mimics颈椎建模详细过程
mimics应用教程
mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA(有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
mimics建模教程
人体股骨远端和胫骨近端模型的mimics反求设计3.3.1数据采集股骨远端和胫骨近端的数据采集工作是在天津某医院完成的。
选取正常男性健康志愿者,年龄31岁,身高1.72米,膝关节无疾病及畸形。
对于其右侧膝关节行CT扫描。
扫描层厚1mm,扫描层数199层。
得到连续横断面图像以及矢状面图像。
所得DICOM数据资料通过工作站传输到移动硬盘,作为膝关节重建数据来源。
3.3.2数据预处理将扫描好的CT数据拷贝到计算机上,通过“File”菜单下“Import images”导入扫描图片,如图3-34所示,选择需要的图片数据并打开。
图3-34 MIMICS数据导入界面点击“Next”按钮,如图3-35所示,选中想要进行的转换项目(其中包含图片数量、像素大小、图片类型、定位参数等),点击“Convert”按钮,完成转换。
设置“定位参数”,界面如图3-35所示。
图3-35 图片转换和定位参数的设定导入并完成图片的转换之后,MIMICS软件会自动计算并生成冠状面图和矢状面图。
如图3-34所示,软件用三个视图来显示这三个位置的图片,并且这三个视图是相互关联的,可以通过鼠标和定位工具栏快速定位。
右上角的图是原始的扫描图像;左上角和下角是由原始横断面图像计算生成的冠状面和矢状面图像。
红线指示横断面图像的位置;黄线指示冠状面图像的位置;绿线指示矢状面位置。
由于扫描的CT 图片太多,在重建三维模型时必定过于繁琐,需要通过“Orangize images”命令简化CT 图片,不需要的图片将不会在项目中出现,这样可以减少工作量,节省计算机资源,提高建模效率。
3.3.3 股骨远端模型的构建图3-36 MIMICS 建模工具栏在这里详细介绍股骨远端模型的构建过程。
主要使用的命令如图3-36所示。
1. 阈值分析断层图片中,不同组织的灰度值不同,因此通过阈值来提取相应的组织,利用软件自带的“阈值设定”(Threshold)选择需要重建的模型。
mimics应用教程
mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA(有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
mimics教程
mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA(有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
颈椎三维有限元模型的建立
颈椎三维有限元模型的建立薄雪峰;陈赞;王辉;钱秀清;黄菊英;张昆亚;宋红芳;刘志成【期刊名称】《北京生物医学工程》【年(卷),期】2014(033)005【摘要】目的建立颈椎(C2~ C7)三维有限元模型.方法根据1名既往无颈椎病史健康成年男性志愿者的颈椎断层CT扫描序列图像,采用Mimics1 3.1、SolidWorks2012软件进行三维重建和造型,利用ANSYS14.0软件,采用四面体网格划分方法,对颈椎及周围组织赋予不同的材料属性,建立颈椎(C2 ~C7)三维有限元模型.结果本研究成功建立了6个椎体运动节段的三维有限元模型,模型高度模拟颈椎结构与材料特性,单元划分精细.在建立的模型上加载模拟脊柱的前屈、后伸、左右侧曲、左右旋转6种工况下的生理活动,所获得的理论分析结果与参考文献的报道一致.结论建立的颈椎三维有限元模型可进行颈椎生物力学研究.【总页数】5页(P452-455,501)【作者】薄雪峰;陈赞;王辉;钱秀清;黄菊英;张昆亚;宋红芳;刘志成【作者单位】首都医科大学生物医学工程学院,北京100069;首都医科大学宣武医院,北京 100053;首都医科大学生物医学工程学院,北京100069;首都医科大学生物医学工程学院,北京100069;首都医科大学生物医学工程学院,北京100069;首都医科大学生物医学工程学院,北京100069;首都医科大学生物医学工程学院,北京100069;首都医科大学生物医学工程学院,北京100069【正文语种】中文【中图分类】R318.04【相关文献】1.全颈椎三维有限元模型的建立及旋转牵引疗法研究 [J], 刘治华;汤清;陶德岗;张新民;杨孟俭2.横韧带损伤的上颈椎不稳定三维有限元模型的建立研究 [J], 余洋;蔡贤华;张美超3.颈椎C2~7三维有限元模型的建立与最优角度牵引仿真研究 [J], 刘治华;许伟超;张新民;刘博见4.神经根型颈椎病C3~C7三维有限元模型的建立与意义 [J], 曹盛楠;师彬;孙国栋5.一种新型颈椎前路可固定式钛笼三维有限元模型的建立 [J], 徐成;张超;巨圆圆;李超因版权原因,仅展示原文概要,查看原文内容请购买。
mimics建模步骤
具体的建模步骤如下:第一步,将现有的ct数据导入mimics是通过以下的步骤:导入ct数据得到下图这里的图像以mimics自带的图像为例。
第二步,进行阈值分析,点下图右下角的按钮在股骨头的部分画一条线,出现下图点弹出对话框上的start threholding,如下图绿色显示的是根据ct图像灰度所生成的阈值,一般不需要调节,但如果你觉得边界不是分割的很清楚的话可以适当调整一下。
点close后,点上面对话框的apply,然后切换上面的表单到如图所示状态点这个按钮,然后在图中绿色的股骨头上点一下,记住,是股骨头,如下图第三步,对模型进行处理。
点close,这时生成的股骨中间有很多的空洞,这在后面的ansys处理中会有很大的麻烦,所以就要求你仔细的一幅一幅的ct图片进行修改,就是把股骨中间有空的地方添满。
点下图右下角的按钮,下面的两张图是经过处理和处理之前的差别,股骨头上面的空洞没有了。
空洞的产生是由于ct阈值的差别造成的,并不是原来就有的,因此这样处理不影响后续计算。
上面的工作是细活,要有耐心然后点建立三位模型点calculate得到三维图形,这时的图形只是面,而不是体如图点击进入migics9.9点 smooth进行光滑处理后,exit并保存,只需要点弹出对话框的yes系统自动退回到mimics点export如图,导出ansys文件在ansys中划分网格后就可以导入mimics赋值了。
注意:这里必须选ansys area files如果选element划分网格就困难了。
导入ansys进行划分网格后保存文件。
将模型另存为一个文件名,在这里是hipout。
点击下图按钮弹出对话框如下图,选择ansys file导入后,点击materials按钮弹出对话框,设置数据如下图(单位密度是HU,e模量是MPa)系统运算后生成的模型就是下图利用下图弹出对话框按照图示进行设定。
打开ansys,注意ansys的工作目录必须和存放文件的地址一致。
mimics教程
mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA (有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
mimics教程
mimics 教程第一单元什么是 MimicsMimics 是 Materialise 公司的交互式的医学影像控制系统,即为 Materiaise's interactive medical image control system. 它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS 软件介绍MIMICS 是一套高度整合而且易用的 3D 图像生成及编辑处理软件,它能输入各种扫描的数据(CT 、MRI),建立 3D 模型进行编辑,然后输出通用的 CAD (计算机辅助设计) 、FEA (有限元分析), RP (快速成型) 格式,可以在 PC 机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD 模块是医学影像数据与 CAD 之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与 CAD 数据的相互转换。
在 MIMICS 的项目中建立 CAD 项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下, MIMICS 自动在分离出的掩模上生成轮廓线, MEDCAD 能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学 CAD 模型中。
创建的 CAD 模型的可能方法:-B 样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以 iges 格式输出到 CAD 软件中制做植入体,另一个典型的运用是用 MEDCAD 模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式 CAD 建模可在 2D 或 3D 视图中直接创建 CAD 对象,或者用参数设置的方式创建 (如定义圆心、半径来创建一个圆) ,创建后可用鼠标进行交互式编辑。
方便设计验证:为验证 CAD 植入体的设计, MIMICS 输入 STL 文件格式在 2D 视图及标准视图中显示,或在 3D 视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在 CAD 设计软件中的调用。
mimics颈椎建模详细过程
1.材料与方法此步骤将使用本课题组合作单位购买得Mimics16、0软件构建C0、C1、C2、C3四个骨性结构得初步三维模型,再利用其3-Matic得功能将骨性模型及本课题组得仿生关节得三维模型重新划分网格来修正模型,然后将修正过得三维模型倒入Geomagic12、0软件进行进一步处理,以使模型能符合有限元分析得要求。
1.1利用Mimcs16、0从颈椎CT图像建立枕骨(C0)、C1、C2、C3骨性结构得初始三维模型将本课题组原有得颅底及全颈段CT断层扫描图像294张,层距1、25mm,导入Mimics16、0软件,确定图像得前后、左右、上下得正确方位,使用软件得Pro及阈值分割功能选择出骨组织得灰度阈值,最小为226,最大为3071,如图1-1。
由于阈值分割只会选择出阈值范围内得物体,并不会自动识别颈椎结构,而且原始得CT 数据就是包含了患者背后得金属板得,因此阈值分割选出来得并不就是我们想要得颈椎结构。
所以我们使用区域增长得功能单独选出颈椎及下颅骨得结构,如图1-2。
区域增长后得颈椎结构被用黄色填充,包括有皮质骨与松质骨,但就是这些区域显示并不完善,有得在松质骨区有很多空洞,而且各个椎骨之间并未分隔开,因此我们使用软件自带得编辑工具调整修饰所有断层图片,解决上述问题,然后采用Calculate 3D功能建立三维模型,得到C0、C1、C2、C3骨性结构得初步三维模型,如图1-3。
流程图如1-4所示。
1、2 使用3-Matic修洁三维模型通过上述步骤获得得枕骨及上颈椎(C0、C1、C2、C3)得三位模型就是由一个相当粗糙得模型,有许多尖刺、不平滑得结构及生理颈椎不存在得结构,这就是将CT数据转化为三维模型必然会出现得结果。
而且此三维模型划分得网格实际上就是一个面网格结构,有许多三角片,有许多实际结构中不存在得空洞以及杂乱得三角片这种模型就是不能直接进行有限元分析得,也不能用于Geomagic12、0得处理。
mimics中文版教程(持续更新版0812)
第二章Mimi本教程的第二个例子中,我们将为你展示Mimics的一些基本功能,所要讨论的主题如下:●打开工程Opening the Project●窗口化Windowing●二值化Thresholding●区域增长Region Growing●建立3D表示Creating a 3D representation●显示3D表示Displaying a 3D representation●STL+过程STL+ Procedures●生成STL文件Generating a STL file●RP分层过程RP Slice procedures●生成一个轮廓文件Generating a contour file●生成支持文件Generating supports●结果视图View of the end result1.打开工程在文件菜单栏中,选择打开工程选项(或者直接用快捷键Ctrl+O),打开对话框中将显示工作目录中所有工程,双击打开mimi.mcs文件。
所有的图片都被打开并显示在三个视图中,右边视图是轴视图(xy-view或者axial view),左侧上面的视图是前视图(xz-view或者coronal view),左侧下面的视图是侧视图(yz-view或者sagittal view)。
不同颜色的交叉线代表了每个视图的等高线(contour lines),每条指示线能够标记相关视图的切片。
你可以在任意视图的CT图片的任意位置直接用鼠标点击你想要操作的位置,交叉线的位置将会到达你所点的位置,所有试图将更新显示为相关的切片。
如果视图中有些方位标记有错需要修改,在File > Change Orientation中打开窗口你可以通过右键鼠标选择正确的方位。
在菜单栏View > Indicators中可以选择分别关闭刻度线(Trick Marks)、交叉线(Intersection Lines)、分片位置(Slice Position)、方位字符(Orientation strings)指示器。
mimics教程
mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA(有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
mimics颈椎建模详细过程
1.材料和方法此步骤将使用本课题组合作单位购买的Mimics16。
0软件构建C0、C1、C2、C3四个骨性结构的初步三维模型,再利用其3—Matic的功能将骨性模型及本课题组的仿生关节的三维模型重新划分网格来修正模型,然后将修正过的三维模型倒入Geomagic12.0软件进行进一步处理,以使模型能符合有限元分析的要求.1.1利用Mimcs16.0从颈椎CT图像建立枕骨(C0)、C1、C2、C3骨性结构的初始三维模型将本课题组原有的颅底及全颈段CT断层扫描图像294张,层距1.25mm, 导入Mimics16。
0软件,确定图像的前后、左右、上下的正确方位,使用软件的Profile Line及阈值分割功能选择出骨组织的灰度阈值,最小为226,最大为3071,如图1-1。
由于阈值分割只会选择出阈值范围内的物体,并不会自动识别颈椎结构,而且原始的CT 数据是包含了患者背后的金属板的,因此阈值分割选出来的并不是我们想要的颈椎结构。
所以我们使用区域增长的功能单独选出颈椎及下颅骨的结构,如图1-2。
区域增长后的颈椎结构被用黄色填充,包括有皮质骨和松质骨,但是这些区域显示并不完善,有的在松质骨区有很多空洞,而且各个椎骨之间并未分隔开,因此我们使用软件自带的编辑工具调整修饰所有断层图片,解决上述问题,然后采用Calculate 3D功能建立三维模型,得到C0、C1、C2、C3骨性结构的初步三维模型,如图1-3。
流程图如1—4所示。
1。
2 使用3-Matic修洁三维模型通过上述步骤获得的枕骨及上颈椎(C0、C1、C2、C3)的三位模型是由一个相当粗糙的模型,有许多尖刺、不平滑的结构及生理颈椎不存在的结构,这是将CT数据转化为三维模型必然会出现的结果。
而且此三维模型划分的网格实际上是一个面网格结构,有许多三角片,有许多实际结构中不存在的空洞以及杂乱的三角片这种模型是不能直接进行有限元分析的,也不能用于Geomagic12.0的处理.所以需要使用Mimics16。
mimics实例
断层扫描图像的三维重建及快速原型制造断层扫描图像的三维重建及快速原型制造引言:快速原型技术经过20多年的发展,已经发展得相当成熟。
目前CT、MRI等断层扫描技术在诊断方面应用相当广泛。
但是这些断层扫描的图片有其本身的局限性,二维图片往往让外科医生不能很好的对病理进行分析。
翻阅大量的序列断层图片,不及将这些图片三维重建,将实体模型拿在手上进行分析得到的信息多。
比利时Materialise公司开发的Mimics是连接断层扫描图片与快速原型制造的桥梁。
图片的导入针对目前标准的DICOM文件格式,Mimics提供了自动的导入功能。
用户只需要在导入向导的指引下就可以导入整个目录下的文件或是部分文件。
同时,还可以通过半自动的方式导入BMP和TIFF文件,手动的方式导入其他的文件。
组织的提取及三维重建导入原始的断层图片后,MIMICS会自动计算生成冠状面图和矢状面图。
Mimics 用三个视图来显示这三个位置的图片,并且这三个视图是相会关联的,可以通过鼠标和定位工具栏快速定位,如图1所示。
右上角的图是原始的扫描图像,左上角和下角是由原始横断面图像计算生成的冠状面和矢状面图像。
红线指示横断面图像的位置,黄线指示冠状面图像的位置,绿线指示矢状面位置。
图1 Mimics的用户界面断层图片中,不同组织的灰度值不同,故此可以通过阈值来提取相应的组织,如图2所示。
图 2 设置恰当的阈值提取组织从图中可以看出,着色的象素其灰度值落在阈值之间,故其被提取。
准确的设置阈值是提取组织的关键,阈值提取组织的时候,可以通过看图,检查提取的组织是否合适。
图3-A的阈值左区间设置得太低,故而提取了许多噪点。
图3-B的阈值左区间设置得太高,故而有许多骨组织丢失。
图3A 左侧阈值设置太低图3B左阈值设置过高Mimics会将提取的象素存放在一个蒙罩(Mask)里,同时Mimics提供一系列的工具编辑修改蒙罩,从而提取所需的组织。
编辑好的蒙罩可以用来生成3D模型,这样就实现了2D断层扫描图片到三维实体的转换,如图4所示。
正常人体下颈椎有限元模型的建立及验证
正常人体下颈椎有限元模型的建立及验证孙玙;王诗成;杨水泉;王新家【摘要】目的建立解剖结构较为精确的下颈椎三维有限元模型并验证其有效性。
方法采用正常成人颈椎CT图像建立C4-C5-C6有限元模型。
在屈伸、侧弯、轴向旋转加载条件下绘制模型的力矩-位移曲线,计算曲线在实验生物力学模型所建立的力矩-位移标准差范围中所占的百分比。
结果和结论建立了正常颈椎C4-C5-C6节段有限元模型,力矩-位移曲线在标准差范围中所占的百分比平均为90%。
%Objective To develop and validate an anatomic detailed finite element model of the lower cervical spine. Methods The fi-nite element model of C4-C5-C6 was constructed using lower cervical spine (C4-C5-C6) CT images of a young healthy man. This model was validated against the standard deviation corridors of experimental data for normal, nondegenerated cervical spines tested in flexion and ex-tension, right and left lateral bending, and right and left axial rotation under physiological loading. Percent of load range deviation was intro-duced to measure the deviation of the model from the standard deviation corridors of experimental data. Results and Conclusion A finite el-ement model of young normal lower cervical spine has been developed and validated. The average percentage of load range was within 90%of standard deviation corridor.【期刊名称】《中国康复理论与实践》【年(卷),期】2013(000)007【总页数】4页(P631-634)【关键词】颈椎;有限元分析;生物力学【作者】孙玙;王诗成;杨水泉;王新家【作者单位】佛山市三水区人民医院,广东佛山市528100;佛山市三水区人民医院,广东佛山市528100;佛山市三水区人民医院,广东佛山市528100;汕头大学医学院第二附属医院,广东汕头市515041【正文语种】中文【中图分类】R681.5[本文著录格式] 孙玙,王诗成,杨水泉,等.正常人体下颈椎有限元模型的建立及验证[J].中国康复理论与实践,2013,19(7): 631-634.下颈椎是颈椎中活动范围最大的部位,也是最容易发生椎间盘变性、关节增生等退行性变的部位。
Mimics 软件教程 最完整版
94
股骨和植入物的重熔
股骨和植入物现在必须在 3-matic 中修复。要执行此操作,请转到 FEA 菜单并选择 Remesh。这将显示以下对 话框:
93
切割方向仍可以修改。当光标停留在红色箭头的中心时 更改为重定位图标,按住鼠标左键。通过移动鼠标,可以更改切割平面的方向。
按住鼠标左键可更改切割平面的方向。 要完成切割,切割平面应完全穿过骨骼。因此需要增加深度。在“使用多平面切割”对话框中,单击“属性”。在“属 性”对话框中,将深度更改为 50 mm。
2。每次从“文件”菜单中选择“导入图像”,计算机都会重新启动。 导入图像时,MIMICS 会尝试联系已连接的 SCSI 设备。它导致问题的原因是这些设备中的一个(或多个)发出 错误消息。在 mimics 中,有一个功能可以阻止来自某些设备的消息,这样这个问题就不会再发生了。打开“模 拟”,然后从“文件”菜单中选择:“选项”->“高级 SCSI”。在出现的对话框中,禁用启用 SCSI 复选框。单击“确 定”,重新启动模拟,然后再次尝试导入。
95
选择植入物和股骨轴,然后单击“确定”。模拟记忆将打开,显示三个选项卡,三维视图,植入物的检查场景,股 骨的检查场景。 我们将首先结合股骨轴和植入物。然后再对组合网进行重熔和分离。
创建非歧管组件
非流形组件是一个具有多个部分的对象,例如在本例中植入物放置在切割的股骨内。这个物体有一个共同的界 面,在我们的例子中是股骨植入界面。创建这样的对象时,希望两个部分的公共曲面相同。为此,我们使用创 建非流形装配操作。此操作将两个网格合并为一个网格,并在接口处保持节点连续性。 转到三维视图,然后从“重读”菜单中选择->创建非歧管组件(或使用 在重熔工具栏中创建非流形部件图标)。 作为主要实体,通过左键单击股骨选择股骨轴。现在单击相交实体并选择植入物。单击“应用”组合两个网格
3岁儿童C4-C5颈椎有限元模型开发及拉伸、弯曲验证
3岁儿童C4-C5颈椎有限元模型开发及拉伸、弯曲验证曹立波;魏嵬;张冠军【摘要】基于CT扫描,建立具有精确骨骼几何及详细椎间盘解剖学结构的3岁儿童C4-C5颈椎段有限元模型;参考成人颈部生物材料实验数据及相关成人与对比研究结果,采用缩放方法计算得到3岁儿童颈部组织材料参数;分别在准静态、动态拉伸以及准静态弯曲-伸展、侧向弯曲及轴向旋转载荷条件下,对模型进行验证.结果显示,准静态拉伸刚度为211.8 N/mm,动态拉伸最终失效力为759.9 N,最终失效位移为5.08 mm,均与实验值吻合良好;准静态伸展、弯曲、侧向弯曲及轴向旋转运动范围分别为9.75°、9.29°、3.79°和7.04°,均在实验基准数据允许的误差范围内,吻合良好.结论表明:该模型能较好地反映3岁儿童C4-C5颈椎段在准静态、动态拉伸以及准静态弯曲-伸展、侧向弯曲和轴向旋转载荷下的生物力学特性,具有较高的生物逼真度.【期刊名称】《中国生物医学工程学报》【年(卷),期】2015(034)001【总页数】9页(P37-45)【关键词】儿童颈椎;生物力学;有限元;准静态;验证【作者】曹立波;魏嵬;张冠军【作者单位】湖南大学汽车车身先进设计制造国家重点实验室,长沙410082;湖南大学汽车车身先进设计制造国家重点实验室,长沙410082;湖南大学汽车车身先进设计制造国家重点实验室,长沙410082【正文语种】中文【中图分类】R318引言在交通事故中,儿童脊柱损伤造成的死亡率高达16%~41%,且儿童脊柱损伤约有75%发生在颈椎段[1]。
儿童颈部与成人颈部在解剖学、形态学等方面存在明显差异,如更松弛的颈部韧带、更纤细的颈椎骨骼等。
这些差异都将增加儿童颈部的损伤风险[2-4]。
此外,颈部作为连接头部的重要解剖学结构,其动力学响应直接影响头部响应,因此儿童颈部生物力学研究对儿童颈部损伤防护及头部损伤机理的研究都至关重要。
mimics10教程
mimics教程第一单元什么是MimicsMimics是Materialise公司的交互式的医学影像控制系统,即为Materiaise's interactive medical image control system.它是模块化结构的软件,可以根据用户的不用需求有不同的搭配。
下面是这些模块的介绍:MIMICS软件介绍MIMICS是一套高度整合而且易用的3D图像生成及编辑处理软件,它能输入各种扫描的数据(CT、MRI),建立3D模型进行编辑,然后输出通用的CAD(计算机辅助设计)、FEA (有限元分析),RP(快速成型)格式,可以在PC机上进行大规模数据的转换处理。
MEDCAD模块:MEDCAD模块是医学影像数据与CAD之间的桥梁,通过双向交互模式进行沟通,实现扫描数据与CAD数据的相互转换。
在MIMICS的项目中建立CAD项目的方法有以下两种:1. 轮廓线建模:在分割功能状态下,MIMICS自动在分离出的掩模上生成轮廓线,MEDCAD能在给定误差的条件下自动生成一个局部轮廓线模型,进而用于医用几何学CAD模型中。
创建的CAD模型的可能方法:-B样条曲线及曲面-点,线,圆,曲面,球体,圆柱体等所有这些实体均可以iges格式输出到CAD软件中制做植入体,另一个典型的运用是用MEDCAD模块做统计分析,如测量很多不同股骨头的数据,为建立标准股骨头植入体时作参考。
2. 参数化或交互式CAD建模可在2D或3D视图中直接创建CAD对象,或者用参数设置的方式创建(如定义圆心、半径来创建一个圆),创建后可用鼠标进行交互式编辑。
方便设计验证:为验证CAD植入体的设计,MIMICS输入STL文件格式在2D视图及标准视图中显示,或在3D视图中显示,用透明方式显示解剖关系,使用这一方法可以快速实现医学影像数据在CAD设计软件中的调用。
RP-SLICE模块:Rp-slice模块在MIMICS与多数RP机器之间建立SLICE格式的接口,RP-Slice 模块能自动生成RP模型所需的支撑结构。
颈椎三维有限元模型的建立与应用
颈椎三维有限元模型的建立与应用司萌;聂林;蔡国栋;任发才【期刊名称】《泰山医学院学报》【年(卷),期】2007(28)8【摘要】目的建立颈椎的三维有限元模型(C4/5/6),以用于临床试验研究.方法根据条件选取健康成年男性志愿者, 通过CT扫描,得到颈椎的连续断层数据图片,通过医学三维重建软件Materialise Mimics、作图软件Unigraphics NX、有限元分析软件ANSYS 8.1构建出颈椎的三维有限元模型,进行边界设定,在模型上加载45N 的预载荷,再加以2.0N·M的纯力矩模拟脊柱的前屈、后伸、左右侧曲、旋转的生理活动,观察正常FSU(C4/5)的运动与受力,并与体外实物生物力学实验结果比较.结果 C4/5三维有限元模型的运动范围与体外实体实验结果在统计学上没有显著差异(P<0.01).结论建立的颈椎有限元模型可以模拟颈椎的生物力学特性.【总页数】4页(P592-595)【作者】司萌;聂林;蔡国栋;任发才【作者单位】泰山医学院附属医院,山东,泰安,271000;山东大学齐鲁医院,山东,济南,250012;泰山医学院附属医院,山东,泰安,271000;山东大学材料学院,山东,济南,250000【正文语种】中文【中图分类】R473.71【相关文献】1.全颈椎三维有限元模型的建立及旋转牵引疗法研究 [J], 刘治华;汤清;陶德岗;张新民;杨孟俭2.横韧带损伤的上颈椎不稳定三维有限元模型的建立研究 [J], 余洋;蔡贤华;张美超3.神经根型颈椎病C3~C7三维有限元模型的建立与意义 [J], 曹盛楠;师彬;孙国栋4.一种新型颈椎前路可固定式钛笼三维有限元模型的建立 [J], 徐成;张超;巨圆圆;李超5.人工颈椎间盘置换术后异位骨化三维有限元模型的建立与意义 [J], 李广州; 刘浩; 杨毅; 戎鑫; 丁琛; 陈华因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.材料和方法
此步骤将使用本课题组合作单位购买的Mimics16.0软件构建C0、C1、C2、C3四个骨性结构的初步三维模型,再利用其3-Matic的功能将骨性模型及本课题组的仿生关节的三维模型重新划分网格来修正模型,然后将修正过的三维模型倒入Geomagic12.0软件进行进一步处理,以使模型能符合有限元分析的要求。
1.1利用Mimcs16.0从颈椎CT图像建立枕骨(C0)、C1、C2、C3骨性结构的初始三维模型
将本课题组原有的颅底及全颈段CT断层扫描图像294张,层距1.25mm,导入Mimics16.0软件,确定图像的前后、左右、上下的正确方位,使用软件的Profile Line及阈值分割功能选择出骨组织的灰度阈值,最小为226,最大为3071,如图1-1。
由于阈值分割只会选择出阈值范围内的物体,并不会自动识别颈椎结构,而且原始的CT 数据是包含了患者背后的金属板的,因此阈值分割选出来的并不是我们想要的颈椎结构。
所以我们使用区域增长的功能单独选出颈椎及下颅骨的结构,如图1-2。
区域增长后的颈椎结构被用黄色填充,包括有皮质骨和松质骨,但是这些区域显示并不完善,有的在松质骨区有很多空洞,而且各个椎骨之间并未分隔开,因此我们使用软件自带的编辑工具调整修饰所有断层图片,解决上述问题,然后采用Calculate 3D功能建立三维模型,得到C0、C1、C2、C3
骨性结构的初步三维模型,如图1-3。
流程图如1-4所示。
1.2 使用3-Matic修洁三维模型
通过上述步骤获得的枕骨及上颈椎(C0、C1、C2、C3)的三位模型是由一个相当粗糙的模型,有许多尖刺、不平滑的结构及生理颈椎不存在的结构,这是将CT数据转化为三维模型必然会出现的结果。
而且此三维模型划分的网格实际上是一个面网格结构,有许多三角片,有许多实际结构中不存在的空洞以及杂乱的三角片这种模型是不能直接进行有限元分析的,也不能用于Geomagic12.0的处理。
所以需要使用Mimics16.0自带的3-Matic8.0进行进一步处理,去掉无效的三角片并简化三角片的数量,以利于后面的运算。
首先使用软件的Fix Wizard功能处理三维模型中的错误
然后使用Remesh中的Creat Inspection Scene功能为三维模型划分网格,然后使用Auto Mesh优化三角片质量。
最后将处理过的模型保存为二进制STL格式文件,为下一步处理做准备。
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。