电子测量技术基础-数字示波器
《电子测量技术》课程标准
《电子测量技术》课程标准一、课程基本信息(一)课程信息课程代码302ZH071课程名称(全称)总学时数64学分4适用专业上课地点课程性质必修课电子测量技术指导实践课后练其他学时20训练40习、讨论4学时(主讲)学时学时应用电子技术综合自动化实训室(二)专业概况1、培养目标通过本课程的学习,使学生具有电子测量技术与仪器方面的基础知识和实际应用能力,以后在科学实验和生产实践中能制定先进的测量方案,合理地选用测量仪器,能正确处理测量数据,以获得最佳的测量结果。
2、岗位面向直接面向电子产品品质员、电子组装工艺员、测试员、调试员、电路设计技术员。
3、专业核心能力(1)具有识别与选用元器件的能力;(2)具有电路图识图、绘图能力;(3)具有对电路焊接、制作、测量、调试、故障排除、维修的能力;(4)具有对模拟电路进行基本分析、计算的能力;(5)具有对常用电路进行设计、调试、检测、维护的能力。
(6)同时获得相应的学习能力、应用能力、协作能力和创新能力等。
二、教学大纲(一)总体目标与任务1、课程性质和任务本课程任务是使学生熟悉和掌握常用的电子测量原理和方法,重点掌握常用的典型电子测量仪器的原理、性能和使用方法,了解电子测量技术和仪器发展动态,逐步培养和提高学生的基本实验技能和运用理论解决实际问题的能力,为今后学习和工作奠定坚实的技术基础。
2、课程定位《电子测量技术》是一门实践性很强的技术应用型课程。
通过本课程的学习使学生获得电子测量技术的基本理论,具有正确选用测量方案能力;具有正确选用仪器、仪表的能力;具有对电路测量、调试、故障排除、维修的能力;具有对常用电路进行设计、调试、检测、维护的能力。
本课程不仅为专业课学习打下基础,为培养再学习能力服务,而且直接地为专业职业能力的培养服务。
3、课程目标(1)能力目标1)元器件的识别能力。
2)电路图识图、绘图能力。
3)电路焊接、制作、测量、调试、故障排除、维修能力。
4)单元电路分析、计算、调试、检测、设计能力。
列出数字示波器的主要组成部分及其功能
数字示波器是一种广泛应用于电子测量和测试领域的仪器,它可以将电信号转换成图形显示,直观地展现电信号的波形和特征。
数字示波器由许多不同的部分组成,每个部分都扮演着不同的角色,以确保仪器的功能正常运转。
下面我们将列出数字示波器的主要组成部分及其功能:1. 输入部分输入部分是数字示波器接收外部信号的地方,主要包括以下几个部分:- 输入通道:用于连接被测电路的输入端,通常有多个通道,可以同时测量多个信号。
- 输入阻抗:不同的数字示波器可能有不同的输入阻抗选项,通常为50欧姆或1兆欧姆,以适配不同的信号源。
- 输入耦合:选择直流(DC)或交流(AC)耦合,以适应不同的测量需求。
2. 信号采集部分信号采集部分是数字示波器对输入信号进行采样和处理的地方,主要包括以下几个部分:- 采样系统:负责对输入信号进行采样,并将采样到的数据转换成数字信号。
- ADC转换器:将模拟信号转换成数字信号的核心部件,通常有不同的采样速度和分辨率可选。
3. 存储和处理部分存储和处理部分是数字示波器对采集到的信号进行存储和处理的地方,主要包括以下几个部分:- 存储系统:用于存储采集到的波形数据,通常有不同的存储深度可选。
- 处理器:负责对采集到的数据进行处理和分析,通常有不同的处理速度和功能可选。
4. 显示部分显示部分是数字示波器将处理后的信号转换成图形显示的地方,主要包括以下几个部分:- 显示屏幕:用于显示波形图像和测量结果,通常有不同的尺寸和分辨率可选。
- 控制面板:用于操作数字示波器的各项功能和参数设定,通常包括旋钮、按钮和触摸屏等操作元件。
5. 校准和校验部分校准和校验部分是数字示波器保证测量准确性和稳定性的地方,主要包括以下几个部分:- 校准电路:用于校准示波器的各个部分,保证测量结果的准确性。
- 自校准功能:一些数字示波器内置了自动校准功能,可以定期对示波器进行自校准,保证测量结果的稳定性。
通过以上列出的数字示波器的主要组成部分及其功能,可以看出数字示波器是一个高度复杂的仪器,由多个部件共同协作完成对电信号的测量和分析。
数字示波器使用方法
数字示波器使用方法
数字示波器是一种用于观察电子信号波形的仪器,它可以帮助工程师和技术人员快速准确地分析电路中的电压信号。
本文将介绍数字示波器的基本使用方法,帮助您更好地掌握这一重要的仪器。
首先,使用数字示波器前需要确保设备连接正确。
将被测信号的输入端连接到示波器的输入端,确保极性正确,避免短路或损坏设备。
接下来,打开示波器并调整垂直和水平控制,使波形在屏幕上清晰可见。
调整示波器的垂直控制,可以改变波形的幅度,使波形在屏幕上占据适当的空间。
同时,可以调整示波器的水平控制,改变波形在时间轴上的位置,以便观察特定时间段内的波形变化。
另外,数字示波器还具有触发功能,可以帮助用户捕获特定条件下的波形。
通过调整触发控制,可以设置触发的电压水平、触发的边沿类型和触发的通道,以确保捕获到所需的波形。
在观察波形时,可以利用示波器的测量功能对波形进行分析。
示波器可以测量波形的频率、周期、峰峰值、均值等参数,帮助用户更全面地了解电路中的信号特性。
此外,数字示波器还具有存储和回放功能,可以将观察到的波形保存下来,以便后续分析和比较。
通过存储和回放功能,用户可以更方便地对波形进行详细的分析和研究。
最后,在使用完数字示波器后,需要注意关闭设备并将连接线缠绕整齐,以确保设备的安全和整洁。
另外,定期对数字示波器进行校准和维护,以保证其测量的准确性和稳定性。
总之,数字示波器是一种非常重要的电子测量仪器,掌握其基本使用方法对于工程师和技术人员来说至关重要。
通过本文的介绍,希望能够帮助您更好地理解和应用数字示波器,提高工作效率和准确性。
电子测量基础知识归纳
电子测量基础知识归纳1. 什么是电子测量电子测量是一种通过使用电子设备和技术来测量、检测和监控电信号、电流、电压和电气特性的过程。
它在许多领域中被广泛应用,例如电子工程、通信工程、自动化等。
2. 常见的电子测量仪器2.1 数字万用表数字万用表是最常见的电子测量仪器之一。
它可以测量电压、电流、电阻、频率等电气特性。
数字万用表使用数字显示屏,精度高,操作简单。
2.2 示波器示波器是用于显示电信号波形的仪器。
它可以实时显示电压随时间的变化。
示波器可用于观察信号的频率、幅度、相位等特性,以及检测电路中的故障。
2.3 频谱分析仪频谱分析仪可以将信号分解为不同频率的成分,并显示其幅度。
它被广泛用于无线通信、音频处理、信号调制等领域。
2.4 信号发生器信号发生器是用于产生各种电信号的仪器。
它可以生成不同频率、幅度和波形的信号,常用于电子实验、测试和调试。
3. 电子测量的重要性电子测量在现代科技发展中起着重要的作用。
它可以帮助工程师和科学家了解电子设备和电路的性能,并进行相关的研究和开发。
通过电子测量,我们可以确保电子产品的质量和可靠性,并及时发现并解决问题。
4. 电子测量的常见应用4.1 电路设计与测试在电路设计过程中,电子测量是不可或缺的。
它可以帮助工程师验证设计的正确性,并进行性能测试和优化。
电子测量还可以用于检测电路中的故障,方便故障排除和维修。
4.2 通信工程电子测量在通信工程中起着至关重要的作用。
它可以帮助工程师测试和监测信号的质量、传输效率和可靠性。
电子测量还可以用于调试和优化通信设备和系统。
4.3 自动化在自动化系统中,电子测量被广泛应用于监测和控制过程变量。
它可以帮助工程师实时获取传感器和执行器的数据,并进行有效的控制和调节,以实现自动化系统的稳定和优化。
5. 结论电子测量是现代科技不可或缺的一部分,它帮助我们了解和掌握电子设备和电路的性能。
通过使用常见的电子测量仪器,我们可以进行电路设计和测试,优化通信工程,实现自动化控制。
电子测量原理实验--数字示波器的应用与信号测量
《电子测量原理》实验指导实验项目一数字示波器的应用与信号测量一、实验目的1.了解数字存储示波器的工作原理。
2.学会正确使用数字示波器测量各种电参数的方法。
二、实验原理电子示波器是应用最广泛的电子测量仪器,其用途是时域测量。
电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的。
如果在示波管的X偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。
数字存储示波器与通用模拟示波器不同的是,在其内部采用A/D变换器把被测的输入模拟波形进行取样、量化和编码,转换成数字信号“1”、“0”码,然后存储在半导体存储器RAM中,这个过程称为存储器的“写过程”;然后在需要时,将RAM中的存储内容调出,通过相应的D/A变换器,再恢复为模拟量显示在示波器的屏幕上,这个过程称为存储器的“读过程”。
三、实验仪器及设备双踪数字示波器、信号发生器等。
四、实验内容及步骤4.1 数字示波器的认识与简单使用步骤 1. 使用数字示波器测量信号之前,必须进行校正。
探极线接好之后,设定输入探头衰减系数为×10,然后将探头上的开关设定为×10。
将探头端部与探头补偿器的信号输出连接器相连,基准导线夹与探头补偿器的地线连接器相连,打开通道1或2,然后按AUTO键。
检查所显示波形形状。
补偿正确时,测量结果才准确。
补偿过度补偿正确补偿不足图1. 示波器探头补偿波形图步骤2. 用信号发生器产生任意方波或正弦波信号,熟悉示波器上一些常用按钮的功能。
适当调节垂直、水平档位,观察波形变化。
4.2 正弦信号峰峰值和频率的自动测量步骤1.用信号发生器产生一个固定频率和幅值的正弦波,然后接到示波器的输入端CH1,适当调节各个按钮,在示波器的中心位置处得到一个稳定的正弦波。
步骤2. 测量峰峰值。
按下MEASURE按钮以显示自动测量菜单。
简述示波器的工作原理
简述示波器的工作原理示波器是一种广泛应用于电子测量的仪器,可以帮助电子工程师分析、检测和调整电路中的信号。
它能够快速、准确地捕捉电信号,并以波形的形式显示出来,实现对信号的观测和分析。
本文将从工作原理、示波器的分类和应用方面进行阐述。
示波器主要由三部分组成:输入系统、处理系统和显示系统。
1. 输入系统示波器的输入系统是指将输入的电信号转换成示波器可读取的信号。
输入系统一般包括探头和输入阻抗。
探头一般有两种:电压探头和电流探头。
电压探头是用于测量电压信号的,而电流探头则是用于测量电流信号的。
输入阻抗则是指示波器接收电信号的输入电路,通常为1MΩ的阻抗。
2. 处理系统处理系统是指将输入信号的强度、频率、相位等属性转换成显示信号的格式。
处理系统主要包括时间基准、放大器、触发电路等。
其中,时间基准是指示波器的时基,用于控制信号的采样频率和波形的水平位置。
放大器则是用于放大电信号的电子器件。
触发电路则是对信号进行选择性触发,使得波形在特定条件下才被测量。
3. 显示系统显示系统是将处理系统产生的波形以可视化的方式呈现出来,方便电子工程师观测和分析。
显示系统主要包括CRT显示器、LED显示器和LCD显示器等。
其中,CRT显示器是最常见的显示器,它采用电子束扫描的原理来形成图像。
二、示波器的分类示波器主要分为模拟示波器和数字示波器两种。
1. 模拟示波器模拟示波器是传统示波器的代表。
它使用模拟电路和CRT显示屏来显示波形,能够显示连续的波形,精度和分辨率较高。
此外,模拟示波器还可用于分析信号电路的同步和相位关系等问题。
数字示波器是利用数字技术来实现信号测量和波形分析的。
它采用数字处理器和显示器来处理、存储和显示信号信息。
数字示波器具有采样率高、噪声低、测量精度高等优点,也便于对测量结果的数值分析和处理。
示波器广泛应用于各种电子领域的测量、调试、故障排查等方面。
常见的应用场景包括:1. 电子电路的设计和调试,如调节电路中的传输信号、调节过渡信号。
电子测量的基础知识
1.1 电子测量概述
1. 1. 3 电子测量的特点
(1)测量频率范围宽 电子电气测量所遇到的测量对象,其频率覆盖范围极宽,
低至10-6 Hz以下,高至1012 Hz以上。 (2)测量的量程宽
量程是测量范围的上、下限值之差或上、下限值之比。 电子电气测量的另一个特点是被测对象的量值大小相差悬殊。
1.1 电子测量概述
1.1 电子测量概述
1. 1. 1 测量的意义和概念
测量是通过实验的方法对客观事物取得定量信息的过程。 人们通过对客观事物大量的观察和测量,形成定性和定量的 认识,经过归纳和总结,建立起各种定理和定律,而后又通 过测量来验证这些认识、定理和定律是否符合实际情况。
测量是建立在实验基础上的。从本质上说,测量包含了 两方面的含义:“测”,任何要测量的事物必须是人可感受 到的,至少是可以转换成人可感受的事物;“量”,任何要 测量的事物必须是可以量化的。
例如:高档次的数字万用表,直接测量的电阻 值为3×10-5~3×108 Ω,量程比为1﹕1013
Page 16
1.1 电子测量概述
1. 1. 3 电子测量的特点
(3)测量准确度高低相差悬殊 就整个电子电气测量所涉及的测量内容而言,测量结果
的准确度是不一样的,有些参数的测量准确度可以很高,而 有些参数的测量准确度却又相当低。
电能量的测量包括对各种频率、波形下的电压、电流、 功率、电能等的测量,对于交流电源,又分单相和三相交流 电的上述各参数的测量。
Page 12
1.1 电子测量概述
1. 1. 2 电子测量的内容
(2)电信号特性测量 电信号特性的测量可分为时域特性测量、频域特性测量
和数据域测量,具体包括对波形特征、波形参数、频率、周 期、相位差、失真度、调幅度、调频指数、频谱特性、群迟 延、信号带宽以及数字信号的逻辑状态等的测量。
中国大学mooc《电子技术实验基础(一:电路分析)(电子科技大学) 》满分章节测试答案
title电子技术实验基础(一:电路分析)(电子科技大学)中国大学mooc答案100分最新版content实验1-1 常用电子测量仪器的使用——数字示波器的使用数字示波器的使用单元测试题1、如图所示示波器的面板旋钮中,标出哪个按键是垂直通道的菜单按键A:AB:BC:CD:D答案: A2、如图所示示波器的面板旋钮中,标出哪个旋钮是水平通道的位移旋钮A:AB:BC:CD:D答案: C3、若被测试的信号是交直流叠加信号,示波器的垂直耦合方式应该选择哪一挡A:AC耦合B:DC耦合C:接低耦合D:AC、DC均可答案: DC耦合4、如图所示示波器的探头,测试信号时,探头应该与测试端应如何连接A:探勾接信号端钮,黑色鳄鱼夹接地B: 探勾接地,黑色鳄鱼夹接信号端钮C: 可以任意连接D:以上均不正确答案: 探勾接信号端钮,黑色鳄鱼夹接地5、如下图所示第四个菜单栏中,如果测量时发现该菜单栏显示不是电压1X,而是电压10X,应该调节哪个按键或旋钮使其为电压1XA:旁边的按键切换选择B:VARIABLE旋钮C:AUTOSETD:关机重启答案: VARIABLE旋钮6、下图是所示是示波器探头的手柄阻抗拨动开关细节图,若手柄放在1X端,垂直菜单栏中第四栏应怎么调节?若手柄放在10X端,又该怎样调节?A:电压1X、电压10XB:电压10X、电压1XC:电压1X、电压1XD:任意选择不影响结果答案: 电压1X、电压10X7、如图所示示波器的显示屏上,哪个标示的是通道1的零基线位置A:AB:BC:CD:D答案: C实验1-2 常用电子测量仪器的使用——函数发生器和晶体管毫伏表的使用函数发生器和晶体管毫伏表单元测验1、信号源输出周期信号时频率显示如图所示,当前输出信号的频率是多少?A:1HzB:10HzC:1KHzD:10KHz答案: 1KHz2、信号源给后级网络提供正弦信号,如果信号源幅度显示窗口显示如图所示,表明现在后级网络得到的信号电压大小是?A:不确定B:电压峰值是111mVC:电压峰峰值是111mVD:电压有效值是答案: 不确定3、下列说法正确的是?A: 数字万用表可以测量函数发生器输出信号中的直流分量B: 函数发生器只用“输出幅度调节”旋钮进行幅度调节C:函数发生器可用“直流偏移”旋钮输出直流电压信号D:函数发生器输出信号电压的最大值和最小值之间相差60dB答案: 数字万用表可以测量函数发生器输出信号中的直流分量4、列说法正确的是?A:毫伏表是用来测量包括直流电压在内的电压值的仪表B:使用毫伏表测量正弦信号的有效值时需要考虑正弦信号的频率C:毫伏表和万用表作为交流电压表都可以测量正弦信号的有效值,在没有毫伏表时,可以临时用万用表替代D:三角波信号和方波信号不能送入毫伏表测量答案: 使用毫伏表测量正弦信号的有效值时需要考虑正弦信号的频率5、某个正弦交流信号的有效值是0.8V,毫伏表应选择哪一档进行测量?A:10VB:3VC:1VD:300mV答案: 1V实验2 正弦稳态时RLC元件电压电流相位关系的测试正弦稳态时RLC元件电压电流相位关系的测试1、采用课程实验方案测量电感元件的电压电流相位关系时,为了获得近似90°的电压、电流波形相位差,信号源的频率应:A:适当增大信号源的频率;B:适当减小信号源的频率;C:调节信号源的频率不会影响相位差的测试;D:以上措施都不会改善测量结果答案: 适当增大信号源的频率;2、采用课程实验方案测量电容元件的电压电流相位关系时,示波器测量波形如图所示,下面哪种说法正确:A:CH1通道为取样电阻的电压信号, CH2通道为信号源信号;B:CH1通道为信号源信号, CH2通道为取样电阻的电压信号;C:CH2通道为电容元件的电压信号, CH1通道为取样电阻的电压信号;D:无法判断答案: CH1通道为信号源信号, CH2通道为取样电阻的电压信号;3、测量示波器相位差时显示的两路波形如图所示,为了能正确测量,应适当调节面板中哪个旋钮:A:A;B:B;C:C;D:D答案: A;4、测量示波器相位差时显示的两路波形如图所示,为了减小读数误差,需要适当应适当调节面板中哪个旋钮 :A:A;B:B;C:C;D:D答案: D5、采用课程实验方案正确测量元件的电压电流相位关系时,示波器测量波形如图所示,由此可以判断当前测试的是哪种元件:A:电感;B:电容;C:电阻;D:无法判断答案: 电阻;实验3 一阶RC电路频率特性研究一阶RC电路频率特性研究1、关于一阶RC低通滤波器的截止频率fc,如下描述中哪一项是正确的?A:电阻保持不变,减小电容值, fc降低B:电阻保持不变,增大电容值, fc降低C:截止频率处的输出电压是最大输出电压的50%D:低通滤波器的带宽是fc ~∞答案: 电阻保持不变,增大电容值, fc降低2、根据一阶RC低通滤波器的相频特性公式,随着频率从低到高,相位差的正确变化规律是:A:从0°~ -90°B:从0°~90°C:从-45°~+45°D:从0°~-180°答案: 从0°~ -90°3、测试低通滤波器的幅频特性曲线时,此处假设截止频率是大于500Hz的,如下哪种说法不正确:A: 测试过程中保持电路的输入信号幅度一致B:在大于20Hz的较低频率处找到最大输出电压后,再以此为参照开始测试C: 以输入电压为参照,调节频率至输出电压下降3dB就是截止频率D:在各个频率点测试时,应当保证测试输出电压的毫伏表的指针偏转超过刻度线的⅓答案: 以输入电压为参照,调节频率至输出电压下降3dB就是截止频率。
大学物理实验-数字示波器的使用
触发设置
根据信号类型选择适当的 触发方式,以确保波形稳 定显示。
观察并记录实验结果
观察波形
通过观察示波器上的信号波形,了解 信号的基本特征,如幅度、频率、相 位等。
记录数据
分析结果
根据实验数据和观察到的波形特征, 分析信号的基本性质和规律,得出实 验结论。
使用示波器的测量功能或记录纸,记 录实验数据,如信号幅度、频率等。
连接示波器与信号源
连接信号源
将信号源通过适当的电缆连接到 示波器的输入端口。
调整信号源
确保信号源处于工作状态,并调 整信号源的输出幅度和频率,以 便在示波器上观察到清晰的信号 波形。
调整示波器参数
调整垂直灵敏度
根据信号的幅度调整垂直 灵敏度,以便在屏幕上清 晰地显示信号波形。
调整水平时基
根据信号的频率调整水平 时基,以便在屏幕上正确 显示信号周期和波形形状。
为了让学生更好地了解示波器的应用,建议提供更多种类的信号 源,如正弦波、方波、脉冲波等。
加强实验指导和讲解
对于初次接触示波器的学生,建议加强实验前的指导和讲解,确保 学生能够正确掌握示波器的使用方法。
增加实验操作环节
为了提高学生的实践能力和操作技能,建议增加实验操作环节,让 学生有更多的机会亲手操作示波器。
实验结果的分析与讨论
对比分析
将实验结果与理论值进行对比,分析差异的原因, 探讨可能的影响因素。
趋势分析
对实验结果进行趋势分析,观察数据的变化规律, 探究物理现象的本质。
误差分析
对实验结果进行误差分析,评估实验的精度和可 靠性,为后续实验提供改进建议。
误差分析
误差来源
01
分析实验过程中可能产生的误差来源,如测量工具、操作方法、
数字示波器的使用实验总结 -回复
数字示波器的使用实验总结 -回复数字示波器是一种广泛应用的电子测量仪器,它可以用于观察电路中的波形变化,为电子工程师们提供了一种非常有用的工具。
在大学的电子实验教学中,数字示波器的使用也是非常普遍的。
本文将针对数字示波器的使用实验进行总结,从实验设计、实验操作、实验结果等方面进行分析,以期能够帮助读者更好地掌握数字示波器的使用。
一、实验设计1. 示波器的基本操作:示波器的开启、控制面板的介绍、信号线与示波器的连接、波形显示等。
2. 示波器的参数测量:包括电压的测量、频率的测量、相位差的测量等。
3. 示波器的信号分析:通过对不同信号的分析,学生可以更加深入地了解数字示波器的使用方法和原理。
为了使实验效果更加明显,实验设计需要根据实验目的和操作难度进行适当的调整,确保实验过程中学生能够全面了解数字示波器的使用方法,同时也要注意实验的安全性。
二、实验过程1. 实验前的准备工作:安装好数字示波器和相关软件,并检查设备是否正常运转。
2. 示波器的基本操作:在操作前,学生应先熟悉数字示波器的控制面板和操作方法,然后将信号线与示波器连接,调整档位和幅度,观察波形的显示情况。
3. 示波器的参数测量:学生应先设置好数字示波器的相应参数,如电压档位、频率范围等,然后对不同的信号进行测量,并记录下相应的值,比较不同参数对测量结果的影响。
4. 示波器的信号分析:学生可以通过对不同种类信号的分析来了解数字示波器的使用方法。
学生可以使用数字示波器观察不同频率的正弦波、方波、脉冲信号等,并比较它们的波形特点。
实验过程中需要注意安全,学生应对数字示波器和相关设备进行正确使用,以确保实验能够顺利进行。
三、实验结果分析在实验过程中,学生可以观察到数字示波器的波形显示情况,测量信号的各种参数,并分析不同信号的波形特点。
通过实验,学生能够更加深入地了解数字示波器的使用方法和原理,增强对电子测量仪器的掌握能力。
四、实验心得体会通过本次数字示波器的使用实验,我深刻体会到了数字示波器在实际应用中的重要性。
2024版示波器的基础操作初学者必看教程
示波器的基础操作初学者必看教程•示波器概述与基本原理•示波器基本结构与组成部分•示波器基本操作方法与步骤•典型信号测量实例分析目•示波器在电子实验和维修中应用举例•示波器使用注意事项和故障排除方法录01示波器概述与基本原理0102示波器定义示波器是一种电子测量仪器,用于显示和测量电信号的波形。
它能够将随时间变化的电压信号转换为可见的光信号,从而在屏幕上显示出波形的形状、幅度、频率和相位等信息。
示波器作用示波器在电子测量领域具有广泛的应用,主要用于以下几个方面信号波形的显示和观测通过示波器的屏幕,可以直观地观察信号波形的形状、幅度和频率等特征。
信号参数的测量示波器可以测量信号的幅度、频率、周期、相位等参数,为电子设备的调试和维修提供依据。
故障诊断通过观察信号波形的异常变化,可以判断电子设备是否存在故障,并定位故障点。
030405示波器定义及作用工作原理简介垂直系统示波器的垂直系统负责将输入信号进行放大和偏转,使其在屏幕上形成垂直方向的波形。
该系统包括输入耦合电路、衰减器、放大器和偏转板等部分。
水平系统水平系统控制信号在屏幕水平方向上的扫描速度和时间基准。
它主要由扫描发生器、触发电路和水平偏转板等组成。
扫描发生器产生与时间相关的扫描电压,触发电路则根据输入信号的特征控制扫描的起始点和稳定性。
显示系统显示系统负责将经过垂直和水平系统处理的信号转换为可见的光信号,并在屏幕上显示出来。
该系统包括示波管或液晶显示屏等显示器件,以及相应的驱动电路和亮度控制电路等。
模拟示波器采用模拟电路技术,具有较快的响应速度和较高的带宽。
它们通常使用示波管作为显示器件,能够提供较为直观的波形显示。
但是,模拟示波器的精度和稳定性相对较低,且功能较为单一。
模拟示波器数字示波器采用数字化技术,具有较高的精度、稳定性和灵活性。
它们使用高速模数转换器将输入信号转换为数字信号,然后通过数字信号处理技术对信号进行处理和分析。
数字示波器通常具有较大的存储深度和多种触发模式,能够实现复杂的波形分析和测量功能。
数字示波器DS1102E
数字示波器DS1102E数字示波器(Digital Storage Oscilloscope,DSO)是一种电子测试仪器,用于对电子设备进行信号分析,主要是通过观察和测量电压信号变化的波形来了解信号的特征。
数字示波器DS1102E是一款功能强大、性价比高的示波器,本文将介绍其主要特点和使用方法。
主要特点1.采用数字存储技术:数字示波器通过将采集到的信号数据存储在数字形式的存储器中,以实现波形的数字化处理和存储。
相对于模拟示波器,数字示波器能够显示更为准确的波形。
2.高分辨率:DS1102E具有高分辨率的特点,采用2声道、100MHz的带宽,1GS/s的采样率,最大可存储1M点的数据。
3.大屏幕显示:数字示波器DS1102E有7英寸TFT宽屏液晶显示屏,显示效果清晰、色彩鲜艳、观察方便。
4.多种测量功能:数字示波器具有多种测量功能,包括自动测量、快速傅里叶变换、波形数学运算、通道扫描等。
5.多种触发模式:数字示波器具有多种触发模式,包括自动触发、单次触发、正弦波、点对点、宽度、延时等,能够满足多种触发需求。
使用方法连接电源和信号源连接电源和信号源是使用数字示波器的第一步,首先需要将DS1102E的电源插头插入电源插座,然后接通电源开关,启动设备。
接下来将待测试的信号源通过信号线连接到数字示波器的输入端,一般情况下,接口为BNC。
设置测量参数在信号源连接正确的前提下,需要设置合适的测量参数,包括带宽、采样率、触发模式等。
一般情况下,数字示波器都有较为友好的图形设置界面,用户只需要按照提示设置即可。
开始测试设置完毕后,点击“Run”按钮,数字示波器即可开始测试,此时,设备将开始接收信号,并将其画成波形展示在屏幕上。
同时,数字示波器还可以对信号进行测量和分析。
用户可以通过观察波形来判断电路的工作状态,检测信号是否存在干扰等问题。
总结数字示波器DS1102E是一款高性能、易于操作的示波器设备。
通过数字化处理和存储,数字示波器能够实现更为准确的信号展示和测量,具有广泛的应用。
数字示波器原理
数字示波器原理
数字示波器是一种用于显示电信号波形的仪器,通过将电信号转换为数字信号并进行处理,最终在屏幕上显示出波形图形。
数字示波器的主要原理包括采样、模数转换、数据存储和显示。
首先,数字示波器通过采样器将连续的电信号离散化为一系列的采样点。
采样率是指每秒钟采样的次数,通常以赫兹(Hz)表示。
采样率越高,信号的细节就越清晰,但同时也会增加数据处理的复杂性和存储空间的需求。
接下来,模数转换器将采样的模拟信号转换为数字信号,以便进行后续的数字处理。
这里的模数转换器通常采用了先进的集成电路技术,能够高效地将模拟信号转换为数字形式。
数据存储是数字示波器中的一个重要环节。
采样得到的一系列数字信号将被存储在内存中,以便进行后续的处理和显示。
内存的大小决定了数字示波器能够存储的信号波形的长度。
最后,数字示波器通过显示器将处理后的数字信号转换为可见的波形图形。
这一过程涉及到数据解码和图像生成,数字示波器能够将存储的数字信号以合适的时间轴和幅度比例显示出来。
用户可以通过控制按钮和旋钮来调整显示的波形图形,以获得所需的信号细节。
总的来说,数字示波器利用了数字技术和信号处理算法,能够高效地采集、转换和显示电信号的波形图形。
与传统的模拟示
波器相比,数字示波器具有采样率高、噪声低、操作简便等优势,因此在电子工程领域得到了广泛的应用。
《电子测量技术》课程标准(电子信息技术专业)
《电子测量技术》课程标准课程名称:电子测量技术 Electronic Measurement Technology课程性质:专业选修学分:2.5总学时:45,理论学时:36,实验(上机)学时:9适用专业:电子信息技术先修课程:模拟电子技术、数字电子技术、信号与系统、微机原理一、教学目的与要求《电子测量技术》是电子信息、自动控制、测量仪器等专业的通用技术基础课程。
包括电子测量的基本原理、测量误差分析和实际应用,主要电子仪器的工作原理,性能指标,电参数的测试方法,该领域的最新发展等。
电子测量技术综合应用了电子、计算机、通信、控制等技术。
通过本课程的学习,培养学生具有电子测量技术和仪器方面的基础知识和应用能力;通过本课程的学习,可开拓学生思路,培养综合应用知识能力和实践能力;培养学生严肃认真,求实求真的科学作风,为后续课程的学习和从事研发工作打下基础。
二、教学内容与学时分配三、各章节主要知识点与教学要求第1章序论第一节测量的基本概念一、测量的定义二、测量的意义三、测量技术第二节计量的基本概念一、计量二、单位和单位制三、计量标准四、测量标准的传递第三节电子测量技术的内容,特点和方法一、电子测量二、电子测量的内容和特点三、电子测量的一般方法第四节电子测量的基本技术一、电子测量的变换技术二、电子测量的放大技术三、电子测量的比较技术四、电子测量的处理技术五、电子测量的显示技术第五节本课程的任务重点:测量的基本概念、基本要素;单位和单位制,基准和标准,量值的传递准则。
难点:量值的传递准则教学要求:理解测量的基本概念、基本要素,测量误差的基本概念和计算方法。
理解计量的基本概念,单位和单位制,基准和标准,量值的传递准则。
理解测量的基本原理,信息获取原理和量值比较原理。
理解电子测量的实现原理:变换、比较、处理、显示技术。
第2章测量误差理论与数据处理第一节测量误差的基本概念一、有关误差的基本概念二、测量误差的基本表示方法第二节测量误差的来源与分类一、测量误差的来源二、测量误差的分类第三节测量误差的分析与处理一、随机误差的分析与处理二、系统误差的判断及消除方法三、粗大误差的分析与处理第四节测量误差的合成与分配一、测量误差的合成二、测量测量不确定度及其合成三、误差分配及最佳测量方案第五节测量数据处理一、有效数字处理二、测量结果的处理三、最小二乘法与回归分析重点:测量误差的分类估计和处理,系统误差和粗大误差的判断及处理,不确定度的评定方法。
《电子测量技术基础》教学大纲
《电子测量技术基础》教学大纲一、说明1、课程的性质、地位和任务本课程为两专业的重要技术基础课,是电子信息工程和通信工程各专业课的必需先行课,为学生学习工作所需的专业知识做好准备。
2、教学的基本要求使学生了解和掌握电子测量仪器的工作原理和结构特点、能自己设计和应用测量电路。
基本内容包括模拟和数字的测量仪器、示波器、信号源、频率计、频谱分析仪、失真度测量仪、网络分析仪、逻辑分析仪、虚拟仪器、测量用电路等。
3、本课程的重点与难点重点:本课程的有关基本理论和基本概念;测量方法和数据处理的过程,减小测量误差的措施;常用测量仪器的原理、结构、操作和应用;对于各种被测电量和被测系统采用的不同测量原则和测量电路,及测量结果的表达。
难点:理解数据处理的根据,减小测量误差的方法的依据;理解各种仪器的原理与功能;对于不同测量对象和对测量速度与测量准确度的不同要求采用的不同测量配置与测量方法的掌握。
二、课堂教学时数及课后作业题型分配三、本文第一章绪论【教学目的】通过本章教学,使学生明确本课程的学科性质、基本内容和学习意义,掌握电子测量仪器与应用技术中一些常用术语的涵义及其相互区别,了解本门课程的教学要求和学习方法。
【重点难点】电子测量技术的研究对象及基本内容,测量、计量和电子测量仪器的概念,以及测量方法的意义。
第一节电子测量一、测量二、电子测量第二节电子测量的内容和特点一、电子测量的内容二、电子测量的特点第三节电子测量的一般方法一、按测量手续分类二、按测量方式分类三、按被测量的性质分类四、测量方法的选择原则第四节电子测量仪器概述一、测量仪器的功能二、测量仪器的主要性能指标三、电子测量仪器的分类第五节计量的基本概念一、计量二、单位制三、计量基准四、量值的传递与跟踪,检定与比对【思考题】1.叙述电子测量的主要内容。
2.选择测量方法时主要考虑的因素有哪些?3.叙述直接测量、间接测量、组合测量的特点,各举一两个测量实例。
4.解释偏差式、零位式和微差式测量法的含义,并列举测量实例。
实验32 数字示波器-讲义
fx ny 3 f y 几种方法?
五、实验内容及要求
1、熟悉信号发生器与数字示波器的相关旋钮和使用方法; 2、连接信号发生器与示波器,观察相关波形;
(1)调节信号发生器相关旋钮,分别设置信号为方波、正弦波和三角波,500Hz,5.00Vpp,偏移-2.500VDC,占空
“AutoSet”,在示波器上显示出稳定的波形,示波器显示的时基按钮选择“X-Y”,示波器以李萨如图模式显示; (4)保持 CH1 输入端信号发生器的频率不变(fx=600Hz),调节 CH2 输入端信号发生器的频率,使屏中出现大小
适中的图形,即出现如讲义中所示的李莎如图形,计算出 fy,读出信号发生器上 CH2 输入端信号的频率 fy,比较 fy 和 fy。 利用李萨如图形测频率 (拍照片)
手动测量 以下练习将详细说明手动波形测量方法。 将示波器复位到已知起点,并使用前面板控件创建如下所示的显示。
1
通常,要获得最高的精度,需要在垂直方向上调节波形,以使其尽量填充显示器。在本 练习中,保持如上所示的波形。 按下默认设置 (Default Setup) 前面板按钮 按下自动设置 (AutoSet) 前面板按钮 使用前面板上的垂直刻度 (Scale) 旋钮,将垂直刻度系数调节为 1 V/格; 使用前面板上的垂直位置 (Position) 旋钮,将波形定位到显示器底部; 使用前面板上的水平刻度 (Scale) 旋钮,将水平刻度系数设置为 250μs/格; 练习 通过计算刻度上的垂直格数,并用格数乘以垂直刻度系数,确定信号的幅度。
值值值值值值值值值值值值
信号
1
6
绝对 误差 信号 2 绝对 误差
4、利用李萨如图形测信号频率 (1)调节信号发生器相关旋钮,设置两个信号为正弦波; (2)按下信号发生器面板上输出按钮“output”,信号经信号线输出; (3)将两信号发生器分别从示波器的 CH1 输入端和 CH2 输入端输入,按下示波器面板上自动设置按钮
示波器基础知识.
仪器显示的信号上升时间= 3.5ns2+0.7ns2 =3.5692ns
测量误差=(3.569ns-3.5ns)/ 3.5ns=0.0198=2% (选择示波器的5倍法则)
5 倍准则 (The 5 times rule)
带宽与最高频率
RIGOL
示波器所需带宽=被测信号的频率× 5
示 波 器 带 宽
波
几种典型的波
RIGOL
调幅波
调幅又程为振幅调制。它是用调幅信号去控制高频载 波的振幅V,使其随调制信号的变化而变化。
调幅波
波
载波
F(t)=E(1+mcosΩ t)cosabt
调制波
RIGOL
调频波
调频又称频率调制。它是用调制信号去控制高频载波 信号的角频率,使其随调试信号变化而变化。
调幅波
波
载波
RT(上升时间)=0.35/BW
示 BW系统= BW示波器2+BW探头2 RT系统= RT示波器2+RT探头2 波
器 RT测量= RT系统2+RT信号2
误差(RT)=( RT信号- RT测量)/ RT信号
带
宽
由上式可知,当探头带宽过低时(低于示波器的带宽)将影响到
整个测量系统的带宽,从而影响信号的一些测量参数的精确度。
种综合的信号特性测试仪,是电子测量仪器的基本种类。
示 用途
波
电压表,电流表,功率计
器 概
频率计,相位计
述
脉冲特性,阻尼振荡
应用
电子,电力,电工
压力,振动,声,光,热,磁
对象
高校实验室,研发单位,生产企业,维修团体
示波器类型
RIGOL
模拟示波器
示
数字存储示波器=数字示波器
数字示波器的基本原理
数字示波器的基本原理数字示波器(Digital Oscilloscope,简称DSO)是一种用于测量和显示电压信号随时间变化的仪器。
它将输入的模拟电压信号经过采样和转换,转化为数字信号进行处理和显示。
数字示波器的基本原理是首先将输入的模拟信号经过模拟前端,包括放大、滤波等处理,然后将模拟信号转换为数字信号。
这个过程是通过采样和量化来实现的。
采样是指周期性地对输入信号进行测量,将连续的模拟信号转化为离散的样本,即在固定的时间间隔内获取一串离散的电压值。
量化则是指将采样得到的连续电压值转化为离散的数值,将其映射到一个特定的数字编码上,这个数字编码代表了该采样时刻的电压值。
采样定理是数字示波器采样过程的基础。
根据采样定理,对于输入信号具有的最高频率f_max,需要以大于其两倍的采样频率f_s进行采样,即f_s>2*f_max。
这是为了避免采样过程中出现混叠现象,保证采样后的数字信号能够准确地还原输入信号的频率特性。
数字示波器还包括一块内存区域,用于存储连续的采样值。
当一次采样完成后,数字信号会按照一定的速率(采样率)传递到内存中,然后在显示屏上逐点绘制出电压随时间变化的图形。
为了实现快速的显示更新,数字示波器通常使用硬件加速技术和缓存机制来提高显示帧率和响应速度。
除了基本的波形显示功能,数字示波器还常常具备触发功能,用于捕捉特定的波形事件。
通过设置合适的触发条件,可以指定在特定电压、时间等条件下进行采样和显示。
触发功能可以帮助用户抓取并显示稳定的波形信号,从而更好地进行信号分析和故障诊断。
综上所述,数字示波器的基本原理包括模拟信号处理、采样和量化、存储和显示等过程,使得用户能够通过数字形式直观地观察和分析电压信号的变化。
阐述数字示波器的功能、原理
阐述数字示波器的功能、原理数字示波器是一种用于观测和测量电信号的仪器,广泛应用于电子、电力、通信、工业自动化等领域。
它能够将模拟信号转换为数字信号,并通过计算机技术对信号进行数据处理和显示。
数字示波器的功能数字示波器具有以下主要功能:1.信号捕获:数字示波器能够捕获和记录各种信号,包括模拟信号和数字信号。
它可以通过探头或电缆连接到被测设备,并快速准确地捕获信号。
2.信号显示:数字示波器可以将捕获的信号以图形形式显示在屏幕上,便于用户观察和分析信号的波形和特征。
3.测量和分析:数字示波器可以对信号进行各种测量和分析,包括幅度、频率、相位、时间等参数。
它还可以进行波形运算,如求和、差分、积分等。
4.数据存储和传输:数字示波器可以将捕获的信号和测量结果存储到内置存储器或外部存储设备中,方便用户进行数据分析和处理。
它还可以通过USB、LAN等接口将数据传输到其他计算机或设备中。
5.其他功能:数字示波器还具有其他一些高级功能,如自动测量、触发同步、FFT频谱分析等,进一步提高了测量和分析的精度和效率。
数字示波器的原理数字示波器的工作原理可以分为以下几个步骤:1.信号采集:数字示波器使用高速采样器和AD转换器来捕获和转换模拟信号为数字信号。
采样器按照设定的采样率对信号进行采样,AD转换器将采样值转换为数字信号,然后送入计算机进行处理。
2.数据处理:计算机接收到采样数据后,通过内置的算法对数据进行处理和分析。
这包括波形重建、FFT频谱分析、波形运算等。
处理后的数据被存储在内存或硬盘中。
3.显示输出:数字示波器使用LCD或CRT等显示技术将处理后的数据显示在屏幕上。
用户可以通过调节显示参数、设置触发条件等操作,观察和分析信号的特征和变化。
4.控制和操作:数字示波器通常配备有各种控制和操作按钮,如开始/停止采集、触发方式选择、幅度/时间刻度调节等。
用户可以通过这些按钮对示波器进行控制和操作。
5.系统集成:数字示波器还可以与其他测试仪器和设备集成,如电源、信号发生器、逻辑分析仪等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量系统上升时间 = 探头上升时间2+测量仪表上升时间2 测量所得的上升时间= 信号上升时间2+测量系统上升时间2
1、探头的上升时间应快于示波器的上升时间。 2、示波器的上升时间应快于被测量信号的上升时间。
例:使用100Mhz探头和100Mhz示波器组成测量系统, 测量上升时间为3.5ns的方波信号,系统带宽为多少? 测量误差是多少?
预触发
预触发是一个有价值的处理故障的工具,如果故障间歇地 发生,可以利用预触发来解决这样的问题,记录故障发生 前的事件,很可能找到原因, 由于电路器件对信号的延时效应,其他方面应用如 :开关 特性输入和输出瞬态特性,以输出信号触发来观看研究输 入的小信号。
20M显示
波形面目 全非
结论:通常为了使信号的高频成分基本不衰减地显示, 示波器的带宽至少应为被测信号中最高频率的三或五倍 倍以上。
2)波形刷新(捕获)率
• 刷新率是指1秒内示波器捕获波形的次数 • 刷新率的高低直接影响波形捕获偶然事件发 生的概率。
波形n
死区时间
波形n+1
死区时间
波形n+2
数字存储示波器(DSO)使用串行处理机制,每秒钟 可以捕获10到5000个保证每次时基扫描或采集的时候,都从输入信号上相 同的触发条件开始,这样每一次扫描或采集的波形就 同步,使得每次捕获的波形相重叠,从而显示稳定的 波形。
触发设置是使用示波器最麻烦的一点:
1、示波器设置都是依据信号特征进行的,所以应该对被测信号 有所了解。
2、示波器提供了许多触发设置方式,这些触发器(功能)可以 响应输入信号的不同条件,根据波形特征加以设定和正确应用。 3、高级触发控制使你可以单独关注波形中感兴趣的细节,这样 可以使示波器采样速率和记录长度得到优化。 4、触发器:边缘(电压门限)、释抑、脉冲、逻辑、视频、B触 发等。 5、触发模式:自动、正常、单次、滚动模式等
预放大
A/D转换
存储装置
D/A转换
垂直输出放大
数据处理
CRT
触发
时钟时基
D/A转换
水平输出放大
当前的一般结构
数字存储示波器工作过程一般分为存储和显 示两个阶段。 • 在存储工作阶段,将模拟信号转换成数字化 信号,在逻辑控制电路的控制下依次写入到 RAM中。 • 在显示工作阶段,将数字信号从存储器中读 出并显示
示波器测量系统带宽
• 探头也是仪器,它和示波器共同组成测量系统。 • 该系统带宽将影响被测信号如正弦波、脉冲和方 波的幅度和上升时间的测量精度,如果探头选择 不当,测量结果准确性无法保证。 • 探头和示波器上升时间和带宽的关系由下式决定: T上升=0.35/BW 或 BW=0.35/ T上升 (适合于1G以下示波器,对带宽1Ghz以上示波器 取0.4~0.45)
对于示波器来说,波形刷新率高,就能够组织更 大数据量的波形质量信息,尤其是在动态复杂信号和 隐藏在正常信号下的异常波形的捕获方面,有着特别 的作用。
3)采样率
• 指示波器按照一定的时间间隔将模拟信号转 换为数据,并且顺序存储的过程。 • 采样率 = 1 / △t
△t
采样率过低的后果:
• 波形混淆
触发位置
数字示波器的一个最显著特点在于它容许用户观看触发前 的事件。这是因为数据被连续地存储到内存中,同时触发 事件在数据量足够后停止采集。
只有数字示波器才有触发位置控制,它代表的是波形记录 中的水平位置。 变更水平触发位置,可以允许你采集触发事件以前的信号, 称为预触发。这样,可以确定触发点前面部分和后面部分 所包含的可视信号的长度。
非实时采样:
对输入信号进行跨周期采样.将高频(>1000MHz)的 重复性周期信号,经过采样变换成低频的重复性信号.
在取样示波器中采用此技术,以提高示波器的带宽.
缺点:不能观测非重复的高频信号或单次信号 非实时采样方式有序列式采样和随机采样两类
31
序列式采样:有序地从一个波形中的每一个被捕获的周期中采
等效采样特点: 需要经过多次触发才能采集到信号的所有资料 对信号的要求:信号必须重复并且稳定,如信号 变化(如幅度)将造成显示混乱。 等效技术示波器,只适用捕获重复稳定信号,对 捕获非重复信号和单次信号的能力不足。 示波器标定带宽=重复信号带宽 瞬态(单次) 信号带宽。
34
4 波形重建(复现)
样一个点.采样有序地进行,直到获得足够的点以填满存贮器.
3 2 1 T ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 4 5 6 7 7∆t 8
t1
t2 2
t3 3
t4 4
t5 5
t6 6
t7
t8
1
7
随机采样:按一个随机序列来获取的需要的点.这个序 列的采样点与存入存储器的位置相对应,而后又按照触 发时刻重新组合.
重要结论:
• 示波器系统带宽不足引起上升时间慢和异常幅度衰减
例:使用100Mhz的示波器系统进行测量100Mhz正弦波,可得 测量显示的信号与被测信号的误差为30。
• 改善和提高测量精度只能提高示波器系统带宽 • 为了获得正确的振幅测量,示波器的带宽应该比被测 量的波形的频率大5倍(此结论不绝对)。
1024 r 10.24 S / s 10.24 MHz 或10.24 MS / s 10 10
(4)分辨率
包括垂直分辨率(电压分辨率)和水平分辨 率(时间分辨率)。 • 垂直分辨率与A/D转换器的分辨率相对应, 常以屏幕每格的分级数(级/div)或百分数来 表示。 • 水平分辨率由存储器的容量决定,常以屏幕 每格含多少个取样点或用百分数来表示。
实时采样:一个信号的所有采样点只有在单一的信号获取段
中取得. 采样速率必须足够高(采样定理).
实时取样技术可以获取非重复性或单一的短暂事件.采样率超过模
拟带宽4-5倍或更高。
输入重复信号 第一次采集
第二次采集
实时采样
实时采样特点:
• 只需一次触发即可采集到信号所有资料 • 对信号的要求:可允许信号变化 • 实时采样技术示波器,不仅适用捕获重复信号、 而且是捕捉非重复信号和单次信号的有效技术, 是捕获隐藏在重复信号中的毛刺和异常信号的 前提条件。
第四章 电子示波器—— 数字存储示波器
示波器主要技术指标补充: 带宽是示波器的首要规格参数
放大器的模拟带宽决定了示波器的带宽;放大器 是信号进入示波器的大门,它的带宽决定了示波 器的带宽,示波器能请进什么样的信号由这个大 门来决定。 示波器所谓带宽是指: 垂直放大器的频率响应,定义为:随着正弦波频 率增加,信号幅度下降3dB(70.7%).在此频点 为示波器的带宽
由于采样率低于实际信号频率的2倍(奈奎斯特频率)时,对 采样数据进行重新构建时出现的波形的频率小于实际信号频 率。
• 波形漏失: 由于采样率低而造成没有反映全部实际信号
脉冲消失
波形失真:
• 波形失真是由于某些原因导致示波器采样 显示的波形与实际信号存在较大的差异。
示波器采样率决定: 1.窄脉冲和毛刺信号精确捕获和复现能力
回顾上次实验AUTO和NORMAL开关对波形显示影响! • 单次:当输入的单次信号满足触发条件时,进行捕获(扫描), • 滚动:可以应用于全连续显示的方式,可以用示波器来代替图
将波形存储和显示在屏幕上。此时再有信号输入示波器不予理会。 需要进行再次捕获必须进行单次设置。
表记录仪来显示慢变化的现象,如化学过程、电池的冲放电周期 或温度对系统性能的影响等。
波形重建的方法主要是指波形再现的插值算法。
线性内插:在相邻采样点直接连接上直线,局限于直边缘信 号。 正弦内插:(SinX/x)利用数学处理,在实际样点间隔中运 算出结果。这种方法弯曲信号波形,使之产生比纯方波和脉冲 更为现实的普通波形。 使用正弦内插,一般要求采样速率为信号最高频率的2.5倍 (常取5倍) 使用线性内插,一般要求采样速率为信号最高频率的10倍 正弦内插 线性内插
输入重复信号 第一次触发采集 第二次触发采集 第三次触发采集 第四次触发采集
需要经过多次次触发才能采集到信号的所有资料 对信号的要求:信号必须重复并且稳定,如信号变化(如幅度)将造 成显示混乱。 等效技术示波器,只适用捕获重复稳定信号,对捕获非重复信号和单 次信号的能力。以及是捕获隐藏在重复信号中的毛刺和异常信号的能 33 力。将受到实时采样率的限制。 示波器标定带宽=重复信号带宽 瞬态(单次)信号带宽。
2.数字示波器的若干指标
1)带宽(特别关键指标)
带宽不够通常会产生什么明显后果?
高频信号幅度下降 信号高频成分消失
下图说明一50MHz的方波在不同的四种数字示波器上 进行观测的结果:
500M有
高频细节, 上升时间 快
150M高
频信号细 节丢失, 上升时间 减慢
100M上
升时间变 慢,幅度有 衰减
仪器上升时间:信号上升时间
1:1 2:1 3:1 4:1 5:1 7:1 10:1
信号上升时间读值测量误差
41% 22% 12% 5% 2% 1% 0.5%
数字存贮示波器
(DSO,Digital Storage Oscilloscope)
回顾模拟示波器结构
1.数字存储示波器基本结构(早期)
结论:如果在实际的测量中,比较重视观测信号的精确信息, 建议采样率要在信号带宽的五倍以上,最好能在八到十倍
• 一般情况下,DSO的采样速率是随时基 设置的不同而改变的。二者之间的关系 是: 所记录波形的长度 采样速率 时基单位 扫描长度 例如,某DSO有1024个波形记录寄存 单元,扫描长度为10个单位刻度,而时 基设置为10μs/div,那么采样速率为
数字示波器时基和触发电路功能
CH1 AC
DC A/D
存储器
uP
存储 显示