七年级数学 专题15 频数与频率

合集下载

频数与频率典型题解析

频数与频率典型题解析

初中数学中的两个重要概念,它们都能反映每个对象出现的频繁程度,但也存在区别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1.1.有关频数与频率概念的辨析题.例1 判断以下说法是否正确,并说明理由:小明和小芳分别在各自班级里竞选班长.小明得了25票,小芳得了23票.可以断言,小明在班内受欢迎的程度比小芳高.解 不正确.虽然小明比小芳的得票多,但受欢迎程度不依赖于得票出现的频数,而是依赖于得票出现的频率,由于各班总人数没有给出,因此,无法计算出频率.说明 频数表示的是某一对象出现的次数,而频率则是某一对象的频数与总次数的比值.从本例可知,频率能更好地反映出某一对象出现的频繁程度.2.有关频数与频率的简单计算题.例2 在英语单词frequency (频数)和英语词组relative frequency (频率)中,频数最大的各是哪个字母?它们的频数和频率各是多少?解析 数出各字母在单词或词组中出现的次数即为频数,而字母出现的频率=所有字母的总个数字母出现的频数.在单词frequency 和词组relative frequency 中,频数最大的字母都是e .在单词frequency 中,e 的频数是2,频率是92.在词组relative frequency 中,e 的频数是4,频率是174. 说明 (1)频率是个比值,它可以用小数、百分数、真分数来表示,但当结果不能除尽时,只能选择用真分数来表示.(2)在两组数据中,某两个对象的频数相等,但频率不一定相等,频数大,不一定频率大.在同一组数据中,某两个对象的频数相等,频率也相等;频数大,频率也大.你能举两个具体的例子吗?3.频数与频率在实际问题中的应用.例3 学期结束前,班主任想知道同学们对班长一个学期以来的工作表现的满意程度,特向全班40名学生(除班长外)作问卷调查,其结果如下:(1)请计算每一种反馈意见的频率;(2)你认为本次调查对班长下学期的连任有影响吗?为什么?解析(1)非常满意、较满意、基本满意、不满意、非常不满意的频率分别为0.075,0.5,0.3,0.1,0.025; (2)本次调查对班长下学期的连任没有影响.因为对班长一个学期以来工作表现满意的同学占绝大多数,频率是0.85.说明在下结论时,要根据调查的数据来说话,不能抛弃数据,只顾发表自己的见解,这样只能以偏盖全,最终达不到发现问题、解决问题的目的.本题的解答让我们体会到收集数据的重要性,体会到频数与频率在对数据进行整理、描述和分析中的重要性,让我们体会到“数据也能说话”:班长的工作是负责的,他可以连任.频数及其分布应用举例频数、频率、频数分布表与频数分布图有着广泛地应用,下面举例做一下简单的说明.例1李明和张健站在罚球处进行定点投篮比赛其结果如下表所示:上表数据显示,李明投中的频数是______;投中的频率是______;张健投中的频数是______,投中的频率是______,两人中投中率更优秀的是______.分析:本题已经给出数据,根据该数据可以判断两人在投中率上谁更优秀一些.从频数上看:李明投50个中30个,而张健投40个中25个,还不太容易看出谁的投中率更优秀一些.从频率上看:李明为3050=60%,而张健为2540=62.5%,故高于李明.所以张健的投中率更优秀一些.解:李明投中的频数是30,频率是3050=60%张健投中的频数是25,频率是2540=62.5%所以张健更优秀一些.小结:频数和频率是统计中两个重要的数字特征,它们反映了各个对象出现的频繁程度.例2已知一组数据有40个,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.20,则第六组的频率是().(A)0.10(B)0.12(C)0.15(D)0.18分析:可由已知条件得到第一组到第四组数据的频率分别为0.25,0.125,0.175,0.15,这六组的频率之和是1,因此,第六组的频率为1-0.25-0.125-0.175-0.15-0.20=0.10.解:根据上述分析可知,此题应选(A).小结:此题利用各组的频率之和等于1这个性质.例3某班一次数学测验成绩如下:63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77.大部分同学处于哪个分数段?成绩的整体分布情况怎样?先将成绩按10分的距离分段,统计每个分数段学生出现的频数,填入下表.根据上表绘制直方图,如下图.从图中可以清楚地看出79.5分到89.5分这个分数段的学生数最多,90分以上的同学较少,不及格的学生数最少.点击频数分布中考题一、图上获取信息由于落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率,频率能反映各组频数的大小在总数中所占的份量.所以频数分布直方图能直观清楚地反映数据在各个范围内的分布情况,从而更全面、准确、细致地反映事物的属性.例1.如图,根据频数分布直方图回答问题:(1)总共统计了多少名学生的心跳情况?(2)哪些次数段的学生数最多?占多大比例?(3)如果半分钟心跳次数为x,且30≤x<39次属于正常范围,心跳次数属于正常的学生占多大比例?(4)说说你从频数折线图中获得的信息.简析:掌握频数分布直方图的特点是解决问题的关键.从统计图中可以获知各组心跳情况的人数及分布情况.(1)总共统计了2+4+7+5+3+1+2+2+1=27(人)的心跳情况.(2)30≤x<33这个次数段的学生数最多,约占26%.(3)30≤x<39次数段的总人数有7+5+3=15人,15÷27≈56%,故心跳次数属于正常范围的学生约占56%.(4)从折线统计图中可知:折线呈中间高两边低的趋势,就是说心跳正常的人数较多.二、根据信息画图例2 .育才中学为了了解本校学生的身体发育情况,对同年龄的40名女生的身高进行了测量,结果如下(数据均为整数,单位:cm):168,160,157,161,158,153,158,164,158,163,158,157,167,154,159,166,159,156,162,158,159,160,164,164,170,163,162,154,151,146,151,160,165,158,149,157,162,159,165,157.请将上述的数据整理后,列出频数分布表,画出频数直方图,并根据所画的直方图说明:大部分同学处于哪个身高段?身高的整体分布情况如何?分析:由于有40个数据,最小的数据为146cm,最大数据为170cm,其差为24cm,可将数据分成5组,整理数据列出分布表,画出频数直方图,可从总体上把握数据的分布情况。

初中数学频数与频率教案

初中数学频数与频率教案

一、教学目标1. 让学生理解频数和频率的概念,掌握频数和频率的计算方法。

2. 培养学生运用统计方法解决实际问题的能力,提高学生的数感和统计观念。

3. 培养学生合作交流、积极参与课堂的学习习惯。

二、教学内容1. 频数和频率的定义及计算方法。

2. 频数和频率在实际问题中的应用。

三、教学重点与难点1. 教学重点:频数和频率的概念、计算方法及应用。

2. 教学难点:频数和频率的计算方法,以及在实际问题中的应用。

四、教学过程1. 导入:通过一个简单的问题引出频数和频率的概念。

问题:在一组数据中,数字3出现的次数是多少?这组数据中3出现的频率是多少?2. 新课讲解:a. 频数的定义:某个对象出现的次数。

b. 频率的定义:频数与总次数的比值。

c. 频数和频率的计算方法:频数 = 某个对象出现的次数;频率 = 频数÷ 总次数。

3. 实例分析:通过具体实例让学生理解频数和频率的概念及计算方法。

实例1:调查50位同学喜欢的篮球明星,统计各个篮球明星的频数和频率。

实例2:一组数据中,数字3出现的频数和频率。

4. 小组讨论:让学生分组讨论,思考频数和频率在实际问题中的应用。

问题:如何利用频数和频率来解决实际问题?5. 总结:引导学生总结频数和频率的概念、计算方法及应用。

6. 课堂练习:布置一些有关频数和频率的练习题,让学生巩固所学知识。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对频数和频率的理解和应用能力。

六、课后作业1. 巩固频数和频率的概念、计算方法。

2. 运用频数和频率解决实际问题。

通过以上教学设计,教师可以有效地帮助学生掌握频数和频率的知识,提高学生在实际问题中运用统计方法的能力。

同时,教师还需关注学生的学习反馈,不断调整教学方法,以确保教学效果。

七年级数学频数与频率

七年级数学频数与频率

名产,蝶宵华,嗯,还有最近很受欢迎的小大夫,刘晨寂,我瞅着那大夫比起蝶老板来也不遑多让,再说最近很有些人打他主意,他能有个王 爷作靠山也不会不愿意的吧——嗯,有这两位珠玉在前,轩儿应该很安全。夫人应该放心了?”太守夫人不知该哭还是该笑。“再则说,就算 王爷垂爱,”唐太守慨然道,“轩儿反正是男孩子,又不是姑娘家,就当如大厕撇个大条崩裂了屁股,有什么大不了!”太守夫人掩耳。感情 唐太守是不开粗口则已,一开起来,压过夫人几个重量级。“再再则说,”唐太守还要继续安慰夫人,“王爷在京里早有这种名声,可都是你 情我愿,也没听说用强的,完了之后,人家该娶媳妇就娶媳妇,王爷也从没霸着。轩儿快成亲了,王爷体恤,绝不会从中作梗的!”太守夫人 没话好辩了,但还是生气道:“要说,你自己去跟轩儿说,我才不去!”“当然是我去,”唐太守道,“不过儿子媳妇面前,还劳烦你怎生找 个说法,支吾过去……”太守夫人哼了一声,转身不语。唐太守晓得照夫人惯常的性子,这就是允了,松口气,正准备蹑足而退,太守夫人狠 狠啐道:“什么名门!狗皮倒灶的混帐窝坑!”唐太守苦笑一声,想回她:“皇家还要混帐哩!”终没敢说出来,闭嘴走了。这便是唐静轩带 着一位陌生公子上振风塔的前因。第七十七章 清心借画来写意(1)唐静轩初见七王爷时,是有点惴惴的。爷爷给他下任务时,用词比较文雅, 没提撇大条崩屁股的话,但也暗示他,养孙千日用孙一时,家荣我荣家败我败,要作好为家族作牺牲的准备。唐静轩给七王爷行礼时,就情不 自禁的某个地方很不得劲儿。“唐公子免礼。”七王爷对唐静轩倒是很客气,赐座看茶,娓娓问些风土人情,忽道,“唐公子有些不自 在?”“啊!这个——”唐静轩想找句场面话来圆一圆,当不得脸已经红了。“看来唐公子也听说了小可的名声。”七王爷感慨道。“小人不 敢!”唐静轩赶紧离席深揖。“坐。”七王爷摆手道,“静轩哪,我看咱们也别客气了——你应该比我小上几岁?我是肖午马的。”“小人肖 酉鸡。”唐静轩忙答。“那末,愚某忝居兄位了——贤弟哪,你当然是好女风的。”“小人……”唐静轩只想找个地缝钻。“贤弟,”七王爷 神色如常,“诸人与你坐在一起,是否必须担心被强暴?”“……”这是什么话?“你与诸人坐在一起,是否立刻想拉她上床?”“……这简 直的不是人话!”“先,圣武王想禁酒,命差人凡见造酒工具的,即行羁押,周公劝谏,与武王行见一男一女,即禀告曰:‘请拘此两人。’ 武王奇问:‘他二人犯何条?’周公告曰:‘私情。’武王更奇:‘何知二者有私情?’周公答曰:‘虽未见私情,然俱藏私具。’武王大笑, 遂废前令。”“……”怎么连

频数与频率课件

频数与频率课件

频率的计算
定义
频率是指某个事件或者数值在总体中所占的比例。
计算
频率的计算公式是:频率 = 频数 / 总样本量。
应用
频率可以帮助我们更好地理解数据的分布情况,具有重要的统计分析应用。
频数与频率的区别
1
频率
2
频数是某个事件或数值在一定时间内 出现的次数。
商榷
在处理和分析数据时,需要根据统计 目的和数据性质进行选择。
频数与频率的综合应用
统计图表
条形图是表示频数和频率的常 用图形,可以更直观地展现数 据。
饼图
饼图也可以用来表示频率的分 布情况,清晰明了。
变形
在实际分析和应用过程中,需 要根据数据性质来选择采用何 种分析方法。
频数和频率的注意事项
1 度量单位
频数与频率ppt课件
频数和频率是统计学中常用的概念,可以帮助我们更好地理解和分析数据的 分布情况。本课程将介绍频数和频率的概念、计算方法以及应用。
频数的定义
定义
频数是指某个事件或者数值在 一定时间内出现的次数。
计算
频数可以用统计图表来表示其 变化,如直方图、折线图等。
应用
频数可以描述个体或群体的特 征,有助于预测和分析。
结论
应注意单位,实际情况和 数据性质,在选择分析方 法时要灵活运用,以得出 正确的结论。
2 综合分析
应该注意频数和频率的度量单位相同,否 则计算结果可能有误。
在分析数据时,应该结合实际情况进行综 合分析,以便更准确地得出结论。
总结
概念
频数和频率是统计学中常 用的概念,分别用于描述 某个事件或者数值在一定 时间内出现的次数和总体 中所占比例。
应用
频数和频率在统计学中有 广泛的应用,可以用来描 述群体的特征,进行预测 和分析等。

浙教版数学七年级下《频数与频率》精品教案

浙教版数学七年级下《频数与频率》精品教案

教案一:掌握频数和频率的概念【教学目标】1.知道频数和频率的含义。

2.能够计算数据中各项的频数和频率。

3.能够对数据进行简单的分析和比较。

【教学重点】1.频数的概念和计算。

2.频率的概念和计算。

【教学难点】2.如何利用频数和频率进行数据的分析和比较。

【教学过程】Step 1 导入新课通过举例的方式向学生介绍频数和频率的概念。

例如,学生在一周内上网的时间如下:3小时、5小时、7小时、4小时、6小时、3小时、4小时。

请问上网3小时的频数是多少?5小时的频数是多少?然后引导学生思考频数的含义。

Step 2 频数的计算告诉学生,频数是指数据中一些数值出现的次数。

对于上述例子中的数据,学生可以统计每个数值出现的次数,并填写到表格中。

数值频数3小时24小时25小时16小时17小时1Step 3 频率的概念告诉学生,频率是指一些数值在数据中出现的概率。

频率的计算公式是:频率=频数/总次数。

引导学生思考频数和频率的区别。

Step 4 频率的计算告诉学生,要计算频率,首先需要知道总次数。

在上述例子中,总次数是7、然后计算每个数值的频率,并填写到表格中。

数值频数频率3小时22/74小时22/75小时11/76小时11/77小时11/7Step 5 数据的分析和比较引导学生观察表格中的数据,思考以下问题:1.出现频率最高的是哪个数值?2.出现频率最低的是哪个数值?3.频率最高的数值和最低的数值之间有什么差别?4.7小时上网的频率和3小时上网的频率之间有什么差别?【教学延伸】可以通过更多实例来巩固学生对频数和频率的理解和计算。

同时,可以引导学生从不同的角度分析和解读数据,培养学生的数据分析能力。

【教学反思】本节课通过引导学生观察和分析实际数据,深入浅出地介绍了频数和频率的概念。

通过手工计算频数和频率,培养了学生的计算能力和数据分析能力。

同时,通过对数据的比较和分析,培养了学生的思维能力和判断能力。

初中数学教案理解统计中的频数与频率

初中数学教案理解统计中的频数与频率

初中数学教案理解统计中的频数与频率统计学是数学中一门重要的分支,它研究数据的收集、整理、分析和解释。

在统计学中,频数与频率是两个重要的概念。

本文将介绍频数与频率的定义、计算方法以及在统计分析中的应用。

一、频数的定义和计算方法频数指的是某一特定数值在一组数据中出现的次数,通常用符号n 表示。

在统计学中,频数常用于描述某一现象、性质或特征在给定数据集中的表现。

计算频数的方法很简单,只需要统计某个数值在数据中出现的频率即可。

例如,我们有以下一组数据:5,2,3,6,5,4,5,1,3,5。

这组数据中,数字5出现了4次,所以其频数为4。

二、频率的定义和计算方法频率指的是某一特定数值在一组数据中出现的相对次数,通常用符号f表示。

频率是指频数与总数据量之间的比值,可以用来衡量某一现象在数据中的相对重要性或普遍性。

频率的计算方法是将频数除以总数据量,并将结果以百分比形式表示。

以前述的数据为例,总数据量为10,数字5的频率为4/10=0.4,即40%。

三、频数与频率的应用频数和频率在统计学中有着广泛的应用,特别是在描述和分析数据分布方面。

1. 数据描述频数和频率可用于统计描述数据的集中趋势和离散程度。

通过计算各个数值的频数和频率,我们可以了解数据中哪些数值出现的次数较多,哪些数值出现的次数较少,从而对数据的分布进行初步了解。

2. 数据比较比较不同数据集中的频数和频率可以帮助我们找出数据之间的差异和共性。

通过比较不同组的频数和频率,我们可以判断某一特定现象在不同数据集中的表现是否有所不同,进而推断其影响因素或规律。

3. 数据预测频数和频率还可以用于预测未来的趋势或结果。

通过对历史数据中特定数值的频数和频率进行分析,可以辅助我们预测未来的发展趋势,为决策提供参考依据。

在实际应用中,频数和频率经常与统计图表结合起来使用,以更直观地展示数据的特征和趋势。

常见的统计图表有柱状图、饼图、折线图等,通过这些图表可以更清晰地呈现数据的分布情况,使结果更易理解。

初中数学知识点精讲精析 频数与频率 (2)

初中数学知识点精讲精析 频数与频率 (2)

第1节 频数与频率要点精讲1. 收集数据的过程第一步:明确调查问题第二步:确定调查对象第三步:选择调查方法第四步:展开调查第五步:记录结果第六步:得出结论2. 统计活动(1)统计活动就是对调查的结果进行登记、汇总,得出结论的过程,它是数据收集的一个重要的步骤。

(2)统计活动的过程一般可分为分组登记、分组汇总、总体汇总、得出结论四个基本过程。

3. 频数与频率的定义(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数。

(2)频率:是频数与数据组中所含数据的个数的比。

(3)频数与频率的联系:频数具体地反映了数据分布的情况,频率反映了不同的数据或在不同的范围内出现的数据在整个数据组中所占的比例。

它们都反映了一组数据的分布情况。

(4)频数与频率的关系:①各试验结果的频数之和等于试验的总次数。

②各试验结果的频率之和等于1③频数/总次数=频率4. 频率的意义在一定程度上,频率的大小反映了事件发生的可能性的大小。

频率大,发生的可能性就大;反之频率小,发生的可能性小。

5. 频率与权数的关系:在用加权平均数计算平均数时,频率就是权数。

6. 频数的应用通过统计活动所获得的一些数据,能根据稳定变化的数据作简单的判断和预测。

典型例题【例1】有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08”,和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励,假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( ).(A )16 (B ) 14 (C ) 13 (D ) 12【答案】C【解析】本题以2008年奥运和父母对子女的早期智力开发为素材编拟的一道概率试题.因为“20”,“08”,和“北京”共可以排出“2008北京”.“20北京08”.‘08北京20“.“0820北京”.“北%100京2008”和“北京0280”六种情况,而2008北京和北京2008占其中的两种,所以这个婴儿能得到奖励的概率是3162=,选(C ). 【例2】某电视台的娱乐节目《周末大放送》有这样的翻浆牌游戏,数字的背面写有祝福或奖金数,游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨的祝福.计算:(1)翻到奖金1000元的概率.(2)“翻到奖金”的概率.(3)“翻不到奖金”的概率.【答案】 (1)91 (2)13(3)23 【解析】(1)因为翻牌共可得到9种情况,得到1000元只有一种,所以P (翻到奖金100元)=91. (2)因为在9种情况中,有三种可以得到奖金,所以P(得到奖金)=3193=. (3)P(翻不到奖金)=1-3231=。

频数与频率典型题解析

频数与频率典型题解析

频数与频率典型题解析频数、频率是初中数学中的两个重要概念,它们都能反映每个对象出现的频繁程度,但也存在区别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1.1.有关频数与频率概念的辨析题.例 1 判断以下说法是否正确,并说明理由:小明和小芳分别在各自班级里竞选班长.小明得了25票,小芳得了23票.可以断言,小明在班内受欢迎的程度比小芳高.解不正确.虽然小明比小芳的得票多,但受欢迎程度不依赖于得票出现的频数,而是依赖于得票出现的频率,由于各班总人数没有给出,因此,无法计算出频率.说明频数表示的是某一对象出现的次数,而频率则是某一对象的频数与总次数的比值.从本例可知,频率能更好地反映出某一对象出现的频繁程度.2.有关频数与频率的简单计算题.例2在英语单词frequency(频数)和英语词组relative frequency(频率)中,频数最大的各是哪个字母?它们的频数和频率各是多少?解析数出各字母在单词或词组中出现的次数即为频数,而字母出现的频率字母出现的频数.在单词frequency和词组relative frequency中,频数最大的字母都=所有字母的总个数2.在词组relative frequency中,e的频数是e.在单词frequency中,e的频数是2,频率是94.是4,频率是17说明(1)频率是个比值,它可以用小数、百分数、真分数来表示,但当结果不能除尽时,只能选择用真分数来表示.(2)在两组数据中,某两个对象的频数相等,但频率不一定相等,频数大,不一定频率大.在同一组数据中,某两个对象的频数相等,频率也相等;频数大,频率也大.你能举两个具体的例子吗?3.频数与频率在实际问题中的应用.例3学期结束前,班主任想知道同学们对班长一个学期以来的工作表现的满意程度,特向全班40名学生(除班长外)作问卷调查,其结果如下:(1)请计算每一种反馈意见的频率;(2)你认为本次调查对班长下学期的连任有影响吗?为什么?解析(1)非常满意、较满意、基本满意、不满意、非常不满意的频率分别为0.075,0.5,0.3,0.1,0.025; (2)本次调查对班长下学期的连任没有影响.因为对班长一个学期以来工作表现满意的同学占绝大多数,频率是0.85.说明在下结论时,要根据调查的数据来说话,不能抛弃数据,只顾发表自己的见解,这样只能以偏盖全,最终达不到发现问题、解决问题的目的.本题的解答让我们体会到收集数据的重要性,体会到频数与频率在对数据进行整理、描述和分析中的重要性,让我们体会到“数据也能说话”:班长的工作是负责的,他可以连任.。

华师大版七年级数学专题15 频数与频率

华师大版七年级数学专题15 频数与频率

频数与频率一.选择题1.(2015•江苏苏州,第5题3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20 频数(通话次数)201695则通话时间不超过15min 的频率为 A .0.1 B .0.4 C .0.5 D .0.9 【难度】★【考点分析】考察概率,是中考必考题型,难度很小。

【解析】不超过15 分钟的通话次数共:20+16+9=45(次),总共通过次数为:45+5=50(次), 所以通过不超过15 分钟的频率为:故选:D 。

2.(2015·深圳,第6题 分)在一下数据90,85,80,80,75中,众数、中位数分别是( ) A 、8075, B 、80,80 C 、85,80 D 、90,80 【答案】B .【解析】80出现两次,其它数字只出现一次,故众数为80, 数据90,85,80,80,75的中位数为80,故选B 。

3.(2015·南宁,第4题3分)某校男子足球队的年龄分布如图2条形图所示,则这些队员年龄的众数是( ).(A )12 (B )13 (C )14 (D )15图2考点:众数;条形统计图..分析:根据条形统计图找到最高的条形图所表示的年龄数即为众数. 解答:解:观察条形统计图知:为14岁的最多,有8人, 故众数为14岁, 故选C .点评:考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小.4.(2015·贵州六盘水,第7题3分)“魅力凉都六盘水”某周连续7天的最高气温(单位°C )是26,24,23,18,22,22,25,则这组数据的中位数是( ) A .18 B .22 C .23 D .24 考点:中位数..分析:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数就是这组数据的中位数.解答:解:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26, 则中位数是:23. 故选:C .点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5. (2015·河南,第6题3分)小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( ) A. 255分 B. 84分 C. 84.5分 D.86分C 【解析】本题考查加权平均数的应用.根据题意得86532590380285=++⨯+⨯+⨯=x —,∴小王成绩为86分.二.填空题1.(2015·黑龙江绥化,第17题 分)在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.考点:中位数;折线统计图..分析:根据中位数的定义,即可解答.解答:解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).2.(2015•甘肃兰州,第18题,4分)在一个不透明的袋子中装有除颜色外其余均相同的个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球。

初中数学优质课件【频数与频率】

初中数学优质课件【频数与频率】

实验与探究2
结论
拓展延伸
对于同一组数据,根据不同的分组标准, 可以列出不同的频数、频率分布表.
如上例可以根据需要分别按下列三种分 组方法列成频数、频率分布表.
请你完成表格,并再次检验上述结6
23
0.19 0.21 0.21 0.16 0.23
45
55
0.45
0.55
51
49
0.51 0.49
课堂小结
1.什么是频数? 2.什么叫频率? 3.如何计算频率? 4.各小组的频率之和等于_______.
必做题:课本P62 选做题:课本P62
课本P63
A组 1、2题 A组 3题 B组 1题
收集数据_随机抽样: 广泛性_被调查的对象不得太少; 代表性_被调查的对象随意抽取的,没有人为的因素; 真实性_调查的数据是真实的.
频数:把数据进行分组后,每组中的数据个数, 叫做这个小组的频数.
挑战自我
1.学习课本“观察与思考”P.60-61, 并尝试解决课本中提出的问题.
2.什么叫频率?如何计算?
一、你还记得吗?
为了一定的目的而对考察对象进行全面调查,称为普查, 其中所考察对象的全体称为总体(population),而组成总体 的每一个考察对象称为个体(individual).
从总体中抽取部分个体进行调查,这种调查称为抽样 调查(sampling investigation),其中从总体中抽取部分个 体叫做总体的一个样本(sample).
把数据进行分组后,某组的频数与数据 总数之比称为这组的频率. 即
625 9681 6924
3646 11017 0.045 0.698 0.499
0.293 0.795
0.132

频数与频率的公式是什么

频数与频率的公式是什么

频数与频率的公式是什么
频数与频率的公式是频率=频数/样本数,频数是在统计学中,将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目叫做频数,频率是某个组的频数与样本容量的比值叫做这个组的频率,频率=频数÷样本容量。

频数与频率的公式
频数与频率的公式是频率=频数/样本数,频数是在统计学中,将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目叫做频数,频率是某个组的频数与样本容量的比值叫做这个组的频率,频率=频数÷样本容量。

频数是某个事件出现的次数:例如,在20个球里任意选出10个,出现了6次黄球,6就是黄球的频版数。

6/20就是黄球的频率,也就是用频数/总体。

频数(Frequency),又称“次数”。

指变量值中代表某种特征的数(标志值)出现的次数。

按分组依次排列的频数构成频数数列,用来说明各组标志值对全体标志值所起作用的强度。

各组频数的总权和等于总体的全部单位数。

频数的表示方法,既可以用表的形式,也可以用图形的形式。

频数是什么
1、频数(Frequency),又称“次数”。

指变量值中代表某种特征的数(标志值)出现的次数。

2、按分组依次排列的频数构成频数数列,用来说明各组标志值对全体标志值所起作用的强度。

3、各组频数的总和等于总体的全部单位数。

频数的表示方法,既可以用表的形式,也可以用图形的形式。

七年级数学下册频数、频率教案人教版

七年级数学下册频数、频率教案人教版

频数、频率编写时间:年月日执行时间:年月日总序第个教案一、教学目的1.理解频数、频率的概念,了解频率分布的意义和作用.2.使学生会就一组数据列出频率分布表,画出频率分布直方图.二、教学重点、难点重点:按步骤就一组数据列出频率分布表,画出频率分布直方图.难点:组距、组数、分点的确定.三、教学方法观察、比较、合作、交流、探索四、教学过程复习提问如何在直角坐标系中做出(160.5,18)和(151.5,3)的对应点.引入新课某次考试中,我们不仅需要了解学生的平均成绩,还需要了解他们中90分以上,80~90分,…,不及格的各占多少?此类问题如何解决?对学生身高进行测量,得出一组数据,需了解140厘米以下,140~149厘米,150~159厘米,…,160~169厘米,170厘米以上的人数有多少?此类问题如何解决?本课解决此类问题.新课在教师指导下,学生阅读并理解教材的内容.通过对这一引例的了解,得出此类问题的解题步骤:(1)计算最大值与最小值的差.(2)决定组距与组数.(3)确定分点.(4)列频率分布表.(5)画频率分布直方图.接下来让学生作如下练习:填空题:1.计算一组数据的最大值与最小值的差,是为了解和掌握这组数据的____有多大.2.组距是指每个小组的____之间的距离.3.某批数据的最大值与最小值的差为23,组距为3,那么应将这批数分为____组.4.决定分点时,应使分点比数据____一位小数,并且把第1组的起点稍微____一点.5.将某批数据分组后,落在各小组内的数据的个数叫____,它与数据总数的比值叫做这一小组的____.6.将一些数据分成6组,列出频率分布表,其中前3组的频率之和是0.6,后两组的频率之和为0.3,那么第4组的频率是____.选择题:为估计初三年级全体男生体重的分布情况,现抽样测量20名学生,记录如下(单位:斤):96 98 101 90 94 105 90 97 96 102 99 94 93 94 92 95 96 98 104 96(1)最大值与最小值的差是 [ ] A.15 B.14 C.13 D.12(2)若将数据分成8组,分组取法以____为好. [ ]A.90~93,93~96,…,102~105B.90.5~93.5,93.5~96.5,…,102.5~105.5C.90~92,92~94,…,104~106D.89.5~91.5,91.5~93.5,…,103.5~105.5(3)最后一组的频率是 [ ] A.1 B.0 C.2 D.3(4)第二组的频率是 [ ] A.1 B.0 C.0.1 D.0.05小结本课学习了:1.频数、频率的概念.2.频率分布表、频率分布直方图的制作.作业:选用课本习题补充作业某班40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人.(1)试填写下面频率分布表;(2)该校这个班所在年级100名同学中,估计年龄在15岁,16岁的学生分别有多少?五、课后反思:。

1初中数学“频数与频率”知识点全解析

1初中数学“频数与频率”知识点全解析

高中数学“频数与频率”知识点全解析一、引言频数与频率是统计学中的基本概念,它们在数据分析和概率计算中发挥着重要作用。

本文将详细解析“频数与频率”相关知识点,帮助同学们更好地掌握这一内容。

二、频数与频率的定义1.频数:频数是指在一组数据中,某个特定数值或特定范围内数值出现的次数。

频数通常用符号f表示。

2.频率:频率是指某个特定数值或特定范围内数值出现的次数与总次数的比值。

频率反映了该数值或数值范围在数据集中的相对重要性。

频率通常用符号F表示,计算公式为F = f / N,其中N为总次数。

三、频数与频率的性质1.非负性:频数和频率都是非负数,因为它们表示的是出现的次数或比例。

2.归一性:对于一组数据,所有不同数值的频率之和等于1,即∑F = 1。

这是因为频率是相对于总数的比例,所以所有频率的和应该等于整体。

3.相对性:频数是绝对的,而频率是相对的。

频数表示某个数值出现的次数,而频率表示该数值出现的频率相对于总数的大小。

四、频数与频率在统计中的应用1.数据分布描述:通过计算各个数值或数值范围的频数和频率,可以了解数据的分布情况。

例如,可以绘制频数分布表或频率分布表,直观地展示数据的分布情况。

2.概率计算:在概率论中,频率常被用来近似概率。

当试验次数足够多时,某个事件发生的频率会趋近于该事件发生的概率。

因此,在实际问题中,可以通过计算频率来估计概率。

3.决策分析:在决策分析中,频数和频率可以帮助我们了解不同选项的相对重要性。

例如,在投票中,可以计算每个选项的频数和频率,以了解选民的意见分布。

五、应用举例1.抛硬币试验:假设我们进行多次抛硬币试验,并记录正面和反面出现的次数。

通过计算正面和反面的频数和频率,我们可以近似得到硬币正面和反面出现的概率。

2.考试成绩分析:在考试成绩分析中,可以计算各个分数段的频数和频率,以了解学生的成绩分布情况。

这对于评估教学效果和制定教学策略具有重要意义。

3.市场调查:在市场调查中,可以通过计算不同选项的频数和频率来了解消费者的偏好和需求。

初中数学频数与频率题型详细解析

初中数学频数与频率题型详细解析

初中数学频数与频率题型详细解析一.选择题1. (2018•广西玉林•3分)某小组做“用频率估计概率”的实验时.绘出的某一结果出现的频率折线图.则符合这一结果的实验可能是()A.抛一枚硬币.出现正面朝上B.掷一个正六面体的骰子.出现3点朝上C.一副去掉大小王的扑克牌洗匀后.从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球.取到的是黑球【分析】利用折线统计图可得出试验的频率在0.33左右.进而得出答案.【解答】解:A.抛一枚硬币.出现正面朝上的概率为0.5.不符合这一结果.故此选项错误;B.掷一个正六面体的骰子.出现3点朝上为.不符合这一结果.故此选项错误;C.一副去掉大小王的扑克牌洗匀后.从中任抽一张牌的花色是红桃的概率为:0.25.不符合这一结果.故此选项错误;D.从一个装有2个红球1个黑球的袋子中任取一球.取到的是黑球的概率为:.符合这一结果.故此选项正确.故选:D.2.(2018湖南省邵阳市)(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息.若要推荐一位成绩较稳定的选手去参赛.应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定【分析】根据折线统计图得出两人射击成绩.再计算出两人成绩的方差.据此即可作出判断.【解答】解:李飞的成绩为5.8.9.7.8.9.10.8.9.7.则李飞成绩的平均数为=8.所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;刘亮的成绩为7.8.8.9.7.8.8.9.7.9.则刘亮成绩的平均数为=8.∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6.∵0.6<1.8.∴应推荐刘亮.故选:C.【点评】本题主要考查折线统计图与方差.解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.二.填空题1.(2018•内蒙古包头市•3分)从﹣2.﹣1.1.2四个数中.随机抽取两个数相乘.积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果.从中找到积为大于﹣4小于2的结果数.根据概率公式计算可得.【解答】解:列表如下:﹣2 ﹣11 2﹣2 2 ﹣2﹣4﹣1 2 ﹣1﹣21 ﹣2 ﹣122 ﹣4 ﹣22由表可知.共有12种等可能结果.其中积为大于﹣4小于2的有6种结果.∴积为大于﹣4小于2的概率为=.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.2. (2018•上海•4分)某校学生自主建立了一个学习用品义卖平台.已知九年级200名学生义卖所得金额的频数分布直方图如图所示.那么20﹣30元这个小组的组频率是.【分析】根据“频率=频数÷总数”即可得.【解答】解:20﹣30元这个小组的组频率是50÷200=0.25.故答案为:0.25.【点评】本题主要考查频数分布直方图.解题的关键是掌握频率=频数÷总数.3. (2018•贵州安顺•4分)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛.在选拔过程中.每人射击次.计算他们的平均成绩及方差如表.请你根据表中的数据选一人参加比赛.最适合的人选是__________.选手甲乙平均数(环)方差【解析】分析:根据方差的定义.方差越小数据越稳定.详解:因为S甲2=0.035>S乙2=0.015.方差小的为乙.所以本题中成绩比较稳定的是乙.故答案为:乙.点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.4. (2018•上海•4分)某校学生自主建立了一个学习用品义卖平台.已知九年级200名学生义卖所得金额的频数分布直方图如图所示.那么20﹣30元这个小组的组频率是.【分析】根据“频率=频数÷总数”即可得.【解答】解:20﹣30元这个小组的组频率是50÷200=0.25.故答案为:0.25.【点评】本题主要考查频数分布直方图.解题的关键是掌握频率=频数÷总数.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·7分)在2018年“新技术支持未来教育”的教师培训活动中.会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流.记者随机采访了部分参会教师.对他们发言的次数进行了统计.并绘制了不完整的统计表和条形统计图.组发言次百分比别数nA 0≤n<3 10%B 3≤n<6 20%C 6≤n<9 25%30%D 9≤n<12E 12≤n<10%15m%F 15≤n<18请你根据所给的相关信息.解答下列问题:(1)本次共随机采访了60 名教师.m= 5 ;(2)补全条形统计图;(3)已知受访的教师中.E组只有2名女教师.F组恰有1名男教师.现要从E组、F组中分别选派1名教师写总结报告.请用列表法或画树状图的方法.求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%.所有百分比的和为1.计算即可;(2)先计算出D.F组的人数.再补全条形统计图;(3)列出树形图.根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知.C组共有15名.占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60.5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师.4男2女.F组有三名教师.1男2女共有18种可能.∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识.难度不大.综合性较强.概率=所求情况数与总情况数之比2. (2018·湖北襄阳·6分)“品中华诗词.寻文化基因”.某校举办了第二届“中华诗词大赛”.将该校八年级参加竞赛的学生成绩统计后.绘制了如下不完整的频数分布统计表与频数分布直方图.频数分布统计表组别成绩x(分)人数百分比A 60≤x<70 8 20%B 70≤x<80 16 m%C 80≤x<90 a 30%D 90≤<x≤100 4 10%请观察图表.解答下列问题:(1)表中a= 12 .m= 40 ;(2)补全频数分布直方图;(3)D组的4名学生中.有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛.则抽取的2名学生恰好是一名男生和一名女生的概率为.【分析】(1)先由A组人数及其百分比求得总人数.总人数乘以C的百分比可得a的值.用B组人数除以总人数可得m的值;(2)根据(1)中所求结果可补全图形;(3)列出所有等可能结果.再根据概率公式求解可得.【解答】解:(1)∵被调查的总人数为8÷20%=40人.∴a=40×30%=12.m%=×100%=40%.即m=40.故答案为:12.40;(2)补全图形如下:(3)列表如下:男女1 女2 女3 男﹣﹣﹣(女.男)(女.男)(女.男)女1 (男.女)﹣﹣﹣(女.女)(女.女)女2 (男.女)(女.女)﹣﹣﹣(女.女)女3 (男.女)(女.女)(女.女)﹣﹣﹣∵共有12种等可能的结果.选中1名男生和1名女生结果的有6种.∴抽取的2名学生恰好是一名男生和一名女生的概率为=.故答案为:.【点评】本题考查了频数分布表、频数分布直方图.解题的关键是明确题意.找出所求问题需要的条件.利用统计图获取信息时.必须认真观察、分析、研究统计图.才能作出正确的判断和解决问题.也考查了列表法和画树状图求概率.3.(2018•江苏宿迁•8分)某市举行“传承好家风”征文比赛.已知每篇参赛征文成绩记m分(60≤m≤100).组委会从1000篇征文中随机抽取了部分参赛征文.统计了他们的成绩.并绘制了如下不完整的两幅统计图表.请根据以上信息.解决下列问题:(1)征文比赛成绩频数分布表中c的值是________;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖.试估计全市获得一等奖征文的篇数.【答案】(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市获得一等奖征文的篇数为300篇.【分析】(1)由频率之和为1.用1减去其余各组的频率即可求得c的值;(2)由频数分布表可知60≤m<70的频数为:38.频率为:0.38.根据总数=频数÷频率得样本容量.再由频数=总数×频率求出A.b的值.根据A.b的值补全图形即可;(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3.再用总篇数×一等奖的频率=全市一等奖征文篇数.【详解】(1)c=1-0.38-0.32-0.1=0.2.故答案为:0.2;(2)38÷0.38=100.a=100×0.32=32.b=100×0.2=20.补全征文比赛成绩频数分布直方图如图所示:(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3.∴全市获得一等奖征文的篇数为:1000×0.3=300(篇).答:全市获得一等奖征文的篇数为300篇.【点睛】本题考查了频数分布表、频数分布直方图.熟知频数、频率、总数之间的关系是解本题的关键.4. (2018•乌鲁木齐•12分)某中学1000名学生参加了”环保知识竞赛“.为了了解本次竞赛成绩情况.从中抽取了部分学生的成绩(得分取整数.满分为100分)作为样本进行统计.并制作了如图频数分布表和频数分布直方图(不完整且局部污损.其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x<90 b c合计■ 1(1)写出a.b.c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中.从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动.求所抽取的2名同学来自同一组的概率.【分析】(1)利用50≤x<60的频数和频率.根据公式:频率=先计算出样本总人数.再分别计算出a.b.c的值;(2)先计算出竞赛分数不低于70分的频率.根据样本估计总体的思想.计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格.得到要求的所有情况和2名同学来自一组的情况.利用求概率公式计算出概率【解答】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.2470≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24.b=2.c=0.04;(2)在选取的样本中.竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6.根据样本估计总体的思想.有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人.其中第4组有3人.不妨记为甲.乙.丙.第5组有2人.不妨记作A.B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学.情形如树形图所示.共有20种情况:抽取两名同学在同一组的有:甲乙.甲丙.乙甲.乙丙.丙甲.丙乙.AB.BA共8种情况.∴抽取的2名同学来自同一组的概率P==【点评】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.5. (2018•嘉兴•8分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:):甲车间:168.175.180.185.172.189.185.182.185.174.192.180.185.178. 173.185.169.187.176.180.乙车间:186.180.189.183.176.173.178.167.180.175.178.182.180.179. 185.180.184.182.180.183.整理数据:组别频数165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间 2 4 5 6 2 1乙车间 1 2 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为(2)乙车间的合格产品数为个;(3)乙车间生产的新产品更好.理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数.从而得到乙车间样品的合格率.用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为;(2)∵乙车间样品的合格产品数为(个).∴乙车间样品的合格率为.∴乙车间的合格产品数为(个).(3)①乙车间合格率比甲车间高.所以乙车间生产的新产品更好.②甲、乙平均数相等.且均在合格范围内.而乙的方差小于甲的方差.说明乙比甲稳定.所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率.用样本估计总体.6. (2018•贵州安顺•12分)某电视台为了解本地区电视节目的收视情况.对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项).根据收集的数据绘制了两幅不完整的统计图(如图所示).根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为).“体育节目”(记为).“综艺节目”(记为).“科普节目”(记为)的观众各一名.电视台要从四人中随机抽取两人参加联谊活动.请用列表或画树状图的方法.求出恰好抽到最喜爱“”和“”两位观众的概率.【答案】(1).;(2)补图见解析;(3)恰好抽到最喜爱“”和“”两位观众的概率为.【解析】分析:(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数.用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比;(2)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数.然后补全图①中的条形统计图;(3)画树状图展示所有12种等可能的结果数.再找出抽到最喜爱“B”和“C”两位观众的结果数.然后根据概率公式求解.详解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=25%;(2)最喜爱“新闻节目”的人数为200-50-35-45=70(人).如图.(3)画树状图为:共有12种等可能的结果数.恰好抽到最喜爱“B”和“C”两位观众的结果数为2.所以恰好抽到最喜爱“B”和“C”两位观众的概率=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n.再从中选出符合事件A或B的结果数目m.然后根据概率公式求出事件A或B的概率.也考查了统计图.8. (2018·黑龙江大庆·7分)九年级一班开展了“读一本好书”的活动.班委会对学生阅读书籍的情况进行了问卷调查.问卷设置了“小说”“戏剧”“散文”“其他”四个选项.每位同学仅选一项.根据调查结果绘制了如下不定整的频数分布表和扇形统计图.类别频数(人数)频率小说16戏剧 4散文 a其他 b合计 1根据图表提供的信息.解答下列问题:(1)直接写出a.b.m的值;(2)在调查问卷中.甲、乙、丙、丁四位同学选择了“戏剧”类.现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组.请用列表法或画树状图的方法.求选取的2人恰好乙和丙的概率.【分析】(1)先根据戏剧的人数及其所占百分比可得总人数.再用总人数乘以散文的百分比求得其人数.根据各类别人数之和等于总人数求得其他类别的人数.最后用其他人数除以总人数求得m的值;(2)画树状图得出所有等可能的情况数.找出恰好是丙与乙的情况.即可确定出所求概率.【解答】解:(1)∵被调查的学生总人数为4÷10%=40人.∴散文的人数a=40×20%=8.其他的人数b=40﹣(16+4+8)=12.则其他人数所占百分比m%=×100%=30%.即m=30;(2)画树状图.如图所示:所有等可能的情况有12种.其中恰好是丙与乙的情况有2种.所以选取的2人恰好乙和丙的概率为=.9. (2018·黑龙江龙东地区·7分)为响应党的“文化自信”号召.某校开展了古诗词诵读大赛活动.现随机抽取部分同学的成绩进行统计.并绘制成如下的两个不完整的统计图.请结合图中提供的信息.解答下列各题:(1)直接写出a的值.a= 30 .并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动.90分以上(含90分)为优秀.那么估计获得优秀奖的学生有多少人?【分析】(1)先根据E等级人数及其占总人数的比例可得总人数.再用D等级人数除以总人数可得a的值.用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人).∴D等级人数所占百分比a%=×100%=30%.即a=30.C等级人数为50﹣(5+7+15+10)=13人.补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图.从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10. (2018·黑龙江齐齐哈尔·10分)初三上学期期末考试后.数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分.每组含最低分.不含最高分).并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三.四.五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50 人;(2)补全统计图;(3)如果成绩不少于90分为优秀.那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状.且每班选派两名代表在学校新学期开学式中领奖.则该班得到108分的小强同学能被选中领奖的概率是多少?【分析】(1)由第二组频数及其频率可得总人数;(2)先由二、三组的频率和求得对应频数和.从而求得第三组频数.再由第三.四.五组的频数比求得后三组的频数.继而根据频数和为总数求得最后一组频数.从而补全统计图;(3)用总人数乘以样本中后三组人数和所占比例即可得;(4)根据概率公式计算即可得.【解答】解:(1)全班学生人数为6÷0.12=50人.故答案为:50;(2)第二、三组频数之和为50×0.48=24.则第三组频数为24﹣6=18.∵自左至右第三.四.五组的频数比为9:8:3.∴第四组频数为16.第五组频数为6.则第六组频数为50﹣(1+6+18+16+6)=3.补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n.再从中选出符合事件A或B的结果数目m.然后利用概率公式求事件A或B的概率.也考查了统计图.11.(2018•贵州贵阳•10 分)在6.26国际禁毒日到来之际.贵阳市教育局为了普及禁毒知识.提高禁毒意识.举办了“关爱生命.拒绝毒品”的知识竞赛.某校初一、初二年级分别有300 人.现从中各随机抽取20 名同学的测试成绩进行调查分析.成绩如下:初一:68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67初二:69 97 96 89 98 100 99 100 95 10099 69 97 100 99 94 79 99 98 79(1)根据上述数据.将下列表格补充完成整:整理、描述数据:分数段60 x 70 x 80 x 90 x 初一人数22412(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共135 人;(3)你认为哪个年级掌握禁毒知识的总体水平较好.说明理由.初二年级总体掌握禁毒知识水平较好.因为平均数和中位数都高于初一年级.12. (2018湖南张家界8.00分)今年是我市全面推进中小学校“社会主义核心价值观”教育年.某校对全校学生进行了中期检测评价.检测结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理.制作了如下所示不完整的统计表(图1)和统计图(图2).等级频数频率A a 0.3B 35 0.35C 31 bD 4 0.04请根据图提供的信息.解答下列问题:(1)本次随机抽取的样本容量为100 ;(2)a= 30 .b= 0.31 ;(3)请在图2中补全条形统计图;(4)若该校共有学生800人.据此估算.该校学生在本次检测中达到“A(优秀)”等级的学生人数为240 人.【分析】(1)根据统计图表中的数据可以求得本次的样本容量;(2)根据(1)中的样本容量和表格中的数据可以求得A.b的值;(3)根据a的值可以将条形统计图补充完整;(4)根据统计图中的数据可以解答本题.【解答】解:(1)本次随机抽取的样本容量为:35÷0.35=100.故答案为:100;(2)a=100×0.3=30.b=31÷100=0.31.故答案为:30.0.31;(3)由(2)知a=30.补充完整的条形统计图如右图所示;(4)800×0.3=240(人).故答案为:240.【点评】本题考查条形统计图、统计表、样本容量、用样本估计总体.解答本题的关键是明确题意.找出所求问题需要的条件.利用数形结合的思想解答.13. (2018•乌鲁木齐•12分)某中学1000名学生参加了”环保知识竞赛“.为了了解本次竞赛成绩情况.从中抽取了部分学生的成绩(得分取整数.满分为100分)作为样本进行统计.并制作了如图频数分布表和频数分布直方图(不完整且局部污损.其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x<90 b c合计■ 1(1)写出a.b.c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中.从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动.求所抽取的2名同学来自同一组的概率.【分析】(1)利用50≤x<60的频数和频率.根据公式:频率=先计算出样本总人数.再分别计算出a.b.c的值;(2)先计算出竞赛分数不低于70分的频率.根据样本估计总体的思想.计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格.得到要求的所有情况和2名同学来自一组的情况.利用求概率公式计算出概率【解答】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.2470≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24.b=2.c=0.04;(2)在选取的样本中.竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6.根据样本估计总体的思想.有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人.其中第4组有3人.不妨记为甲.乙.丙.第5组有2人.不妨记作A.B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学.情形如树形图所示.共有20种情况:抽取两名同学在同一组的有:甲乙.甲丙.乙甲.乙丙.丙甲.丙乙.AB.BA共8种情况.∴抽取的2名同学来自同一组的概率P==【点评】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.。

频数与频率

频数与频率

第三节频数与频率统计方法与数理统计学-频数与频率(二)作为数学学科来说,概率论属于“纯粹数学”,而以概率论为基础的数理统计学则是“应用数学”的重要分支.概率论是在随机现象的一般数学模型的基础上研究事件、概率、随机变数和随机过程的基本规律;而数理统计学则针对实际处理随机现象的任务提出数学模型,研究其规律并提出解决问题的方法.用概率论解决实际问题的方法叫做统计方法.统计方法有两个显着特点,第一个特点是由部分推断全体.被研究对象的全体在统计学中叫做总体(或称母体).从中随机抽取一部分就是样本(或称子样).凡统计方法都是通过对样本的统计分析来推断总体的性态,否则就不能算是统计方法.例如要检验一批灯泡的耐用时间,统计方法就是抽取一个样本.(比如10个灯泡组成的样本)进行检验,从这10个灯泡的耐用时间来推断整批灯泡的情况.如果把整批灯泡挨个检验,那就不是统计方法了(虽然按照日常语言的习惯,全面检验也应是一种“统计”,但作为数学方法来说,这不叫“统计方法”).这个例子也从另一方面表明了使用统计方法的必要性;因为对类如灯泡耐用时间这样的对象,全面检验是行不通的,全面检验就会毁掉全部灯泡.既然是由部分推断总体,那就不可能以百分之百的把握作结论.统计方法的第二个特点就是以接近于1的概率(例如、,但不能等于1)保证所作结论正确.实际上这就是把概率接近于1的随机事件当作必然事件,这叫做“实际推断原理”.其实细想一下,我们在日常生活及生产活动中所说的必然事件,往往都是可能性很大(即概率接近于1)的事件,而不是绝对必然发生的事件.比如我们说乘车必然比步行快,其实若车子出了偶然事故就可能比步行更慢.但车子一般不会出事故,即车子不出事故的概率通常接近于1,因此我们把乘车比步行快当作必然事件.由此可见,概率接近于1的随机事件特别重要,相应地在概率论中有一套极限理论专门研究概率接近于1的规律.广义的数理统计学泛指概率论在实际中的各种应用.狭义的数理统计学则是指统计观察方法的拟定和统计资料的分析,主要包括以下内容:1.数据整理和子样(样本)统计量的研究:这是数理统计学的基础部分.2.统计推断理论:根据子样(样本)来判断母体(总体)的情况叫做统计推断,这是数理统计的核心部分.统计推断理论包括两大方面——参数估计和假设检验.参数估计就是根据样本来估计总体的某些参数(例如平均值等);假设检验就是针对实际问题作出假设,然后利用子样来检验这假设,以接近于1的概率作出正确的推断.3.方差分析4.回归分析5.抽样理论:研究从母体中抽取子样的方法.一个好的抽样方案一方面要求抽取的样本个数尽可能少,另一方面要求作出判断正确的概率尽可能大.6.质量控制7.试验设计统计学——数学的巧妙操作频数与频率)均值、平均数、中位数、百分数、众数、百分点、图表……所有这些都是巧妙处理数据的办法.取两个数6和8,我们可以作出各种比较:如比6∶8;分数3/4;百分率75%等等.一旦人们收集数据并力图描述一种状态时,他就开始步入统计学的领域了.无论是有用的或是容易使人误解的资料,统计学几乎总是具有影响力的.它可用于预示各种现象,诸如:民意测验中的得票率,某次考试中,学习成绩优秀率;经济状态(通胀率、国民经济总量的增长数、失业率、收入的增加或减少);人口统计资料;天气预报;药品效力和有效性分析;赌博的输赢机会;海浪和潮汐的影响范围等等.统计的领域在不断扩大,当我们看到任何统计分析的最终结果时,我们务必要十分谨慎,不要忽略了对资料的说明.要弄清楚样本的大小和取样的方法,看看是否与其他的样本取样相一致.此外样本还须有尽可能大的随机性.例如,对于投票结果的预测,选样最好在一个特定的投票点的出口处进行.设想投票的调查只在具有很大倾向性的邻里间进行,把这样小范围内的结果作为预测的依据,岂不滑稽可笑?假定有一份报纸刊登了以下的消息:“在《每日调查》栏目主持的一次投票中,有75%的投票者今年感染了流行性感冒”.这个报告中近75%的人感染流感的结论会使人吓一跳.《每日调查》并没有指出它的范围,说不定他们只问到他们办公室里的4个人,而其中有3人受到了流感的困扰.没有人会基于一种不知样本大小和样本随机程度的结论.然而,也经常有人在给出统计数据时,不注意交待资料的情况.变更统计的另一种办法是改变样本的组成.由于电子计算机的介入,使得能够很快地收集、分类和分析大量的资料.只要分析处理公平,而不是人为地操纵,那么统计结果和信息将是十分可靠的.统计学的影响和力量是巨大的,它能够用以说服和劝阻个别人.例如,若某些人感到自己的投票将不会改变最终的结果,那么他们就可能不会特别积极去投票,尤其在投票结束前几小时,统计显示投票结果偏于一边的时候.统计学是一门非常有力和非常有说服力的数学工具.人们对于印刷的数字予以充分的信赖.当某种情况用一个特定的数值描述时,那么这个描述的有效性在观察者的心目中便增加了.统计学家的责任就是要让大家知道,在无知者眼中的资料或天真观察者眼中贫乏的资料,都可能像虚假的东西那样欺骗人第三课时●课题§频数与频率(一)●教学目标(一)教学知识点1.掌握频数、频率的概念.2.会求一组数据的频数与频率.(二)能力训练要求1.通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2.培养学生利用图表获取信息的能力,使学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.(三)情感与价值观要求培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.●教学重点频率与频数的概念,选择数据表示方式.●教学难点各种统计图表的绘制,识别各种图表所含的信息,各自优缺点.●教学方法合作探讨法●教具准备投影片●教学过程Ⅰ.导入新课上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性.使所抽取的样本尽可能准确地反映总体的真实情况.本节课我们继续学习统计初步中反映数据出现频繁程度的两个量频数与频率.Ⅱ.讲授新课1.例题讲解[师]我们不仅要学好基础知识,还要强健自己的体魄,长大后才能更好地工作.同学们,你们平时最喜爱的体育运动是什么?[生]乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毽子…….[师]你最喜爱的体育明星是谁?[生]孔令辉、刘国良、邓亚萍、李菊、王楠、贝克汉姆、罗纳尔多、巴乔、迈克尔·乔丹等等.[师]你为什么喜欢他们?[生]我喜欢邓亚萍、刘国良顽强的斗志……[生]我喜欢运动员在比赛时高超的技艺,他们给我们展示的一种拼搏精神风貌……[师]我们在学习和生活中就要有这种不怕困难、勇于挑战的精神,只要大家共同努力,刻苦学习、老师相信你们会越来越出色.[师]下面是小亮调查的八(1)班50位同学喜欢的足球明星,结果如下:(投影片)[师]根据上面结果,你能很快说出该班同学最喜欢的足球明星吗?他的数据表示方式是什么?[生]这些数据没有经过统计、整理,必须把A、B、C、D的个数全部数清,才能比较出哪位球星是该班同学最喜欢的.数据越多越不方便,所以我认为小亮的数据表示方式不太好.[师]你能设计出一个比较好的表示方式吗?小组相互交流,共同探讨.[生]我们小组用如下方式表示:(二)[师]此种表示方式的优点是什么?[生]简单明了,一眼可以看出哪个最多、哪个最少.[生]我们小组采用如下方式表示数据.[师]此种表示方式的优点是什么?[生]直观,一目了然.不仅可以很快判断出哪个最多,哪个最少,还可比较出差别是否悬殊很大.[师]从上表可以看出,A 、B 、C 、D 出现的次数有的多,有的少,或者说它们出现的频繁程度不同.我们称每个对象出现的次数为频数(absolute,frequency ).而每个对象出现的次数与总次数的比值为频率(relative frequency ).[师]分别计算A 、B 、C 、D 的频数与频率.[生]A 的频数为23,A 的频率为5023. B 的频数为8,B 的频率为254. C 的频数为13,C 的频率为5013. D 的频数为6,D 的频率为253. Ⅲ.课堂练习1.设计一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢?分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原因.(课后完成)[生]列表如下[师]你还能用什么方式表示上表所收集数据的内容.[生]可以用上例中的图(三)表示的形式.[师]这种图叫频数分布直方图.可不可以用频率分布来表示,如何表示.阅读课本P 151页内容.(利用频率绘制的图)(略)2.议一议:(投影片)小明、小亮从同一本书中分别随机抽取了6页,在统计了1页、2页、3页、4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率,并绘制了下图图5-1[师]随着统计页数的增加,这两个字出现的频率是如何变化的?[生]频率在至之间变化的字是“的”字.“了”字的频率在至之间变化.[师]你认为该书中“的”和“了”两个字使用的频率哪个高?[生]我认为是“的”字.3.做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量.结果如下.(单位:厘米)(投影片)158 167 154 159 166 169 159156 166 162 159 156 166 164160 157 156 160 157 161 158158 153 158 164 158 163 158153 157 162 162 159 154 165166 157 151 146 151 158 160165 158 163 162 161 154 163165 162 162 159 157 159 149164 168 159 153[师]我们知道,这组数据的平均数,反映了这些学生的平均身高.但是,有时只知道这一点还不够,还希望知道身高在哪个范围内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范围内所占的比的大小.(学生填下表)频率分布表落在各个小组内的数据的个数叫做频数.小结:整理数据时,可以按照下面的步骤进行.1.计算最大值与最小值的差.2.决定组距与组数.3.决定分点4.列频率分布表.下节课我们将继续学习对各种数据的统计表的处理.Ⅳ.课时小结本节课主要学习了如下内容.1.频数与频率两个基本概念.2.会求一组数据的频数与频率,并会选择合理的表示方式来表示数据.例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.Ⅴ.课后作业习题 .Ⅵ.活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情.提出问题、探讨解决问题的方法.写一些实习作业,逐步掌握统计里的实习作业的问题如何表述,完成的步骤、实习报告的写法.例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象.在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的估计更加精确,所确定的抽取样本的对象力求具有代表性.例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校.可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)计算和分析数据,写出书面报告.为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误.为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.●板书设计第四课时●课题§频数与频率(二)●教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.●教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.●教学难点1.决定组距与组数.2.数据分布规律.●教学方法交流探讨式●教具准备投影片●教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.Ⅱ.讲授新课[师](出示投影片)这是小丽统计的最近一个星期李大爷平均每天能卖出的A、B、C、D、E五个牌子雪糕的数量.根据上表绘制一张频数分布直方图.(如下)(投影片)图5-2[师]根据小丽的统计结果,请你为李大爷设计一个进货方案.[生]A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.[师]A多进多少?B多进多少?D进多少?如何通过比例确定?[生]A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E占总数的19%.[师]如何确定进货的总数,还应考虑哪些因素?[生]还应考虑当天气温情况,天气凉,气温低时少进货.天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化.不能每天都进518支雪糕.[师]这位同学总结得很好.我们不论遇到什么事情,都应多动脑、多思考,不能生搬硬套,应根据实际情况确定合理方案.2.做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位 cm).如下:(投影片)141 165 144 171 145 145 158150 157 150 154 168 168 155155 169 157 157 157 158 149150 150 160 152 152 159 152159 144 154 155 157 145 160160 160 158 162 155 162 163155 163 148 163 168 155 145172(表一)[师]填写下表,并将上述数据用适当的统计图表示出来.(表二)[师]同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?[生]我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.[师]这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm以下 145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2[师]小亮是怎么做的?[生]先分组,再得到相应各组的学生人数.[师]根据上表绘制统计图(如下)(投影片)图5-3当收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.(投影片)图5-4[师]比较一下各种统计图各自的优缺点.[生]表一是没有经过整理的数据.数据多,而且数量表示上不简单、不直观.各个数据所占人数多少也没有直接给出,还需要计算.[生]表二,优点:数量表示上确切.即准确表示出各个数据所占的人数.缺点:不能直观反映数据的总体规律.数据也较多.[生]图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.[师]小结.我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的数据.常用表格与图表两种方式.何时用哪种方式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要生搬硬套,应多总结、提炼研究问题的思想和方法.不要一味去模仿.只要多动脑去思考.我相信同学们会创新出更好的方法.Ⅲ.课堂练习1.储蓄所太多必将增加银行支出,太少又难以满足顾客的需求.为此,银行在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位 mi n)如下:15 20 18 3 25 34 6 0 17 24 23 30 35 42 37 24 21 1 14 12 34 22 13 34 8 22 31 24 17 33 4 14 23 32 33 28 42 25 14 22 31 423426142540142411(1)将数据适当分组,并绘制相应的频数分布直方图.(2)这50名顾客的平均等待时间是多少?根据这个数据,你认为应该给银行提什么建议?[师]分析:(1)①先计算最大值与最小值的差.在上面的数据中,最大值为42,最小值为0.∴42-0=42.②决定组距与组数.③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.图5-5(2)50名顾客平均等待时间nx x x x nx +++=Λ1(n =50).解(略)Ⅳ.课时小结本节课学习了如下内容.1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作.例如频率分布直方图,以及它的意义.Ⅴ.课后作业习题Ⅵ.活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么?答:每个小组的频数是指落在这个小组的数据的个数.每个小组的频率是指这个小组的频数与数据总数的比值.2.分组时应注意哪些问题?分组的组数不仅与数据的多少有关,还与数据的取值情况有关.先求最大值与最小值的差,再确定组距与组数.当数据较多,且波动较大时,为了便于整理数据,我们可将数据按从小到大的顺序重新排列,这虽然费事,但找数据中的最大值、最小值以及进行频数累计却变得非常简单了.●板书设计3.频数与频率作业导航理解频数、频率的概念,了解频数分布的意义和作用,掌握整理数据的基本方法和步骤,会列频数分布表,会画频数分布直方图,了解频数分布直方图的作用.一、选择题1.列一组数据的频数分布表时,落在各个小组内的数据的个数叫做( )A.组距B.频数C.频率D.样本容量2.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的( )A.平均数B.中位数C.众数D.频率分布3.已知样本7,8,10,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,13,11,那么这组样本数据落在~内的频率是( )在频数分布表中,各小组的频数之和( )A.小于数据总数B.等于数据总数C.大于数据总数D.不能确定二、填空题5.已知一组数据共100个,在频数分布表中,某一小组的频数为4,则这一小组的频率为________.6.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,20,5,则第四组的频数和频率分别是________.7.有一块实验田,抽取1000个麦穗,考察它们的长度(单位:厘米),从频数分布表中可以得到样本数据落在 ~之间的频率是,于是可以估计在这块实验田里,长度在~厘米之间的麦穗约占________.8.已知一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28,填写下面的频数分布表:三、解答题9.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表:(分数均为整数,满分为100分)请根据表中提供的信息,解答下列各题:图1(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________;(3)所有参赛同学的平均得分M(分)在什么范围内?答:________;(4)将成绩频数分布直方图补充完整.10.某单位对全体职工的年龄进行了调查统计,结果如下(单位:岁):21 32 44 50 46 55 60 59 38 4919 52 34 35 48 52 39 41 44 4638 43 45 46 24 21 32 30 28 27将数据适当分组,列出频数分布表,绘制相应的频数分布直方图.*11.调查统计你所在居民小区各户的一个月用水量,将数据适当分组,并绘制相应的频数分布直方图.参考答案一、二、, % 8.频数累计从上到下依次为,,正,,,频数从上到下依次为:2,3,8,4,3,20,频率依次为:,,,,,三、9.(1)20 (2)20% (3)77≤M≤86 (4)略10.略 11.略§频数与频率班级:_______ 姓名:_______一、填空请你填一填(1)近几年,人们的环保意识逐渐增强,“白色污染”现象越来越受到人们的重视.下表是李昕同学对自己的家庭某一周内丢弃的塑料袋数目的统计:星期一二三四五六七塑料袋个数5738478请你帮李昕估算一下,照这样下去,李昕家一年大约要丢弃________个塑料袋(一年按365天计算).(2)光明中学环保小组对某区8个餐厅一天的快餐饭盒使用个数做调查,结果如下:125 115 140 270 110 120 100 140①这8个餐厅平均每个餐厅一天使用饭盒________个.②根据样本平均估算,若该区有餐厅62个,则一天共使用饭盒________个.(3)为了迎接2008年奥运会,昌平区某单位举办了英语培训班.100名职工在一个月内参加英语培训的次数如下表所示:次数45678人数1520302015这个月每个职工平均参加英语培训的次数为________.图5—3—1(4)为了了解小学生的素质教育情况,某县在全县各小学共抽取了200名五年级学生进行素质教育调查.将所得数据整理后,画出频率分布直方图(如图5—3—1),已知图中从左到右前4个小组的频率分别为, , ,,则第5小组频率为________.(5)2002年,中国科学技术协会对我国年龄在18岁至69岁的部分公民进行“科学素养”调查,将其中具备科学素养的公民按年龄进行分组.列出频率分布表如下:分组频数频率18~193920~293630~3940~491250~591260~696合计①请你填频率分布表中未完成的4个数据.②在具备科学素养的公民中,年龄的中位数落在________组内.二、选择题(1)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7.若这组数据的众数与平均数恰好相等,则这组数据的中位数为()(2)在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的众数、平均数与中位数分别为(),82,81 ,81,,81,77 ,81,81(3)第十一届全国青年歌手大奖赛的12名评委为某位歌手打分的情况如下(单位:分):,,,,,,,,,,,则下列结论不正确的是()A.这组数据的众数为B.这组数据的中位数为C.这组数据的中位数为和D.去掉一个最高分,去掉一个最低分,这位歌手的最后平均得分为。

初中数学 习题:频数和频率

初中数学 习题:频数和频率

频数和频率学习导航 重点频率与频数的概念,频率与频数之间的关系. 难点频率与频数的计算. 易混点频率与频数的区分. 易漏点所有频率之和等于1. 易错点只看频数大小,一般无法确定获胜对象. 精华提炼1.频数、频率的概念在数据统计时每个对象出现的次数称为频数,频数与总次数的比值称为频率.说明:频率分布反映了样本数据落在各个范围数目的多少,频率分布反映了样本数据各个范围内所占的比例,它们都能反映每个对象出现的频繁程度,但也存在区别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1. 2.频数、频率之间的关系频率=频数÷数据总数,频数=频率×频率. 说明:已知频率、频数、数据总数三个量中的任意两个可以计算出第三个. 课堂练习1.下列说法正确的是( )A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度2. 王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( ) 组别 A 型 B 型 AB 型 O 型 频率A .16人B .14人C .4人D .6人 3.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A .B .C .D .4. Lost time is never found again (岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i”出现的频率是 .5.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别是2,8,15,20,5,则第四组的频数为 ,频率为 .6.食品安全问题已经严重影响到我们的健康.某执法部门最近就食品安全抽样调查某一家超市,从中随机抽样选取20种包装食品,并列出下表: 食品质量 优 良 合格 不合格 有害或 有毒食品数量 023n4请你根据以上信息解答下列问题: (1)这次抽样调查中,“食品质量为合格以上(含合格)”的频率为 ;(2)若这家超市经销的包装食品共有1300种,请你估计大约有多少种包装食品是“有害或有毒”的?课后训练1. 小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于12.某校对1200名女生的身高进行了测量,身高在~(单位:m),这一小组的频率为,则该组的人数为()A.150人B.300人C.600人D.900人3. 将100个个体的样本编成组号为①~⑧的八个组,如下表:那么第⑤组的频率为()组号①②③④⑤⑥⑦⑧频数14 11 12 13 ■■13 12 10A.14 B.l5C.D.4.将某中学八年级组的全体教师按年龄分成三组,情况如表格所示.则表中a的值应该是.第一组第二组第三组频数 6 10 a频率 b c 20%5.小红统计了她家3月份的电话通话时间,并绘制成如下的频数分布表(表中数据含最大值但不含最小值):那么小红家3月份电话通话时间不超过6min的频数是.6. 为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表(图图7-5-2.请根整理情况频数频率非常好较好70一般不好36(1)本次抽样共调查了多少学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?图7-5-2频数和频率课堂练习点拨:A 、频数是表示一组数据中,符合条件的对象出现的次数.故错误;B 、频率是表示一组数据中,符合条件的对象出现的次数和总次数的比值.故错误;C 、符合频率的意义.故正确;D 、频率能够反映每个对象出现的频繁程度.故错误.故选C .点拨:本班A 型血的人数为:40×=16.故选A . 点拨:读图可知:共有(15+30+20+35)=100人,参加科技活动的频数是20.故参加科技活动的频率.故选B .点拨:由题意得,总共有25个,字母“i”出现的次数为:3次,故字母“i”出现的频率是253=. ,0,4 点拨:由题意得:第四组的频数为20,第四组的频率是20÷50=.6. 解:(1)∵这次抽样中,食品质量为合格以上(含合格)”的频数是0+2+3=5,∴频率为=; (2)1300×204=260种. 答:约有260种包装食品是“有害或有毒”的. 点拨:(1)首先求出随机抽样的20种包装食品中“食品质量为合格以上(含合格)”的数量,然后根据频率=频数÷数据总数得出结果;(2)首先求出随机抽样的20种包装食品中“有害或有毒”的频率,然后根据样本估计总体的思想,得出答案. 课后训练点拨:当全班人数变化时,所有选票中选小明的选票频率也随着变化;根据各小组频数之和等于数据总和,各小组频率之和等于1,可得B ,C ,D 都正确,A 错误.故选A .点拨:该组的人数为1200×=300(人).故选B . 点拨:第5组的频数为100-(14+11+12+13+13+12+10)=15,其频率为15:100=.故选D .点拨:∵1-20%=80%,∴(6+10)÷80%=20,∴20×20%=4.即a=4. 点拨:小红家3月份电话通话时间不超过6min 的频数是:26+12+8=46.6. 解:(1)较好的所占的比例是:360126则本次抽样共调查的人数是:70÷360120=200(人); (2)非常好的频数是:200×=42(人),一般的频数是:200-42-70-36=52(人),较好的频率是:20070=,一般的频率是:20052=,不好的频率是:20036=;(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有1500×(+)=840(人)。

初中数学《频数与频率》说课稿范文

初中数学《频数与频率》说课稿范文

初中数学《频数与频率》说课稿范文一、教学目标通过本节课的学习,使学生能够:1.掌握频数和频率的概念;2.了解频数和频率的计算方法;3.能够应用频数和频率解决实际问题;4.培养学生的数据分析和解决问题的能力。

二、教学重难点分析1. 教学重点•频数和频率的概念;•频数和频率的计算方法。

2. 教学难点•频数和频率的应用解决实际问题。

三、教学准备•教师:课件、黑板、粉笔、实物例子、教学工具;•学生:课本、作业本。

四、教学过程1. 导入与复习•上一堂课我们学习了统计学中的基本概念中的众数和中位数,今天我们将继续学习频数和频率。

2. 引入新知识•老师拿出一盒铅笔,问学生有多少支铅笔。

学生回答后,将铅笔分成长短两组,并问有多少支长铅笔,多少支短铅笔。

•老师告诉学生,这里的数据我们可以用频数来表示,频数是指某一数值在数据中出现的次数。

那么在这个例子中,长铅笔的频数是多少?短铅笔的频数又是多少?•学生回答后,老师写在黑板上:长铅笔短铅笔15 10•老师继续解释,频数是用来描述某一数值的重复出现次数的,但是我们还需要了解这个数字在整体中的占比,于是引入了频率的概念。

•老师告诉学生,频率是指某一数值的频数与总数的比值。

那么在这个例子中,长铅笔的频率是多少?短铅笔的频率又是多少?•学生回答后,老师写在黑板上:长铅笔短铅笔0.6 0.43. 计算与应用•老师拿出学生的考试成绩单,向学生提问:90分以上的有多少人?80-89分之间的有多少人?•学生回答后,老师开始计算频数和频率,并在黑板上记录:分数区间频数频率90及以上 5 0.280-89 8 0.32•老师告诉学生,频数和频率的计算方法很简单,只需要统计数据中某一数值的出现次数,然后与总数进行比较即可。

•老师再次强调,频数和频率可以帮助我们更直观地了解整体中某一数值的分布情况,用以分析和解决实际问题。

4. 拓展与练习•老师给学生出示一份某地方一天内的气温情况表格,让学生根据表格数据计算不同温度段的频数和频率,并回答一些与气温相关的问题。

初中数学频数与频率教案

初中数学频数与频率教案

初中数学频数与频率教案教案标题:初中数学频数与频率教案教案目标:1. 理解频数与频率的概念;2. 能够计算给定数据集的频数与频率;3. 能够应用频数与频率解决实际问题。

教学重点:1. 频数与频率的概念;2. 频数与频率的计算方法;3. 频数与频率在实际问题中的应用。

教学难点:1. 运用频数与频率解决复杂实际问题;2. 理解频数与频率的区别与联系。

教学准备:1. 教师准备:教学课件、白板、黑板、彩色粉笔、计算器、实际数据集;2. 学生准备:课本、笔、纸。

教学过程:Step 1:导入与概念解释(5分钟)1. 教师通过引入实际问题,如班级学生考试成绩,引发学生对频数与频率的思考;2. 教师简要解释频数与频率的概念:频数是指某个数值在数据集中出现的次数,频率是指某个数值在数据集中出现的相对次数。

Step 2:频数的计算与实例演示(10分钟)1. 教师通过一个简单的实例,如统计班级学生考试成绩为60分的人数,引导学生计算频数;2. 教师再通过另一个实例,如统计班级学生考试成绩的频数分布表,展示频数的计算方法,并引导学生进行实践操作。

Step 3:频率的计算与实例演示(10分钟)1. 教师通过一个实例,如统计班级学生考试成绩为60分的人数所占的频率,引导学生计算频率;2. 教师再通过另一个实例,如统计班级学生考试成绩的频率分布表,展示频率的计算方法,并引导学生进行实践操作。

Step 4:频数与频率的应用(15分钟)1. 教师通过实际问题,如统计某个城市一周内不同天气情况的频数与频率,引导学生应用频数与频率解决实际问题;2. 教师提供更多实际问题,让学生分组或个人进行解答,加强应用能力的培养。

Step 5:总结与拓展(5分钟)1. 教师与学生共同总结频数与频率的概念、计算方法及应用;2. 教师提供一些拓展问题,让学生思考更复杂的频数与频率问题。

教学延伸:1. 学生可通过调查收集数据,进行频数与频率的计算与分析;2. 学生可通过编写程序来实现频数与频率的计算。

七年级关于频数的知识点

七年级关于频数的知识点

七年级关于频数的知识点频数是数学中一个非常重要的概念,也是七年级数学中一个不可或缺的知识点。

那么,什么是频数呢?频数是指某个事件发生的次数,通常用符号f表示。

在七年级中,频数的概念主要应用于数据的统计和分析中。

一、频数与频率的区别频数是指某个事件发生的次数,而频率是指某个事件发生的概率。

频率通常用符号f'来表示。

频数和频率之间有着很紧密的联系,它们是数据统计分析中最基本的概念。

二、频数与频率的计算方法1.频数的计算方法:对于给定的数据集合,我们可以先对数据进行分类,然后再分别统计每一类的频数。

例如,对于一组由1~5的数字组成的数据集合,我们可以将它们分成五类,然后依次统计每一类的频数。

2.频率的计算方法:频率是指某个事件发生的概率,通常用百分数表示。

计算频率的方法是:某一事件的频数除以总体数,然后用乘100转化为百分数。

例如,某一班级共有30位学生,其中有12个学生经常参加课外活动,那么这个班级的活动参与率为12/30×100%=40%。

三、频数与频率的应用1.频数在图表统计中的应用:频数常常被用来制作图表,例如柱形图、折线图和饼图等。

利用这些图表,我们可以更直观地了解数据的分布情况和各类别之间的比较关系。

2.频率在概率统计中的应用:频率是概率统计中最重要的概念之一,它是计算概率的重要基础。

通过频率的计算,我们不仅可以了解某一事件发生的概率大小,还可以根据事件的实际情况,对概率进行合理的预测与分析。

四、需要注意的问题在进行频数和频率的统计分析时,我们需要注意以下几个问题:1.数据的分类:数据的分类应该根据实际情况选择合适的分类方法,尽可能减小分类误差和数据波动。

2.样本的选择:样本应该具有代表性,能够较好地反映总体情况。

3.频数与频率的计算:频数和频率的计算应该遵循统一的计算方法,并注意结果的精度和准确性。

总之,频数是七年级数学中一个非常重要的知识点,掌握了频数的计算方法和应用,对于数据统计和分析具有重要的帮助和意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数与频率一.选择题1.(2015•江苏苏州,第5题3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表: 通话时间x/min0<x≤5 5<x≤10 10<x≤15 15<x≤20 频数(通话次数) 20 16 9 5则通话时间不超过15min 的频率为A .0.1B .0.4C .0.5D .0.9【难度】★【考点分析】考察概率,是中考必考题型,难度很小。

【解析】不超过15 分钟的通话次数共:20+16+9=45(次),总共通过次数为:45+5=50(次), 所以通过不超过15 分钟的频率为:故选:D 。

2.(2015·深圳,第6题 分)在一下数据90,85,80,80,75中,众数、中位数分别是( ) A 、8075, B 、80,80 C 、85,80 D 、90,80【答案】B .【解析】80出现两次,其它数字只出现一次,故众数为80,数据90,85,80,80,75的中位数为80,故选B 。

3.(2015·南宁,第4题3分)某校男子足球队的年龄分布如图2条形图所示,则这些队员年龄的众数是( ).(A )12 (B )13 (C )14 (D )15图2考点:众数;条形统计图..分析:根据条形统计图找到最高的条形图所表示的年龄数即为众数.解答:解:观察条形统计图知:为14岁的最多,有8人,故众数为14岁,故选C .点评:考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小.4.(2015·贵州六盘水,第7题3分)“魅力凉都六盘水”某周连续7天的最高气温(单位°C )是26,24,23,18,22,22,25,则这组数据的中位数是( )A .18B .22C .23D .24考点:中位数..分析:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数就是这组数据的中位数.解答:解:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,则中位数是:23.故选:C .点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5. (2015·河南,第6题3分)小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分C 【解析】本题考查加权平均数的应用.根据题意得86532590380285=++⨯+⨯+⨯=x —,∴小王成绩为86分.二.填空题1.(2015·黑龙江绥化,第17题分)在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.考点:中位数;折线统计图..分析:根据中位数的定义,即可解答.解答:解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).2.(2015•甘肃兰州,第18题,4分)在一个不透明的袋子中装有除颜色外其余均相同的个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球。

以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数46 487 2506 5008 24996 50007根据列表,可以估计出的值是________【答案】10【考点解剖】本题考查概率和频率【知识准备】当独立随机实验的次数足够大时,某现象发生的频率总在概率附近波动【解答过程】由列表知:摸出黑球的频率约为0.500,所以所有小球的数量约10个【题目星级】★★三.解答题1. (2015•四川广安,第21题6分)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为4.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.考点:列表法与树状图法;频数(率)分布直方图..分析:(1)观察直方图可得:a=80﹣8﹣40﹣28=4;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽取到的选手A1和A2的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:a=80﹣8﹣40﹣28=4,故答案为:4;(2)画树状图得:∵共有12种等可能的结果,恰好抽取到的选手A1和A2的有2种情况,∴恰好抽取到的选手A1和A2的概率为:=.点评:此题考查了列表法或树状图法求概率以及直方图的知识.用到的知识点为:概率=所求情况数与总情况数之比.2 . (2015山东省德州市,19,8分)2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小明为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小明发现每月每户的用水量在5m2-35m2之间,有8户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小明绘制的图表和发现的信息,完成下列问题:(1)n= ,小明调查了户居民,并补全图1;(2)每月每户用水量的中位数和众数分别落在什么范围?(3)如果小明所在的小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?【答案】(1)210 96考点:频数分布直方图3.(2015湖南邵阳第22题8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B 0.5<t≤120C 1<t≤1.5 aD 1.5<t≤230E t>2 10请根据图表信息解答下列问题:(1)a=35;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.考点:条形统计图;用样本估计总体;频数(率)分布表;中位数..分析:(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;(3)根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可;(4)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.解答:解:(1)a=100﹣(5+20+30+10)=35.故答案为35;(2)补全条形统计图如下所示:(3)根据中位数的定义可知,这组数据的中位数落在C类别,所以小王每天进行体育锻炼的时间范围是1<t≤1.5;(4)30×=22.5(万人).即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.点评:本题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数的定义以及利用样本估计总体.4.(2015湖南岳阳第21题8分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)频率篮球30 0.25羽毛球m 0.20乒乓球36 n跳绳18 0.15其它12 0.10请根据以上图表信息解答下列问题:(1)频数分布表中的m=24,n=0.3;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是.考点:频数(率)分布表;扇形统计图;概率公式..分析:(1)根据篮球的人数和所占的百分比求出总人数,再用总人数乘以羽毛球所占的百分比,求出m的值;再用乒乓球的人数除以总人数,求出n的值;(2)由于已知喜欢乒乓球的百分比,故可用360°×n的值,即可求出对应的扇形圆心角的度数;用总人数乘以最喜爱篮球的学生人数所占的百分比即可得出答案;(3)用随机抽取学生人数除以选择“篮球”选项的学生人数,列式计算即可得出答案.解答:解:(1)30÷0.25=120(人)120×0.2=24(人)36÷120=0.3故频数分布表中的m=24,n=0.3;(2)360°×0.3=108°.故在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;(3)3÷30=.故其中某位学生被选中的概率是.故答案为:24,0.3;108°;.点评:此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,概率公式,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.。

相关文档
最新文档