向)就可以改变输油方向。

(偏心距e、偏心方向)8、径向柱塞泵的配流方式为(径向配流),其装置名称为(配流轴);叶片泵的配流方式为(端面配流),其装置名称为(配流盘)。

(径向配流、配流轴、端面配流、配流盘)9、V型密封圈由形状不同的(支撑环)环(密封环)环和(压环)环组成。

(支承环、密封环、压环)10、滑阀式换向阀的外圆柱面常开若干个环形槽,其作用是(均压)和(密封)。

(均压、密封)11、当油液压力达到预定值时便发出电信号的液-电信号转换元件是(压力继电器)。

(压力继电器)12、根据液压泵与执行元件的组合方式不同,容积调速回路有四种形式,即(变量泵-液压缸)容积调速回路(变量泵-定量马达)容积调速回路、(定量泵-变量马达)容积调速回路、(变量泵-变量马达)容积调速回路。

液压与气压传动知识点

液压与气压传动知识点

液压与气压传动知识点液压和气压传动是现代工业中常用的两种传动方式。

液压传动是指利用压力传递力或者运动的一种动力传动方式,而气压传动则是利用气体的压缩和膨胀来传动力或者运动的一种动力传动方式。

液压传动和气压传动都具有一定的优点和局限性,可以根据实际使用环境和需求来选择适合的传动方式。

一、液压传动的基本原理和特点:1.液压传动基本原理:液压传动使用液体介质传递力或者动力。

利用液体的不可压缩性和容量不变性,通过压力的传递来实现力或者运动的传递。

2.液压传动的特点:(1)可以传递大量的力和扭矩,具有较大的工作能力。

(2)传动平稳,无冲击。

(3)传动效率高。

(4)传动精度高。

(5)需要专门的液压系统设备,维护成本相对较高。

二、气压传动的基本原理和特点:1.气压传动基本原理:气压传动利用气体的压缩和膨胀来传递力或者动力。

通过控制气体的压力和流量来实现力或者运动的传递。

2.气压传动的特点:(1)传动部件轻便,结构简单。

(3)传动速度较快。

(4)传动力和运动平稳性相对较差。

(5)传动效率较低。

(6)需要专门的气压系统设备,维护成本相对较高。

三、液压传动和气压传动的比较:1.功能比较:(1)液压传动一般用于需要稳定传动、大功率和大扭矩传输的场合,例如大型机械设备和工程机械等。

(2)气压传动一般用于工作环境复杂、易爆炸和易燃的场合,例如石油、化工和冶金等行业。

2.优缺点比较:(1)液压传动的优点是传动平稳、效率高、精度高,但成本较高,对环境要求较高。

(2)气压传动的优点是结构简单、安全可靠,但传动力和运动平稳性较差,效率较低。

3.应用领域比较:(1)液压传动广泛应用于船舶、冶金、矿山、工程机械等领域。

(2)气压传动广泛应用于汽车、矿山、石油、化工等领域。

总结起来,液压传动和气压传动都有各自的适用场合和优缺点。

在选择传动方式时,需要根据实际工作环境、力量要求、精度要求和经济成本等方面综合考虑,选择最适合的传动方式。

(完整版)液压与气压传动知识点重点

(完整版)液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有3种:动力黏度,运动黏度,相对黏度。

4、液压油分为3大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。

液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

液压与气压传动知识点

液压与气压传动知识点

1、动力粘度的物理意义是单位速度梯度下的切应力。

2、静压力的基本方程为p=p+ρgh。

3、般齿轮啮合系数ε必须大于1。

4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。

5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压6、液压传动是利用液体的压力能来做功的。

7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。

8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。

9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。

其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。

10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。

11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。

12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。

13、油箱分总体式油箱和分离式油箱。

油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。

14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。

15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。

16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。

17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。

它能否实现双向变量能。

18、油液的粘度随温度的升高而降低,随压力的升高而增加。

19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为方向控制阀、压力控制阀和流量控制阀。

20、滑阀阀芯上环形槽的作用是减小径向不平衡力(防止液压卡紧)。

液压与气压传动知识点

液压与气压传动知识点

1、液体在管道中存在两种流动状态,层流时粘性力起主导作用,紊流时惯性力起主导作用,液体的流动状态可雷诺数来判断。

2、液压传动是以液体为工作介质,利用液体的压力能来实现运动和动力传递的一种传动方式。

3、压力的表示方法:有绝对压力和相对压力。

4、液压系统中的压力取决:外负载的大小,与流量无关。

5、液压传动的动力元件是:液压泵、执行元件、液压缸。

6、液压泵都是考密封的工作容积发生变化而进行工作,属于容积泵。

7、液压泵正常工作须具备哪四个条件?试用外啮合齿轮泵说明。

答:1、应具备密封容积;2、密封容积的大小能交替变化。

泵的输油量和密封容积变化的大小及单位时间内变化的次数(变化频率)成正比;3、应有配油机构;4、吸油过程中,油箱必须和大气相通。

8、单作用叶片泵能吸压油的主要原因:存在偏心距9、变量泵中什么泵是通过改变转子和定子的偏心来实现变量?什么是泵是通过改变斜盘倾角实现变量?答:单作用叶片泵、径向柱塞泵是通过改变转子和定子的偏心距来实现变量,轴向柱塞泵是通过改变斜盘倾角来实现变量。

10、液压泵按其结构可分为:齿轮泵、叶片泵、柱塞泵。

11、齿轮泵的径向力不平衡是怎样产生的?消除径向力不平衡的措施有哪些?答:齿轮泵产生径向力不平衡的原因有三个方面:一是液体压力产生的径向力;二是齿轮传递力矩时产生的径向力。

三是困油现象产生的径向力,致使齿轮泵径向力不平衡现象加剧。

消除径向力不平衡的措施:缩小压油口的直径,使高压仅作用在一个齿到两个齿的范围,同时适当增大径向间隙;开压力平衡槽。

12、以齿轮泵为例,说明什么是困油现象?如何消除?答:在齿轮啮合时,一部分油困在两对齿轮所形成的封闭容腔内,这个容积随齿轮转动减小,后又逐渐增大,减少时会使被困油挤压产生高压,并从缝隙流出,导致油液发热,轴承等机件收到附加的不平衡负载作用;增大时造成局部真空产生气穴,这就是困油现象。

危害:使齿轮泵产生噪声并引起振动和气蚀降低容积效率,影响工作平稳性,缩短寿命。

液压与气压传动的基础知识

液压与气压传动的基础知识
1
F (FX2 FY2 FZ2 ) 2
2.2 流动液体的力学规律
基本概念 连续性方程 伯努利方程
2.2.1 基本概念
理想液体: 既不可压缩又无粘性的液体 理想气体: 可压缩但没有粘性的气体 一维定常流动: 即流场中速度与压力只是空间点
的位置的函数而与时间无关,则称流场中的流动为定 常流动。在定常流动条件下,如果通过适当选择坐标 (包括曲线坐标)后,使流速与压力只是一个坐标的 函数,则称这样的流动为一维定常流动
图2—7 流线、流束与通流截面
2.2.1 基本概念
流动液体中的压力和能量: 由于存在运动,所以
理想流体流动时除了具有压力能与位能外,还具有动能。即流动 理想流体具有压力能,位能和动能三种能量形式

单位重量的压力能:
p
g
单位重量的位能: Z

单位重量的动能:
2
2g
2.2.2 连续性方程:质量守恒定律在
流时α =2,紊流时α =1)
hw:单位重量液体所消耗的能量
伯努利方程应用实例
液压泵吸油口处的真空度是油箱 液面压力与吸油口处压力p2之差。
液压泵吸油口处的真空度却不能 太大. 实践中一般要求液压泵的 吸油口的高度h不超过0.5米.
图2-10 液压泵从油箱吸油
2.3 管路系统流动分析
雷诺数的物理意义:流动液体的惯性力与粘性力之比
2.3.2 定常管流的压力损失
层流时管截面上的速度分布
图2-14 圆管中的层流
2.3.2 定常管流的压力损失
流量
q
udA
d 2
( p1

p2 )( d 2
r 2 )2rdr

液压与气压传动-知识点小结

液压与气压传动-知识点小结

【1】液压传动是以液体作为工作介质,利用液体的压力能来进行能量传递的传动方式。

【2】液压传动系统的组成:1,动力元件,将输入的机械能转换为油液的压力能。

2,执行元件,将油液的压力能转换为机械能。

3,控制元件,在液压系统中各种阀用来控制和调节个部分液体的压力,流量和方向,以满足及其的工作要求,完成一定的工作循环。

4,辅助元件,它们有储油用的油箱,过滤油液中杂质的滤油器,油管及管接头,密封件,冷却器和蓄能器等。

5,工作介质,即传动油液,通常采用液压油.【3】液压传动的2个重要准则:1,液压传动中工作压力取决于外负载.2,活塞的运动速度只取决于输入流量的大小,而与外负载无关。

【4】液压传动的优点:1,在相同输出功率的情况下,液压传动装置的重量轻,结构紧凑,惯性小.2,能方便地再很大范围内实现无级调速。

3,操纵方便,易于控制.4,液压传动工作安全性好,易于实现过载保护,系统发生的热量容易散发。

5,富裕的刚性。

6,负载保压容易。

7,很容易实现直线运动。

8,液压元件易于实现系列化,标准化和通用化,便于设计,制造,维修和推广使用。

液压传动的缺点:1,动力损失较大。

2,介质动力油对污染很敏感。

3,介质动力油性质敏感。

4,污染环境。

5,有系统破裂的危险性.6,液压传动不能保证严格的传动比。

7,造价高。

8,使用和维修技术要求较高,出现故障时不易找出原因。

【1】液压冲击:液压系统中的流动油液突然变速活换向时,造成压力在某一瞬间急剧升高,产生一个油压峰值,并形成压力传播于充满油液管路的现象。

【2】气穴现象:在流动液体中,因某点处得压力降低而产生气泡,使系统系统中原来连续的油液变成不连续的状态,从而使液压装置产生噪声和振动使金属表面受到腐蚀的现象称气穴现象。

【1】液压泵的基本工作条件:1,它必须构成密封容积,并且这个密封容积只在不断地变化中能完成吸油和压油过程2,在密封容积增大的吸油过程中油箱必须与大气相通,这样液压泵在大气压力的作用下降油液吸入泵内,这是液压泵的吸油条件。

液压与气压传动知识点

液压与气压传动知识点

液压与气压传动知识点液压和气压传动是现代工程领域中广泛应用的两种传动方式。

它们的原理和应用范围各不相同,但都具有一定的优势和适用性。

本文将从液压和气压传动的原理、应用领域和优点等方面进行介绍。

一、液压传动原理液压传动是通过液体在管道中的压力传递动力和信号的一种传动方式。

它的基本原理是利用液体的不可压缩性和易于传递压力的性质,通过液体的压力动能来驱动执行元件进行工作。

液压传动系统由液压泵、油箱、执行元件、液压控制阀等组成。

液压传动的优点是传动平稳、运动灵活、传动功率大、传动效率高等。

它广泛应用于各个行业领域,如汽车、航空、机械制造等。

例如,汽车的刹车系统和悬挂系统就采用了液压传动,能够提供稳定的制动力和舒适的乘坐感受。

二、液压传动应用范围液压传动广泛应用于各个机械设备和工程项目中。

在航空领域,液压传动被用于飞机起落架、襟翼、脚蹬等系统中,能够提供稳定而可靠的动力输出。

在工业机械制造中,液压传动在挖掘机、起重机、注塑机等设备中得到了广泛应用,能够提供强大的动力和灵活的控制性能。

液压传动还被用于高速列车的制动系统和门窗的开闭系统,能够提供刹车力度和开启速度的可调节性,确保列车运行的安全和乘客舒适。

此外,液压传动还被用于水坝、大型机械设备等工程项目中,能够提供大扭矩和高精度的动力输出。

三、气压传动原理气压传动是通过气体在管道中的压力传递动力和信号的一种传动方式。

它的基本原理是利用气体的可压缩性和易于传递压力的特性,通过气体的压力动能来驱动执行元件进行工作。

气压传动系统由气压泵、储气罐、执行元件、气控阀等组成。

气压传动的优点是传动平稳、反应速度快、结构简单、无污染等。

它主要应用于一些特殊环境和场合,如有爆炸危险的场所、高温高湿环境、湿润环境等。

气压传动在煤矿机械、油田设备、化工设备等领域得到了广泛应用。

四、气压传动应用范围气压传动在矿山、石油化工、汽车制造等行业中得到了广泛应用。

在矿山行业中,气压传动被用于矿井提升设备、矿井通风设备等,能够提供可靠的动力输出和迅速的通风效果。

液压与气压传动基础知识.

液压与气压传动基础知识.

第一章 液压与气压传动基础知识液压油是传递动力和运动的工作介质,它还起到润滑、冷却和防锈的作用。

因此,了解油液的基本性质和主要力学规律,正确理解液压传动原理与规律,对于正确使用液压系统都是非常必要的。

第一节 液压传动工作介质一、液压油的性质反应液压油性质的主要参数有粘度、密度、粘温特性等。

液压油的基本性质可由有关资料中查到。

例如,矿物油在15℃时的密度为900Kg/m 3;体积膨胀系数(6.3~7.8)×10-4K -1和比热容(1.7~2.1)×103J/(k g ·K )等等。

1、 粘性 液体在外力作用下流动(或有流动趋势)时,分子间的内聚力会阻止分子间的相对运动而产生一种内摩擦力,这一特性称为液体的粘性,它是液体重要的物理性质,也是选择液压油的主要依据。

由于粘性表现为一种内摩擦力阻止分子间的相对运动,因此各液压层间液体的运动速度是不相等的,这可以用图2-1示意图来表示。

若两平行平板间充满液体,下平板固定,而上平板以u 0速度向右平动,由于液体的粘性作用,粘连于下平板的液体层速度为零,粘连于上平板的液体层速度为u 0。

而由于粘性作用,中间各层液体速度则从上到下按递减规律,呈线性分布。

实验测定指出,液体流动时相邻液层间的 内摩擦力F 与液层接触面积A 、液层间相对运 动的速度S 梯度d u /d y 成正比F=µ Adydu(2-1)式中 µ——比例常数。

又称为粘性系数或动力粘度。

若以τ表示内摩擦切应力,即液层间在单位面积上的内摩擦力,则τ=A F =µdydu(2-2) 这就是牛顿液体内摩擦定律。

2、粘度 液体粘性的大小用粘度来表示,常用的粘度有三种:即动力粘度、运动粘度、和相对粘度。

(1) 动力粘度 流体粘性的内摩擦系数或绝对粘度,用μ表示。

即dudyτμ= (2-3)3、粘度与压力的关系 压力对液压油的粘度有一定影响。

液体所受的压力增加时,其分子间的距离将减小,于是内聚力增加,粘度也略随之增大,液体的粘度与压力的关系公式 νp =ν(1+0.003p ) (2-8)式中 νp ——压力为p 时液体的运动粘度;ν——压力为一个大气压时液体的运动粘度; p 液体所受的压力。

(完整版)液压与气压传动概念知识点总结考试重要考点

(完整版)液压与气压传动概念知识点总结考试重要考点

1.液压系统的工作原理:1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。

2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。

3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。

2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。

4.液压传动的特点:优点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;缺点:7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。

5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。

6.粘温特性:温度升高,粘度显著下降的特性。

7.静止液体的压力性质:1)液体的压力沿着内法线方向上相等;2)静止液体内任一点处的压力在各个方向上都相等。

8.帕斯卡原理:在密闭容器内,施加于静止液体上的压力可以等值传递到液体内各点,也称静压传递原理。

(完整版)液压与气压传动知识总结

(完整版)液压与气压传动知识总结

液压与气压传动知识总结 1、液压传动的工作原理是(帕斯卡)定律。

即密封容积中的液体既可以传递(力),又可以传递(运动)。

(帕斯卡、力、运动) 2、、液压管路中的压力损失可分为两种,一种是(沿程压力损失),一种是(局部压力损失)。

(沿程压力损失、局部压力损失) 3、液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。

(层流、紊流、雷诺数) 4、我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。

(恩氏粘度、恩氏粘度计) 5、在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现象称为(液压冲击)。

(液压冲击) 6、齿轮泵存在径向力不平衡,减小它的措施为(缩小压力油出口)。

(缩小压力油出口) 7、单作用叶片泵的特点是改变(偏心距e )就可以改变输油量,改变(偏心方向)就可以改变输油方向。

(偏心距e、偏心方向) 8、径向柱塞泵的配流方式为(径向配流),其装置名称为(配流轴);叶片泵的配流方式为(端面配流),其装置名称为(配流盘)。

(径向配流、配流轴、端面配流、配流盘) 9、v型密封圈由形状不同的(支撑环)环(密封环)环和(压环)环组成。

(支承环、密封环、压环) 10、滑阀式换向阀的外圆柱面常开若干个环形槽,其作用是(均压)和(密封)。

(均压、密封) 11、当油液压力达到预定值时便发出电信号的液-电信号转换元件是(压力继电器)。

(压力继电器) 12、根据液压泵与执行元件的组合方式不同,容积调速回路有四种形式,即(变量泵-液压缸)容积调速回路(变量泵-定量马达)容积调速回路、(定量泵-变量马达)容积调速回路、(变量泵-变量马达)容积调速回路。

(变量泵-液压缸、变量泵-定量马达、定量泵-变量马达、变量泵-变量马达) 13、液体的粘性是由分子间的相互运动而产生的一种(内摩擦力)引起的,其大小可用粘度来度量。

温度越高,液体的粘度越(小);液体所受的压力越大,其粘度越(大)。

液压与气压传动知识点重点

液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有 3 种:动力黏度,运动黏度,相对黏度。

4、液压油分为3 大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。

液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

液压与气压传动知识点

液压与气压传动知识点

1.液体的流动有两种状态,即层流和紊流,两种流动状态的物理现象可以通过一个实验观察出来,就是雷诺实验。

2.连续性方程是质量守恒定律在流体力学中的表达形式3.伯努利方程是能量守恒定律在流体力学中的表达形式4.沿程压力损失:液体在等径直管中流动时由粘性内摩擦力所产生的损失称为沿程压力损失。

5.局部压力损失:液体流进管道的弯头,接头,突变截面以及阀口,滤网等局部装置时,流速的大小和方向会发生急剧变化,因而产生漩涡,并发生强烈的紊动现象,于是产生流动阻力,由此而造成的压力损失称为局部压力损失。

6.产生液压冲击的原因:1.一种是因液流通道迅速关闭或液流迅速转向使液流速度的大小或方向发生突然改变,由液流的惯性引起的液压冲击,2.另一种是运动的工作部件突然制动或换向,由工作部件的惯性引起的液压冲击。

7.外啮合齿轮泵的工作原理8.外啮合齿轮泵的常见问题及解决办法:1.困油现象:当齿轮旋转时,该封闭腔容积发生变化,使油液被压缩或膨胀,这种现象称为困油现象。

困油现象消除措施:封闭腔容积减小时,开设渠道排油,而封闭腔容积增大是,开设渠道对其进行补油。

通常在端盖上开设困油卸荷槽来实现与封闭腔的精确配流。

2.径向不平衡力:为了减小径向不平衡力的影响,低压齿轮泵中常采取缩小压油口的办法,使压力油仅作用在1-2个齿的范围内,以减小作用在轴承上的径向力。

同时,适当增大径向间隙,防止在压力油作用下齿顶和壳体表面接触。

3.端面泄漏及端面间隙自动补偿:高压油可通过三条途径泄漏到低压腔:一是齿面啮合线处的泄漏;二是径向间隙的泄漏;三是端面间隙的泄漏。

在保证一定容积效率的前提下提高齿轮泵的工作压力:(1.)减小径向压力.(2)增大轴与轴承刚度。

(3)自动补偿9.双作用叶片泵是定量泵,流量不可改变,特点:受力平衡,转一圈,吸压油2次。

10.单作用叶片泵是变量泵,可以改变流量,通过改变偏心距,可以改变流量。

特点:受力不平衡。

11.轴向柱塞泵:可以改变流量,流量改变:斜盘入倾角。

(完整版)液压与气压传动知识点

(完整版)液压与气压传动知识点

(完整版)液压与气压传动知识点1、动力粘度的物理意义是单位速度梯度下的切应力。

2、静压力的基本方程为p=p o+p gh。

3、般齿轮啮合系数&必须大于1。

4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。

5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压6液压传动是利用液体的压力能来做功的。

7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。

8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。

9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。

其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。

10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。

11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。

12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。

13、油箱分总体式油箱和分离式油箱。

油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。

14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。

15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。

16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。

17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。

它能否实现双向变量?能。

18、油液的粘度随温度的升高而降低,随压力的升高而增加。

19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为方向控制阀、压力控制阀和流量控制阀。

20、滑阀阀芯上环形槽的作用是减小径向不平衡力(防止液压卡紧)。

液压与气压传动技术液压传动基础知识

液压与气压传动技术液压传动基础知识

1.3 液体动力学
• 应用伯努利方程时必须注意的问题:
– (1) 断面1、2需顺流向选取(否则hw为负值), 且应选在缓变的过流断面上。
– (2) 断面中心在基准面以上时,h取正值;反之取 负值。通常选取特殊位置水平面作为基准面。
1.3 液体动力学
• 例1-1 如图1-10所示,液体在管道内作连续流动,截面1-1 和1-2处的通流面积分别为和,在1-1和1-2处接一水银测压 计,其读数差为,液体密度为,水银的密度为,若不考虑 管路内能量损失,试求:1)截面1-1和1-2哪一处压力高? 为什么?;2)通过管路的流量为多少?
– 液体中压力相等的液面叫等压面,静止液体的 等压面是一水平面。

– 当不计自重时,液体静压力可认为是处处相等 的
– 在一般情况下,液体自重产生的压力与液体传 递压力相比要小得多,所以在液压传动中常常 忽略不计。
图1-4 重力作用下的静止液体
1.2液体静力学 • 静压力方程的物理本质
– 式 中表示单位质量液体的位能,常称为位置水头;
1.3.3 伯努利方程
– 伯努利方程也称为能量方程,它实际上是流动液体 的能量守恒定律。
– 理想液体伯努利方程
• 流动液体中的能量:
– 压力能
– 位能
– 动能。
1.3 液体动力学 • 理想液体伯努利方程
• 实际液体的伯努利方程
– 式中
• α——动能修正系数动能修正系数(层流时α=2,紊流时α=1) • ——单位重量液体所消耗的能量
但在高压下或研究系统动态性能及计算远距离操纵的液压 系统时,必须予以考虑。
1.1 液压传动工作介质
3.粘度 • 液体的粘性:
– 物理本质
• 液体在外力作用下流动时,分子间的内聚力会 阻碍分子间的相对运动而产生一种内摩擦力。

液压与气压传动基本知识

液压与气压传动基本知识
液压与气压图形符号脱离元件的具体结构,只表示元件的 功能,使系统简化,原理简单明了,便于阅读、分析、设计 和绘制。
上一页 返回
第二节流体静力学基础
一、流体的物理性质 1.流体的可压缩性和膨胀性 流体体积随压力变化而变化。在一定温度下,液体体积相
对压力变化的属性,称为液体的可压缩性。 流体的体积也随温度的变化而变化,通常温度升高,流体
上一页 下一页 返回
第二节流体静力学基础
D G F2 F1
A2 A2 A1

或式中F2—油液作用在大活塞F上2 的F作1 用AA12 力(Pa) , F2=G。

会由增①大式,可也以即看系出统,的只工要作负压载力‘取增决大于,负油载液的的大工小作。压力D2也
的G,由力这②F1就,式是便可液可以压在看千大出斤活,顶塞当的上A2工产A1作生≥1原一时理个,。很作大用的在力小F活2,塞以上举一起个重很物小
第二章液压与气压传动基本知识
第一节液压与气压传动的组成及工作原理 第二节流体静力学基础 第三节流体动力学基础 第四节孔口和缝隙流动 第五节液压冲击与气蚀现象
第一节液压与气压传动的组成及工 作原理
一、液压与气压传动系统的组成 液压与气压传动系统除工作介质(液压油与空气)外,一般
由以下五部分组成: 1.动力元件 它们是为液压与气动系统提供一定流量与压力的流体装置,
(2)流量单位时间内流过过流断面的液体体积称为流量,用 q表示,单位为m3 /s(米3/秒),其计算公式如下:
q =V/t
上一页 下一页 返回
第三节流体动力学基础
式中V一流过过流断面流体的体积(m3) , t—流过体积V所用的时间(s)。 (3)平均流速由于液体具有瓤性过流断面上流体速度不尽相同,

液压与气压传动知识点

液压与气压传动知识点

液压与气压传动知识点摘要:本文旨在介绍液压与气压传动的基本原理、系统组成、应用领域及各自的优缺点。

液压与气压传动是现代机械中常用的两种能量传递方式,广泛应用于各种工业和民用设备中。

1. 液压传动1.1 基本原理液压传动是通过液体作为工作介质来传递能量的一种方式。

在封闭的系统中,液体受到压力作用,通过管道输送到执行元件(如液压缸或液压马达),从而实现能量的传递和控制。

1.2 系统组成液压系统通常由以下几个基本部分组成:- 泵:提供动力,将机械能转换为液体的压力能。

- 阀:用于控制液体的流动方向、流量和压力。

- 执行元件:如液压缸和液压马达,将液体的压力能转换为机械能。

- 辅助元件:包括油箱、过滤器、冷却器等,用于保证系统正常运行。

- 控制元件:如传感器和控制器,用于实现系统的自动化控制。

1.3 应用领域液压传动因其高功率密度和可调性,被广泛应用于工程机械、航空航天、冶金机械、农业机械等领域。

1.4 优点- 高效率的能量传递。

- 可实现大范围的力和速度调节。

- 紧凑的尺寸和高功率输出。

1.5 缺点- 系统复杂,维护成本较高。

- 泄漏问题可能导致环境污染和安全隐患。

- 对污染敏感,需要清洁的工作环境。

2. 气压传动2.1 基本原理气压传动是利用气体(通常是空气)作为工作介质来传递能量的一种方式。

与液压传动类似,气压传动通过压缩空气在系统中流动,驱动气缸或其他执行元件工作。

2.2 系统组成气压系统的主要组成部分包括:- 压缩机:提供压缩空气。

- 储气罐:储存压缩空气,平衡供需。

- 阀:控制气流的方向、流量和压力。

- 执行元件:如气缸和气动马达,将气压能转换为机械能。

- 控制元件:如电磁阀和PLC,用于实现自动化控制。

2.3 应用领域气压传动因其清洁、安全和低成本的特点,被广泛应用于自动化设备、汽车制造、食品加工、医疗设备等领域。

2.4 优点- 清洁、安全,适用于多种环境。

- 系统简单,维护成本低。

- 响应速度快,易于实现自动化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、动力粘度的物理意义是单位速度梯度下的切应力。

+ρgh。

2、静压力的基本方程为p=p
3、般齿轮啮合系数ε必须大于1。

4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。

5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压
6、液压传动是利用液体的压力能来做功的。

7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。

8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。

9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。

其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。

10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。

11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。

12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。

13、油箱分总体式油箱和分离式油箱。

油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。

14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。

15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。

16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。

17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。

它能否实现双向变量?能。

18、油液的粘度随温度的升高而降低,随压力的升高而增加。

19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为
方向控制阀、压力控制阀和流量控制阀。

20、滑阀阀芯上环形槽的作用是减小径向不平衡力(防止液压卡紧)。

21、液压缸缓冲装置的作用是防止在行程终了时,由于惯性力的作用活塞与端盖发生撞击,造成液压冲击和噪声,甚至影响使用寿命。

22、单向阀的作用是只允许油液按一个方向流动,不能反向流动。

23、调速阀比节流阀的调速性能好,是因为无论调速阀进出口负载如何变化,节流口前后的压力差基本稳定,从而使输出流量基本保持恒定。

24、三位换向阀的阀芯未受操纵时,其所处位置上各油口的连通情况称为换向阀的中位机能。

25、已知双作用液压缸的无杆腔面积为A
1,有杆腔面积为A
2
,活塞杆面积为A
3

则液压缸在两个方向的推力和速度分别为F
1 =p×A
1
、 F
2
=p×A
2
和V
1
=Q/A
1

V
2=Q/A
2。

差动连接时其推力和速度分別为F
3
=p×(A
1
-A
2
)和V
3
=Q/(A
1
-A
2
)。

(已知
系统压力P和流量Q,背压为0, 液压缸机械效率和容积效率均为1)
26、变量泵是指排量可以改变的液压泵,常见的变量泵有单作用叶片泵、径向柱塞泵、轴向柱塞泵,其中单作用叶片泵和径向柱塞泵是通过改变转子和定子的偏心距来实现变量,轴向柱塞泵是通过改变斜盘倾角来实现变量。

27、液压泵的实际流量比理论流量小;而液压马达实际流量比理论流量大。

28、外啮合齿轮泵的排量与模数的平方成正比,与的齿数一次方成正比,因此,在齿轮节圆直径一定时, 增大模数,减少齿数可以增人泵的排量。

29、外啮合齿轮泵位于轮齿逐渐脱幵啮合的一侧是吸油腔,位于轮齿逐渐进入啮合的一侧是压油腔。

30、在变量泵-变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将马达排量调至最大,用变量泵调速;在高速段,泵排量为最大,用变量马达调速。

31、改变泵和马达的流量来实现调速的回路称之为容积调速回路。

32、蓄能器的作用是作辅助动力源,保压和补充泄露,缓和冲击,吸收压力脉动。

33、压力控制阀包括溢流阀、减压阀、顺序阀、压力继电器。

34、液压基本回路有压力控制回路、速度控制回路、多缸工作控制回路。

35、通过节流口的流量Q=K·A△p m,对于薄壁小孔指数m为0.5,细长孔m为1。

36、作用在液体上的力可归纳为两类质量力和表面力。

37、液压系统中的压力,即常所说的表压力,指的是工作压力。

38、溢流阀为进口压力控制,先导阀弹簧腔的泄漏油与阀的出口相通。

定值减压阀为出口压力控制,先导阀弹簧腔的泄漏油必须单独外接油箱。

39、为了消除齿轮泵的困油现象,通常在两侧盖板上开卸荷槽,使闭死容积由大变少时与压油腔相通,闭死容积由小变大时与吸油腔相通。

40、调速阀是由定压减差阀和节流阀串联而成,旁通型调速阀是由差压式溢流阀和节流阀并联而成。

41、影响齿轮泵压力提高的因素有泄露和径向不平衡力。

42、齿轮泵产生泄露的间隙为端面间隙,径向间隙和齿侧间隙,其中端面间隙占总泄漏量的80%~85%。

名词解释
1、液压冲击:在液压系统中,由于某种原因,液体压力在一瞬间会突然升高,产生很高的压力峰值,这种现象叫液压冲击
2、空穴与气蚀:在液体的流动中,因某点处的压力低于空气分离压而产生气泡的现象称为空穴现象;流体在高速流动和压力变化条件下,与流体接触的金属表面上发生洞穴状腐蚀破坏的现象称为气蚀
3、减小空穴现象的措施:①减小流经节流小孔前后的压力差②正确设计液压泵的结构参数③提高零件的抗气蚀能力
4、容积调速:用改变液压泵或液压马达的排量来实现调速
5、节流调速:通过改变回路中流量控制元件通过截流面积的大小来控制流入执行元件或自执行元件流出的流量,以调节其运动速度
6、理论流量:指在不考虑液压泵泄漏流量的条件下,在单位时间内所排出的液体体积
7、泵的排量:液压泵每转一周,由其密封容积几何尺寸变化计算而得的排除液体的体积称为液压泵的排量
8、泵的额定压力:液压泵在正常工作条件下按试验标准规定连续运转的最高压力称为液压泵的额定压力
9、工作压力:液压泵实际工作时的输出压力称为工作压力
10、容积损失:指液压泵在流量上的损失
11、机械损失:指液压泵在转矩上的损失
12、齿轮泵的困油现象:为保证齿轮泵连续平稳运行,又能够使吸压油口隔开,齿轮啮合时的重合度必须大于1,有时会出现两对齿轮同时啮合的情况,留在齿间的油液困在两对轮齿和前后泵盖所形成的一个密封空间中
13、消除困油的方法:在齿轮泵的两侧端盖上铣两条卸荷槽
14、换向滑阀的“位”与“通”:“位”表示换向阀有几个工作位,“通”表示有几个工作油口
15、滑阀的中位机能:三位换向阀阀芯处于中间位置时各油口的连通情况
16、流体的黏性:液体在外力作用下流动时,分子间的内聚力要阻止分子相对运动而产生的一种内摩擦力,这种现象称为流体的黏性
17、黏温特性:黏度与温度之间关系的特征
18、流量脉动:因为齿轮啮合过程中,啮合点位置瞬间变化,工作腔容积变化率不是常数,所以齿轮泵的瞬时流量是脉动的
19、定常流动:液体中任何一点的压力、速度和密度都不随时间变化的流动
20、溢流阀的静态特性:(1)压力调节范围:指调压弹簧在规定的范围内调节时系统的压力能平稳的上升或下降,且压力无突跳及迟滞现象时的最大和最小调定压力(2)启闭特性:指溢流阀在稳态情况下从开启到闭合的过程中,被控压力与通过溢流阀的溢流量之间的关系
21、溢流阀的调压偏差:系统压力与调定压力之差
22、节流阀的刚性:表示它抵抗负载变化的干扰、保持流量稳定的能力
23、理想流体:既无粘性又不可压缩的液体
24、液压马达:输出旋转运动的液压执行元件
25、液压泵:是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件
26、等压面:是空间气压相等的各点所组成的面
27、过流断面:与元流或总流所有流线正交的横断面,也就是通过流体的横截面积
28、层流:液体质点互不干扰,液体的流动呈线性或层状,且平行于管道轴线
29、湍流:液体质点的运动杂乱无章,除了平行于管道轴线的运动外,还存在剧烈的横向运动
30、闭式系统:液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环
31、气油净化装置有哪些:空气过滤器、除油器、空气干燥器、后冷却器、储气罐
32、储气罐功能:消除压力波动,保证输出气流的连续性;储存一定数量的压缩空气,调节用气量或以备发生故障和临时需要应急应用
33、气动三联件:空气过滤器→减压器→油雾器。

相关文档
最新文档