初三几何复习
【中考必做题】初三——几何基础(后附参考答案与解析)
几何基础-中考必做题1D.2D.,添加下列哪一个条件无法证明≌3,相邻两条平行直线间的距离相等,若等腰直角的三个顶点分别在这45 6 71011 12 13D.米 D.米米,则树高为().14 D.的值?按下列方法作图可解决问题.如图,在中,,,,使=,连接.依据此图可求15,则的长为.161718 19 20A.对角线互相垂直B.邻边相等C.每条对角线平分一组对角D.对角线相等下列性质是矩形具有而菱形不具有的是().21222324 25 26272829D.个30,,则.313233D.3435时,求的值.几何基础-中考必做题12D.3D.4勾股定理锐角三角函数锐角三角函数的定义5678,上,若,910111213D..14 1516171819.20212223三角形等腰三角形等腰三角形的性质等腰三角形的判定锐角三角函数解直角三角形四边形正方形正方形的性质正方形的判定24252627余角和补角余角与补角的性质三角形全等三角形全等三角形常用辅助线全等三角形常用辅助线:截长补短角平分线的常用辅助线角平分线与全等综合等腰三角形等腰三角形的判定28的中点,;293031 3233D.34(度).35时,求的值.。
初三上数学几何知识点归纳总结
初三上数学几何知识点归纳总结在初三数学学科中,几何是一个非常重要且需要重点掌握的部分。
几何不仅涉及到图形的性质和构造,还涉及到空间的理解和分析等。
为了帮助同学们更好地掌握初三上数学中的几何知识,下面对初三上数学几何知识点进行归纳和总结。
一、平面几何基本概念1. 点:几何中最基本的图形元素,没有大小和形状。
2. 线段:由两个端点确定的线段,具有长度和方向。
3. 直线:由无数个点组成的连续直的线,延伸无限远,没有端点。
4. 射线:一个端点开始,延伸无限远的线。
5. 角:由两条射线共享一个端点形成的图形。
6. 三角形:由三条线段组成的图形。
7. 四边形:由四条线段组成的图形。
二、三角形的性质和分类1. 三角形的内角和等于180度。
2. 三角形根据边的关系可以分为等边三角形、等腰三角形和一般三角形。
3. 根据角的关系可以分为直角三角形、锐角三角形和钝角三角形。
4. 根据边长的关系可以分为斜边三角形、等腰锐角三角形等。
三、圆相关的知识点1. 圆的定义:平面上到一个点的距离相等的点的集合。
2. 圆的性质:圆的直径是圆上任意两点之间的最大距离,圆的半径是圆心到圆上的任意一点的距离。
3. 圆周率的计算:π是一个无理数,通常取3.14作为近似值来计算。
四、平行线与相交线1. 平行线的定义:在同一个平面内,不相交且两两平行的线。
2. 平行线的判定:平行线的判定条件包括同位角相等、内错角相等、同旁内角或同旁外角互补等。
3. 相交线的性质:相交线的同位角相等、内错角互补、邻补角相等等。
五、相似三角形1. 相似三角形的定义:两个三角形对应角相等并且对应边成比例,则称这两个三角形相似。
2. 相似三角形的性质:相似三角形的对应角相等、对应边成比例。
六、三角形的面积计算1. 面积计算公式:- 直角三角形的面积 = 底边长 ×高 ÷ 2- 一般三角形的面积 = 1/2 ×底边长 ×高- 等边三角形的面积 = 边长平方 ×根号3 ÷ 4- 任意三角形的面积 = 1/2 ×两条边的乘积 ×正弦夹角的正弦七、几何的证明方法1. 直接证明法:通过已知条件和几何定理,直接推导出结论。
初三几何复习资料(解直角三角形
初三几何复习资料班级 姓名 座号第六章 解直角三角形重点、难点和关键:本章的重点是锐角三角函数的概念和直角三角形的解法。
特殊锐角与其三角函数值之间的对应关系也很重要,应当牢记,即:已知特殊锐角,说出它的四个三角函数值;反过来,已知特殊锐角的三角函数值,说出这个角的度数。
锐角三角函数的概念,既是本章的难点,又是学好本章的关键。
只有正确了解锐角三角函数的概念,才能正确理解直角三角形中边、角之间的关系,从而才能利用这些关系来解直角三解形。
学习指导:了解锐角三解函数的概念,能够正确地应用sin A,cos A,tan A,cot A 表示直角三角形中两边的比,熟记30°,45°,60°角的各个三角函数值,会计算含有这三个特殊锐角的的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角。
理解直角三角形中边、角之间的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,并会用解直角三角形的有知识来解某些简单的实际问题。
第一节 锐角三角函数1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
A90B 90∠-︒=∠︒=∠+∠得由B A 对边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、30°、45°、60°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
初三数学几何知识点综合题练习
中考数学几何考点训练【图形的初步认识】考点1 圆和扇形(概念、弧长、面积)例1:圆周长的计算(1)已知圆的半径增大2倍,它的周长增大倍(2)一个圆的半径是7厘米,另一个圆的半径是5厘米,他们周长相差(3)如果圆切掉了它的四分之三,那么现在它的周长是原来的(4)如图,已知外圈的周长是内圈的4倍,外圆的周长是120cm,求阴影部分的宽度。
(5)一个人要从A点到B点(如图),他可以按①号箭头所表示的路线走,也可以按照②号箭头所表示的路线走。
哪条路线近?为什么?(6)如图,有四根底面直径都是0.5米的圆形管子,被一根铁丝紧紧的捆在一起,试求铁丝的长度。
例2:弧长与圆心角1、下列说法中,正确的个数有()个。
(1)弧的长度仅由弧所在圆的半径大小决定。
(2)两条弧的长度相等,则它们所对的圆心角也一定相等。
(3)圆心角扩大4倍而所在圆的半径缩小为原来的14,那么原来的弧长不变。
(4)在一个圆中,如果圆心角是周角的15,那么圆心角所对的弧长是圆周长的15。
A.0B.1C.2D.42、用一个放大镜照一个扇形时,不被放大的部分是()A 圆心角B 半径C 圆心角所对的弧长D 扇形的面积3、下列叙述中,正确的个数是()个(1)半圆是一条弧;(2)圆心角相等,所对弧的长也相等;(3)顶点在圆内的角叫做圆心角A 0B 1C 2D 34、一根铁丝,若把它弯成圆形,可得一个半径为10厘米的圆,如果将其弯成圆心角为90°的一条弧,那么这条弧所在圆的半径是_________厘米。
5、如图,有一个边长为2厘米的等边三角形,现将三角形沿水平线滚动,B点从开始到结束的位置,它所经过的路线的总长度是多少厘米?例4:圆和扇形的面积1、一个扇形的半径等于另一个圆的直径,且扇形面积等于圆的面积的2倍,则扇形的圆心角是。
2、等腰梯形的面积是54平方厘米,上底是6厘米,下底是12厘米,若要在这个等腰梯形内剪下一个面积最大的圆,这个梯形还剩下()平方厘米3、求下图阴影部分面积。
初三数学空间几何认识
初三数学空间几何认识一、平面几何1.点、线、面的基本概念2.直线、射线、线段的概念及性质3.平面、直线、线段之间的位置关系4.平行线、相交线的性质5.三角形、四边形、五边形、多边形的基本概念及性质6.矩形、菱形、正方形、梯形的性质7.圆的基本概念及性质8.圆周率、直径、半径、弧、弦、圆心角的关系9.相交线、平行线与圆的关系10.三角形的不等式二、立体几何1.空间几何体的概念及分类2.球、正方体、长方体、圆柱、圆锥的性质3.面、棱、顶点的概念及关系4.多面体的概念及分类5.平面与立体几何体的位置关系6.直线与立体几何体的位置关系7.点、线、面在立体几何中的位置关系8.立体几何中的角、边、面的度量9.立体几何中的体积、表面积计算10.立体几何中的平行公理及推论三、几何变换1.变换的概念及分类2.平移、旋转的性质及几何变换3.相似变换、位似变换的性质及几何变换4.坐标与几何变换5.函数与几何变换6.几何变换在实际问题中的应用四、几何证明1.证明的概念及方法2.直接证明、反证法、归纳证明、综合法、分析法3.三角形、四边形、圆等常见几何图形的证明方法4.相似三角形的性质及证明5.中位线、平行线、相交线等几何性质的证明6.几何图形的对称性及证明7.几何图形的旋转及证明五、几何问题解决1.几何问题的类型及解决方法2.比例问题、面积问题、体积问题、角度问题等3.几何构造问题、几何计数问题、几何最值问题等4.几何问题中的函数与方程思想5.几何问题中的数形结合思想6.几何问题中的转化与化归思想7.几何问题中的逻辑推理与证明思想六、数学思想与方法1.数形结合思想2.转化与化归思想3.函数与方程思想4.分类与整合思想5.归纳与演绎思想6.模型思想与数学建模7.合情推理与演绎推理以上是初三数学空间几何认识的知识点概述,希望对您有所帮助。
在学习过程中,要注意理论联系实际,培养空间想象能力和逻辑思维能力。
习题及方法:一、平面几何习题1.习题一:已知直线AB和CD互相平行,AB // CD,点E位于直线AB上,点F位于直线CD上。
历届初三中考数学几何复习题
01、如图,已知" ABC 中,AB=AC , AD 丄AB 于点A ,交BC 边于点E , DC 丄BC 于点C ,与AD 交于点D , (1 )求证:"ACE s" ADC ;(2) 如果 CE = 1 , CD = 2,求 AC 的长.02、一旅游者骑自行车沿正东方向笔直的公路 BC 行驶,在B 地测得某建筑物 A 在北偏东45°方向,行驶10分钟后到达C 地,测得建筑物A 在北偏西60°方向•如果此旅游者的速度为 路BC 的距离(结果可保留根号)•03、“开发西部”是我国近几年的一项重要的战略决策。
“攻坚”号筑路工程队在西部某地区修路过程中需要沿AB 方向开山筑隧道(如图),为了加快施工进度,要在山的对面同时施工。
因 此,需要确定山对面的施工点。
工程技术人员从 AB 上取一点C , 测出以下数据:/ ACD 的度数、CD 的长度及/ D 的度数。
(1) 若/ ACD=13 5°,CD=500 米,/ D=60 °,试求开挖点 E 离开点D 的距离(结果保留根号)(2) 若/ ACD= ,CD=m 米,/ D =[,试用:•、 一:和m 表示开挖点E 离开点D 的距 离。
(只需写出结论。
)04、如图, 点A 的坐标为(0,5),点B 在第一象限,"AOB 为等边三角形,点 C 在x 轴 正半轴上•(1) 以AC 为边,在第一象限作等边" ACE (保留作图痕迹,不写作法和证明)(2) 设AC 与OB 的交点为D ,CE 与AB 的延长线交于 (3) 连结BE ,试猜想/ ABE 的度数,并证明你的猜想•(4) 若点E 的坐标为(s ,t ),当点C 在x 正半轴运动时, 求s 、t 的关系式•12千米/时,求建筑物 A 到公北A西—F ,求证:"ADB s "AFC.的长;(2) S CEF .06、如图,已知矩形ABCD,AB = , 3, BC =3,在BC上取两点E,F( E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上, PE, PF分别交AC于点G, H.(1 )求厶PEF的边长;PG EG(2)求证:GH GC(3) 若厶PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.07、如图,在△ ABC中,/ C=90°, AC=4 , BC=3 , O是AB上一点,且AO : OB=2 : 5.(1)过点O作OH丄AC垂足为H,求点O到直线AC的距离OH的长;(图1)(2)若P是边AC上的一个动点,作PQL OP交线段BC于Q (不与B、C重合)(图2)①求证:△ POH h^ QPC②设AP=x , CQ=y ,试求y关于x的函数解析式,并写出定义域;③当AP= _________________ 时,能使△ OPQ WA CPC相似.(直接写出结果)08、如图,以O为原点的直角坐标系中,A点的坐标为(0, 1),直线x=1交x轴于点B。
初三数学平面几何图形认识
初三数学平面几何图形认识一、平面几何图形的基本概念1.点:在平面内,没有任何长度、宽度和高度的物体,只有位置。
2.线段:连接两个点的线,具有长度,但没有宽度和高度。
3.射线:起点固定,无限延伸的直线。
4.直线:无限延伸的线,无起点和终点。
5.角:由两条具有公共端点的射线组成的图形,公共端点称为顶点,两条射线称为边。
6.平移:在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。
7.旋转:在平面内,将一个图形绕着某一点转动一个角度的图形变换。
二、基本图形的性质与判定1.三角形的性质:–任意两边之和大于第三边–任意两边之差小于第三边–内角和为180°2.矩形的性质:–对边平行且相等–四个角都是直角–对角线互相平分且相等3.菱形的性质:–四条边都相等–对角线互相垂直平分–四个角都是直角4.圆的性质:–所有点到圆心的距离相等(半径)–圆心到圆上任意一点的线段称为半径–圆上任意一点到圆心的连线与圆周垂直三、图形的相互关系1.平行:在同一平面内,永不相交的两条直线。
2.相交:在同一平面内,两条直线在某一点相遇。
3.垂直:两条直线相交成90°的关系。
4.相邻:在同一平面内,两条直线有一个公共点。
5.对称:图形关于某条直线或某个点对称。
6.平行线段:在同一平面内,长度相等的两条平行线之间的线段。
四、图形的变换1.平移:将图形上的所有点按照某个方向作相同距离的移动。
2.旋转:将图形绕着某一点转动一个角度。
3.轴对称:图形关于某条直线对称。
4.中心对称:图形关于某个点对称。
五、图形的计算1.三角形面积:底×高÷22.矩形面积:长×宽3.菱形面积:对角线乘积÷24.圆面积:π×半径²六、图形的证明与推断1.证明:用已知条件和几何性质,逻辑推理出某个结论。
2.推断:根据已知条件和图形性质,推测出未知的结论。
通过以上知识点的学习,学生可以对初三数学平面几何图形有一个全面的认识,为后续的学习打下坚实的基础。
初三数学几何知识点总结
初三数学几何知识点总结数学几何是初中数学的重要组成部分。
初三学生需要掌握一些基本的几何知识点。
下面是一份关于初三数学几何知识点的总结,希望对初三学生提供一些帮助。
一、平面几何知识点:1. 基本概念与性质:- 点、线、面的概念与性质;- 直线的判定方法,如使用两点确定一条直线,或通过斜率关系等;- 平行线、相交线、垂直线的判定方法;- 角的概念与性质,如对顶角、同位角、对顶角等;- 三角形的分类与性质,如直角三角形、等边三角形、等腰三角形等;- 四边形的分类与性质,如平行四边形、矩形、正方形等;- 圆的概念与性质,如圆心、半径、直径之间的关系等。
2. 图形的计算:- 三角形的面积计算公式与方法,如海伦公式、高度关系等;- 平行四边形的面积计算公式与方法;- 三角形的相似判定与计算;- 圆的面积与周长计算公式。
3. 平面几何的证明:- 等腰三角形的判定与证明;- 同位角、内错角、外错角的性质与证明;- 平行线与垂直线的证明;- 四边形平行条件的证明。
4. 三角函数:- 正弦、余弦、正切等三角函数的定义与性质;- 三角函数的计算问题,如已知两角关系,求三角比等。
二、空间几何知识点:1. 空间几何的基本概念:- 空间点、线、面之间的关系与性质;- 空间几何中的平行、垂直关系判定方法;- 空间中的角(二面角、立体角)概念与性质。
2. 空间图形的计算:- 空间几何中的柱体、圆锥、球体等图形的体积与表面积计算公式与方法;- 空间几何中的平面图形与立体图形的相互转化。
3. 空间几何证明:- 点、线、面之间的关系的证明;- 空间几何中的平行、垂直关系的证明;- 空间图形的特殊性质的证明。
三、向量与坐标几何知识点:1. 向量的定义与性质:- 向量的概念与表示方法;- 向量的加法、减法、数乘运算;- 向量的数量积、向量积的概念与性质。
2. 坐标几何的基本概念:- 直角坐标系的建立与使用;- 坐标点、线段、中点等的表示与计算方法;- 直线的斜率计算公式与性质。
初三复习专题--全等三角形
•
OA=OC,EA=EC,
•
请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E
①
D
1
l
2
B
C
②
• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。
初三数学几何知识点归纳总结
初三数学几何知识点归纳总结除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初三数学几何知识点归纳总结,希望对大家的学习有一定帮助。
1 同角或等角的余角相等2 过一点有且只有一条直线和已知直线垂直3 过两点有且只有一条直线4 两点之间线段最短5 同角或等角的补角相等6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理 1 平行四边形的对角相等53平行四边形性质定理 2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理 3 平行四边形的对角线互相平分56平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60矩形性质定理 1 矩形的四个角都是直角61矩形性质定理 2 矩形的对角线相等62矩形判定定理 1 有三个角是直角的四边形是矩形63矩形判定定理 2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理 1 菱形的四条边都相等65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理 1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2 S=Lh83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
【中考必做题】初三——几何综合(后附参考答案与解析)
几何综合-中考必做题
1
2
D.个
,连接,分析下列四个结
.
3
,下列结论:①
平分的面积与
的面积比是
,其中
4
5
6
D.①②③
7 8 9
10 11 12
13
14 15
16 17
18
19
20
几何综合-中考必做题1
相似三角形有关的几何模型
反平行模型的应用
2
,
,.
相似三角形的判定
判定三角形是否相似
圆
圆与三角形
圆与三角函数
3
4
5
6
D.①②③
三角形面积及等积变换
全等三角形
全等三角形的性质
全等三角形的判定
直角三角形
勾股定理的应用
7
8
9
10
相似三角形的判定
圆
圆的基础知识
圆心角、弧、弦的关系
与圆有关的位置关系
切线的判定
11
圆周角定理
圆中的角度计算
与圆有关的位置关系
切线的判定
12
圆与三角形
几何变换
图形的旋转
旋转与几何最值13
14
勾股定理
相似三角形
相似三角形的性质
圆
与圆有关的位置关系
切线的判定
15
通过三角形已知要素求三角函数
通过三角形已知要素求边长
四边形
菱形
菱形的判定
从平行四边形证明菱形
16
17
18
二次函数与特殊四边形问题
三角形
相似三角形
相似三角形的应用
四边形
菱形
菱形的性质
19。
初三复习 数学几何中折叠问题 4大类 分类 含答案
初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
初三中考数学几何知识点归纳
初三中考数学几何知识点归纳目录初三中考数学几何知识点归纳学好数学的几条建议数学八种思维方法初三中考数学几何知识点归纳1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1:关于某条直线对称的两个图形是全等形43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即ab=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1:四边都相等的四边形是菱形68.菱形判定定理2:对角线互相垂直的平行四边形是菱形69.正方形性质定理1:正方形的四个角都是直角,四条边都相等70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(ab)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么(a c … m)/(b d … n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3:三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2:相似三角形周长的比等于相似比98.性质定理3:相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆学好数学的几条建议1、要有学习数学的兴趣。
初三数学复习解析几何知识点总结
初三数学复习解析几何知识点总结(文章开始)解析几何是初三数学中的一个重要知识点,它是几何学和代数学的结合体,通过运用代数方法,解决几何问题。
本文将对初三数学中的解析几何知识点进行总结和复习,希望能够帮助同学们更好地理解和掌握这一内容。
一、直线的方程在解析几何中,直线是最基本的图形之一。
我们可以通过直线的方程来描述一条直线。
直线方程的一般表达式为Ax+By+C=0,其中A、B、C为实数,同时A和B不全为零。
通过直线的方程,我们可以判断一个点是否在直线上,以及两条直线是否相交等。
具体而言,给定直线的方程,如果一个点的坐标(x,y)满足该方程,那么该点就在这条直线上。
二、直线的斜率直线的斜率是解析几何中另一个重要的概念。
斜率表示了直线上两个点之间的变化率,可以帮助我们了解直线的特性和性质。
斜率可以通过两点坐标的差值来计算,具体公式为:k=(y2-y1)/(x2-x1)。
其中,(x1,y1)和(x2,y2)是直线上的两个点。
如果两条直线的斜率相等,那么它们是平行的;如果两条直线的斜率互为倒数,那么它们是垂直的。
三、直线的性质在解析几何中,直线具有一些重要的性质,下面我们来一一介绍。
1. 平行线的性质:如果直线L1与直线L2平行,那么它们的斜率相等;反之,如果直线L1与直线L2的斜率相等,它们不一定是平行的。
2. 垂直线的性质:如果直线L1与直线L2垂直,那么它们的斜率互为倒数;反之,如果直线L1与直线L2的斜率互为倒数,它们不一定是垂直的。
3. 直线的截距式:直线的方程除了一般式之外,还可以用截距式来表示。
截距式表示了直线与x轴和y轴的交点坐标。
4. 直线的倾斜度:直线的倾斜度是指直线与x轴的夹角。
通过倾斜度,我们可以判断直线是向上倾斜还是向下倾斜。
四、直线的问题求解在解析几何中,我们经常会遇到一些问题需要求解,下面我们通过几个例题来学习如何解决这些问题。
例题1:已知直线L过点A(-2,3)和B(4,1),求直线L的斜率。
中考数学总复习必做几何经典难题及答案
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CEBO D D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 AN FE CDBP CG FB QA DE1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)· A D HE M C B O · GAO D B EC Q P NM · O Q PB DE C N M · A1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)D AF D E C B E DA CB F F EP C B A O D BFAECP1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)AP C B P A D CB C B DAF PD E C B A1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDA A CBPD1.如下图做GH⊥AB,连接EO。
初三数学几何知识点归纳
初三数学几何知识点归纳一、三角形1. 三角形的基本概念- 三角形由不在同一直线上的三条线段首尾顺次相接所组成。
- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
例如,若三角形三边为a、b、c,则a + b>c,a - b<c。
2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形中斜边最长,两直角边的平方和等于斜边的平方(勾股定理a^2+b^2=c^2,其中c为斜边,a、b为两直角边)。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形两底角相等(等边对等角),等腰三角形三线合一(底边上的高、底边上的中线、顶角平分线互相重合)。
- 等边三角形:三边都相等的三角形,等边三角形三个角都是60^∘,等边三角形是特殊的等腰三角形。
3. 三角形的内角和与外角- 三角形内角和定理:三角形三个内角的和等于180^∘。
- 三角形的外角:三角形的一边与另一边的延长线组成的角。
三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
二、四边形1. 平行四边形- 定义:两组对边分别平行的四边形叫做平行四边形。
- 性质:- 平行四边形的对边平行且相等。
- 平行四边形的对角相等,邻角互补。
- 平行四边形的对角线互相平分。
- 判定:- 两组对边分别平行的四边形是平行四边形。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 两组对角分别相等的四边形是平行四边形。
- 对角线互相平分的四边形是平行四边形。
2. 矩形- 定义:有一个角是直角的平行四边形叫做矩形。
- 性质:- 矩形具有平行四边形的所有性质。
初三数学复习平面几何知识点详解
初三数学复习平面几何知识点详解一、线和角在平面几何中,线和角是最基本的概念之一。
线是由无数个点按一定顺序连接而成的,可以表示为一维的图形。
而在线的交汇处,我们可以形成角。
角是由两条射线共享一个起点所形成的图形,可以表示为二维的图形。
1.1 直线和曲线在平面几何中,我们首先要了解直线和曲线的概念。
直线是由无数个点按无限延伸而成的,它没有弯曲部分,可以用两个点确定一条直线。
而曲线则是有一定的曲率,没有直线那样的无限延伸性。
1.2 角的分类根据角的大小,我们可以将角分为钝角、直角、锐角和平角四种类型。
- 钝角:大于90度,小于180度的角。
- 直角:等于90度的角。
- 锐角:小于90度的角。
- 平角:等于180度的角。
二、三角形三角形是平面几何中的一种基本图形,由三条线段连接而成。
下面让我们详细了解三角形的性质和分类。
2.1 三角形的分类根据三角形的边长和角度的不同,我们可以将三角形分为以下类型:- 等边三角形:三边长度相等的三角形。
- 等腰三角形:两边长度相等的三角形。
- 直角三角形:具有一个90度的角的三角形。
- 锐角三角形:三个角都是锐角的三角形。
- 钝角三角形:具有一个钝角的三角形。
2.2 三角形的性质三角形具有以下性质:- 三角形的三条边之和等于180度。
- 三角形的两边之和大于第三边。
- 三角形的两个角的和大于第三个角。
三、四边形四边形是由四条线段连接而成的平面图形。
常见的四边形有矩形、正方形、平行四边形等。
3.1 矩形矩形是一种特殊的四边形,它的四个角都是直角,且相对的边相等。
矩形具有以下性质:- 矩形的对角线相等。
- 矩形的对边平行且相等。
3.2 正方形正方形是矩形的一种特殊情况,它的四条边相等且都是直角。
正方形还具有以下性质:- 正方形的对角线相等且垂直平分。
3.3 平行四边形平行四边形是具有两对边平行的四边形。
平行四边形具有以下性质:- 平行四边形的对边相等。
- 平行四边形的对角线互相平分。
巧用复习策略,让学生在复习阶段学有所获——初三几何备考复习建议
— —
初 三几何备考复 习建议
广 州 市 真 光 中 学 林 菊
摘要 :初 三下 学期 ,在 离中 考剩 下3 个 月左右 的 时间里 ,各 学校基 本 上都 结束 了 新课的 学 习 ,进 入复 习 。本文 通过研 究 初 三几 何题 型的特 点 ,提 出在复 习 阶段的几 何复 习建议 ,希 望学生 在复 习阶段 能学 有所 获 ,真正的 提高复 习效 率 。 关键词 :几何 备考 复 习策略 有效性 学 有所 获
1 2 2 分 ,非常关键 ,往往考得好 的学生 ,不在于他后面 的两道 题做 的多么 好 ,往往是 他在基 础题 部分一分 未扣 。所 以,在复 习的开 始 ,师 生都 应该形 成共识 , 切 忌眼高手 低 ,忽视最根 本 的基 础部 分知识 的夯实 。在第一轮复习中 ,学生更应该 注重 以下几点 ( 1 ) 明确考点 , 形 成知识体 系: 《 广州 市2 0 1 3 年指 导书数学 》明确 了各个 知识点 的考 查 的程 度 ,教 师应 该有 意 识的 引导 学 生进行 解读 ,防止学 生 在一 些偏 题 ,怪题方 面花费大量 的时间 ,而忽 略 了最基 本的方 向。如多边 形一 节 ,中考指导 书指出 : “ 理解 多边形 的内角和与 外角公 式; 理解 正多边 形的概 念。”这里 给出的关键词 是 “ 理解 ” ,也就是 学生 简单运 用这两个 公式 即可 ,不需 要在此程 度上再 去拔高 。而 “ 尺规作 图”方面 ,要求 “ 会 写 出简单 的尺规作 图题 的已知 ,求 作和作法 ( 不要求 证 明 ),这就要求 我们在复 习过程 中需 要补充 两个平 时教学 中容易忽 略的要求写作 法的尺规作 图题 。指 导书 是中考 复习 的大方 向,无 论是教师还 是学生 ,都是需 要花 必要的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三几何复习
一、选择题
1、如图1,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( )
A 、10
B 、8
C 、6
D 、4
2.如图,四边形ABCD 为O 的内接四边形,E 是BC 延长线上的一点,已知100BOD ∠=,则DCE ∠的度数为( ) A .40°
B .60°
C .50°
D .80°
3.如图:点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上, 若72AOB ∠=︒,则ACB ∠的度数是( ) A .18° B .30° C .36° D .72°
4.如图,ABC △内接于圆O ,50A =∠,60ABC =∠,BD 是圆O 的直径, BD 交AC 于点E ,连结DC ,则AEB ∠等于( ) A .70
B .
110
C .90
D .
120
5.如图,已知圆心角78BOC ∠=,则圆周角BAC ∠的度数是( ) A .156
B .78
C .39
D .12
6.如图,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o ,则∠C 的度数是( )
A 、50o
B 、40o
C 、30o
D 、25o
7、如图,C 是以AB 为直径的⊙O 上一点,已知AB=5,BC=3,则圆心O 到弦BC 的距离是( )
A 、1.5
B 、2
C 、2.5
D 、3
A
D
O
B C E (2题图) A
B
O
C
图1 O
C
B
A
第3题
第6题
E A
B
C
D O
第4题
第5题
8.如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O 的半径为2,则CD 的长为 ( )
A.23
B.43
C.2
D. 4
9.如图9,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,
8PA =,那么弦AB 的长是( ) A .4
B .8
C .43
D .83
10.如图,PA PB ,分别是O 的切线,A B ,为切点,AC 是O 的直径,已知35BAC ∠=,
P ∠的度数为( ) A .35
B .45
C .60
D .70
11.如图6,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( )
A .52
B .5
6
C .2
D .5
12.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) A .内含 B .相交 C .相切 D .外离
13.已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是 ( ) A .外离 B .外切 C .相交 D .内切
14.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切
B .相交
C .外切
D .外离
15.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( ) A .相切
B .内含
C .外离
D .相交
14.将图1按顺时针方向旋转90°后得到的是( )
B
D
A
C
P
B
A
O
第10题
A
B C
O P
图6 A P
B O
第8题
第9题
第11题
第12题
①
②
③
④
30°
A C
B ’
B
C ’
15.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按顺时针转动一个角度到A 1BC 1的位置,使得点A 、B 、C 1在同一条直线上,那么这个角度等于( )
A.120°
B.90°
C. 60°
D. 30°
16.如下所示的4组图形中,左边图形与右边图形成中心对称的有( ) A .1组 B .2组 C .3组 D .4组
17.如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,BC=1,则BB ’的长为( ) A .4 B .
33 C .332 D .3
34 18.下列图形中,是轴对称图形但不是中心对称图形的是( )
A B C D
二、解答题
19.在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,
求证:△AED ≌△AEF
(第8题图)A
B
C
D
E
F
第22题
20.如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且
DE BE ⊥.判断直线AC 与DBE △外接圆的位置关系,并说明理由.
21.已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.判断直线BD 与O 的位置关系,并证明你的结论;
22.如图5,AB 为O 的直径,D 为弦BE 的中点,连接OD 并延长交O 于点F ,与过B 点的切线相交于点C .若点E 为AF 的中点,连接AE . 求证:ABE OCB △≌△.
C
第20题
B
D A
E
A
图5
O
D
B C
F E
A。