统计学中的基本概念和重要公式

合集下载

统计学 笔记

统计学 笔记

以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。

变量:用来描述数据的名称或符号。

数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。

参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。

描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。

直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。

平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。

标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。

概率与概率分布
概率:描述随机事件发生的可能性大小的数值。

概率分布:描述随机变量取值的概率规律的函数。

常见的概率分布有二项分布、泊松分布、正态分布等。

参数估计与假设检验
点估计:用单一的数值估计未知参数的值。

区间估计:用一定的置信水平估计未知参数的范围。

假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。

常见的假设检验方法有t检验、卡方检验、F检验等。

相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。

回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。

常见的回归分析方法有线性回归、逻辑回归等。

统计学基础:均值与方差

统计学基础:均值与方差

统计学基础:均值与方差统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。

在统计学中,均值和方差是两个重要的概念,它们用于描述数据的集中趋势和离散程度。

本文将介绍均值和方差的概念、计算方法以及它们在实际问题中的应用。

一、均值均值是一组数据的平均值,它是描述数据集中趋势的一个重要指标。

均值的计算方法是将所有数据相加,然后除以数据的个数。

假设有n个数据,分别为x1、x2、...、xn,那么均值的计算公式为:均值 = (x1 + x2 + ... + xn) / n均值可以用来表示数据的中心位置,它是数据集中的一个典型值。

例如,某班级的学生考试成绩为80、85、90、95、100,那么这些成绩的均值为(80+85+90+95+100)/5=90,可以认为90是这个班级的平均水平。

均值的计算方法简单直观,但它对极端值比较敏感。

如果数据中存在极端值,那么均值可能会被拉向极端值的方向。

因此,在某些情况下,均值可能不是一个很好的描述数据集中趋势的指标。

二、方差方差是一组数据的离散程度的度量,它描述了数据与均值之间的差异程度。

方差的计算方法是将每个数据与均值的差的平方相加,然后除以数据的个数。

假设有n个数据,分别为x1、x2、...、xn,均值为μ,那么方差的计算公式为:方差 = ((x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2) / n方差可以用来衡量数据的离散程度,它越大表示数据的离散程度越大,反之亦然。

例如,某班级的学生考试成绩为80、85、90、95、100,这些成绩的均值为90,那么方差的计算为((80-90)^2 + (85-90)^2 + (90-90)^2 + (95-90)^2 + (100-90)^2) / 5 = 50,可以认为这个班级的成绩离散程度较大。

方差的计算方法中,将差的平方相加的目的是为了消除正负差值的抵消效应。

方差的单位是数据的单位的平方,因此在比较不同数据集的方差时,需要注意它们的单位是否一致。

《统计学》名词解释及公式

《统计学》名词解释及公式

第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。

本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。

本章各节的主要内容和学习要点如下表所示。

二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。

2. 描述统计:研究数据收集、处理和描述的统计学分支。

3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。

4. 分类数据:只能归于某一类别的非数字型数据。

5. 顺序数据:只能归于某一有序类别的非数字型数据。

6. 数值型数据:按数字尺度测量的观察值。

7. 观测数据:通过调查或观测而收集到的数据。

8. 实验数据:在实验中控制实验对象而收集到的数据。

9. 截面数据:在相同或近似相同的时间点上收集的数据。

10. 时间序列数据:在不同时间上收集到的数据。

11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。

12. 普查:为特定目的而专门组织的全面调查。

13. 总体:包含所研究的全部个体(数据)的集合。

14. 样本:从总体中抽取的一部分元素的集合。

15. 样本容量:也称样本量,是构成样本的元素数目。

16. 参数:用来描述总体特征的概括性数字度量。

17. 统计量:用来描述样本特征的概括性数字度量。

18. 变量:说明现象某种特征的概念。

19. 分类变量:说明事物类别的一个名称。

20. 顺序变量:说明事物有序类别的一个名称。

21. 数值型变量:说明事物数字特征的一个名称。

22. 离散型变量:只能取可数值的变量。

23. 连续型变量:可以在一个或多个区间中取任何值的变量。

四、习题答案1. D2. D3. A4. B5. A6. D7. C8. B9. A10.A11.C、12.C13.B14.A15.C16.D17.C18.A19.C20.D21.A22.C23.C24.B25.D26.C27.B28.D29.A30.D31.A32.B33.C34.A35.A36.A37.D38.B39.B40.C41.C42.D43.C44.D45.A46.B47.C48.A49.C50.D51.A52.C53.D54.A55.B第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。

统计学公式汇总

统计学公式汇总

统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。

在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。

本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。

1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。

对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。

其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。

方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。

方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。

标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。

相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。

相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。

回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。

6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。

样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。

统计学主要计算公式

统计学主要计算公式

统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。

在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。

公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。

3.众数:众数是一组数据中出现最频繁的值。

4.方差:方差是一组数据与其平均值的差的平方的平均值。

公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。

公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。

公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。

7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。

公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。

8.合并概率公式:用于计算多个事件同时发生的概率。

公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。

9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。

公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。

10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。

公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。

这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。

统计学原理重要公式

统计学原理重要公式

一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。

在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。

频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。

而频率则每个小组的频数与数据总数的比值。

在变量分配数列中,频数(频率)表明对应组标志值的作用程度。

频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。

掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。

加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。

比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。

依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。

加权和与所有权重之和的比等于加权算术平均数。

加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。

高考统计公式知识点总结

高考统计公式知识点总结

高考统计公式知识点总结统计学是一门研究数据收集、分析和解释的学科,其应用广泛而深入。

在高中阶段,学生们接触到的统计学知识主要集中在一些基本的统计公式上。

这些公式在高考中经常出现,对于顺利完成数学考试至关重要。

下面是对高考统计公式知识点的一些总结,希望对广大考生有所帮助。

1.概率概率是统计学中的一个重要概念,表示某个事件发生的可能性。

常用的概率公式包括:- 事件的概率公式:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A包含的基本事件数,n(S)表示样本空间中的基本事件数。

- 对立事件的概率公式:P(A') = 1 - P(A),其中A'表示事件A的对立事件。

2.排列组合排列组合是统计学中另一个重要概念,用于计算有关事物的不同排列或组合方式的个数。

常用的排列组合公式包括:- 排列公式:A(n, m) = n! / (n-m)!,表示从n个元素中取出m个元素进行排列的方式总数。

- 组合公式:C(n, m) = n! / (m!(n-m)!),表示从n个元素中取出m个元素进行组合的方式总数。

3.均值和标准差均值和标准差是描述一组数据分布特征的指标。

常用的计算公式包括:- 均值公式:μ = (x1 + x2 + ... + xn)/ n,其中μ表示均值,x表示数据的观测值,n表示数据的总数。

- 标准差公式:σ = √( (x1 - μ)² + ... + (xn - μ)² )/ n,其中σ表示标准差。

4.正态分布正态分布是一种常见的概率分布,其形状呈钟形曲线,对于统计学的许多问题具有重要的应用。

正态分布的概率可以通过标准正态分布表来查找,也可以利用相关的计算公式计算。

在高考中,统计学是数学考试的一个重要组成部分。

掌握以上提到的统计公式,对于正确理解和解答与统计学有关的问题至关重要。

考生可以通过多做一些相关的题目,熟悉这些公式的应用,提升自己的解题能力,在考试中取得好成绩。

概率与统计学公式大全

概率与统计学公式大全

概率与统计学公式大全概率与统计学是一门关于随机事件发生规律及其数学描述的学科。

在实际问题的分析和决策中,概率与统计学都起着重要的作用。

本文将汇总一些常用的概率与统计学公式,帮助读者更好地理解和应用这门学科。

一、概率公式1. 概率的基本概念:概率是指某个特定事件发生的可能性大小。

用P(A)表示事件A发生的概率,有以下公式:P(A) = N(A) / N(S)其中,N(A)表示事件A包含的基本样本点的个数,N(S)表示全样本空间的基本样本点的个数。

2. 随机变量的概率分布:随机变量是指在某个随机实验中可能取得不同值的变量。

其概率分布可由概率质量函数(离散随机变量)或概率密度函数(连续随机变量)来描述。

离散随机变量的概率质量函数为:P(X = x) = f(x)连续随机变量的概率密度函数为:P(a ≤ X ≤ b) = ∫[a, b] f(x)dx其中,f(x)表示概率质量函数或概率密度函数。

3. 事件的和与积:对于两个事件A和B,其和与积的概率表示如下:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B)其中,P(A ∪ B)表示事件A和B至少其中一个发生的概率,P(A ∩ B)表示事件A和B同时发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率。

二、统计学公式1. 样本均值和总体均值:样本均值的公式为:X = (x₁ + x₂ + ... + xn) / n其中,x₁,x₂,...,xn是样本中的个体值,n是样本的大小。

总体均值的公式为:μ = (x₁ + x₂ + ... + xn) / N其中,x₁,x₂,...,xn是总体中的个体值,N是总体的大小。

2. 样本方差和总体方差:样本方差的公式为:s² = ((x₁ - X)² + (x₂ - X)² + ... + (xn - X)²) / (n - 1)其中,x₁,x₂,...,xn是样本中的个体值,X是样本均值,n是样本的大小。

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、整理、分析和解释的学科。

在统计学中,公式是非常重要的工具,用于计算和推导各种统计指标和结果。

下面是一些统计学中常用的公式,它们可以帮助我们理解和应用统计学的基本概念和方法。

1. 数据的中心趋势度量在统计分析中,我们经常需要了解数据的中心趋势,即数据的集中程度或平均水平。

以下是几个常用的中心趋势度量公式:- 平均值(Mean):一组数据中所有观测值的总和除以观测值的个数。

- 中位数(Median):将一组数据按照大小排序,位于中间位置的观测值。

- 众数(Mode):出现次数最多的观测值。

- 加权平均值(Weighted Mean):将每个观测值乘以相应的权重,然后求和并除以总的权重和。

2. 数据的离散程度度量除了了解数据集中在哪里,我们还需要了解数据的离散程度,即数据分散的程度。

以下是几个常用的离散程度度量公式:- 方差(Variance):一组数据与其平均值之差的平方的平均值。

- 标准差(Standard Deviation):方差的算术平方根。

- 平均绝对偏差(Mean Absolute Deviation):一组数据与其平均值之差的绝对值的平均值。

3. 数据的相关性度量在统计分析中,我们常常需要了解两个或多个变量之间的相关性。

以下是几个常用的相关性度量公式:- 协方差(Covariance):一组数据中两个变量之间的协方差。

协方差的正负表示两个变量是正相关还是负相关。

- 相关系数(Correlation Coefficient):协方差除以两个变量各自的标准差的乘积。

相关系数的取值范围为-1到1,越接近-1或1表示相关性越强。

4. 抽样误差估计在统计学中,我们通常只能对样本数据进行分析,从而推断总体的特征。

以下是几个常用的抽样误差估计公式:- 样本标准差(Sample Standard Deviation):类似于总体标准差,但在计算时使用样本数据。

- 样本均值(Sample Mean):类似于总体均值,但在计算时使用样本数据。

统计学整理

统计学整理

选择和判断:统计学含义:统计学是一门认识方法论科学,它是研究如何收集数据、整理数据、分析数据,以便从中作出正确推断的认识方法论科学。

描述统计学和推断统计学的区别:描述统计学是研究如何反映客观现象的数据资料,对所收集的数据进行加工整理,通过图、表等读者易于理解的形式汇总显示。

推断统计学是研究如何根据样本数据推断总体数量特征的理论和方法,具体包括:抽样调查、假设检验、相关回归分析等。

描述统计是整个统计学的基础,推断统计则是现代统计学的核心和主要内容。

选择:统计学的基本概念:总体:指客观存在的、在同一性质的基础上结合起来的许多个别单位的整体。

总体单位:构成总体的每个个别单位称为总体单位。

标志:说明总体单位的属性和特征的名称。

标志分为:品质标志 (只能用文字来说明总体属性,eg:文化程度)数量标志(说明总体单位数量的特征,eg:职工人数,销售额,工资额等)不变标志(某个标志上的答案都相同)可变标志(一定有一个标志是可变的)数量标志的答案叫数量标志表现,也叫标志值指标:说明总体数量特征(分为指标名称和指标数量两部分)eg:男性比重,英语平均成绩,学生人数。

按计算方法不同分:数量指标:说明总体规模大小和数量多少的指标。

(总量指标)质量指标:说明总体内部数量对比关系和一般水平的指标。

(相对指标,平均指标)按其数值的表现形式分:总量指标:也就是数量指标,数值是绝对数形式相对指标:数值是相对形式。

平均指标:数值是平均数形式。

名称说明对象表示方式标志总体单位的属性特征或数量特征文字或数值指标总体的数量特征数值四个数据的区别:定性数据:品质变量的答案就是定性数据,定性数据本身是文字。

eg:性别为品质变量,它的答案“男”“女”就是定性数据。

名义级数据:品质变量的一种答案,仅是一种代码来表示品质变量的不同类型。

不能比较大小四则运算eg:“性别”是品质变量,用变量值“1”表示男性,“2”表示女性,这是“1”“2”或“男”“女”就是名义级数据。

统计学的基本概念

统计学的基本概念

第二部分数据的整理与抽样一、统计学的基本概念1、统计资料定义:凡是可以推导出某项论断的事实或数字均称为统计资料。

统计资料是进行分析、推断、预测的基础。

要根据研究的目的、要求,有计划地收集统计资料。

统计资料原始资料(初级):未经过加工处理的第一手统计调查资料。

次级资料:经过加工处理的数据(有权威性的公开发表的:统计年鉴、行业协会公布的报告等等)。

统计数据度量数据:用数量尺度测量的数据,如年龄、成绩。

品质数据:不用数量尺度测量的数据,如性别,企业类型。

称关于特定问题的统计资料为一个资料集合,其主要特征有:元素:统计资料由各个元素组成。

变量:元素的特征。

有定量的变量与定性的变量。

观测:一次观测指对统计资料中某一元素的所有变量表述的记录。

xxx xxx xxx xxx xxx xxx王五xxx xxx xxx xxx xxx Xxx李四xxx xxx xxx xxx xxx xxx张三…..…..….班级专业学号姓名2、统计资料收集的方法与途径方法间接引用直接收集实验式:设计统计实验,控制某些因素以研究其对变量的影响。

例如确定产品的价格弹性观察式:对变量的影响因素不加任何限制。

根据统计研究的目的和要求收集统计资料。

所收集的资料必须满足准确性、及时性和完整性的要求。

统计报表组织方式专门调查普查重点调查抽样调查典型调查途径直接观察:通过观察对象的活动进行记录获得资料。

优点:资料全面生动,避免由于理解偏差造成的误差。

缺点:耗时、人力,对观察者素质要求高。

访问:与被调查对象直接接触,获得资料问卷调查:设计并发放调查表。

优点:避免调查人对调查对象的直接影响,缺点:返回率低,无法保证调查表的质量。

3、总体与个体(1)定义:凡是客观存在的、具有统一性质的由个别事物组成的集合体,称为统计总体。

构成总体的个别事物称为个体(总体单位)。

(2)总体与个体必须具备的条件客观性:特定的非一般意义上;大量性:包含足够多的个体以避免偶然性;同质性:构成总体的个体在性质上必须是相同的,否则无法反映总体的特征;差异性:构成总体的个体之间存在差异。

统计学sst、ssb、ssw计算

统计学sst、ssb、ssw计算

统计学sst、ssb、ssw计算随着数据分析和统计学在日常生活中的应用越来越广泛,掌握一些基本的统计学知识显得尤为重要。

本文将为你解析统计学中SST、SSB、SSW的计算方法,并通过实例演示加深理解。

一、统计学基本概念回顾在谈论SST、SSB、SSW之前,我们先来回顾一下统计学中的相关基本概念。

统计学是研究数据收集、整理、分析、解释和应用的科学。

在数据分析过程中,我们常常会遇到以下三个概念:1.总和(Sum):所有观测值的和。

2.样本(Sample):从总体中抽取的一部分观测值。

3.变量(Variable):可以取多个值的量。

二、SST、SSB、SSW计算方法解析1.SST(Sum of Squared Deviations)SST表示样本总平方差,用于衡量样本观测值与样本均值的差异程度。

计算公式为:SST = Σ(xi - x)其中,xi表示样本中的每一个观测值,x表示样本均值。

2.SSB(Sum of Squared Differences)SSB表示样本均值与总体均值之间的差异程度,也称为总体平方差。

计算公式为:SSB = Σ(xi - μ)其中,xi表示样本中的每一个观测值,μ表示总体均值。

3.SSW(Sum of Squared Residuals)SSW表示残差平方和,用于衡量观测值与模型预测值之间的差异。

计算公式为:SSW = Σ(xi - i)其中,xi表示观测值,i表示对应的模型预测值。

三、计算实例演示为了帮助你更好地理解SST、SSB、SSW的计算方法,下面通过一个简单实例进行演示。

假设我们有一个包含5个观测值的样本:10,12,13,15,18。

1.计算样本均值:x = (10 + 12 + 13 + 15 + 18) / 5 = 142.计算SST:SST = Σ(xi - x) = (10 - 14) + (12 - 14) + (13 - 14) + (15 - 14) + (18 - 14) = 243.计算SSB:假设总体均值μ为15,则SSB = Σ(xi - μ) = (10 - 15) + (12 - 15) + (13 - 15) + (15 - 15) + (18 - 15) = 444.计算SSW:假设我们有一个线性回归模型y = a + bx,其中a和b为待求参数。

数理统计中的重要公式整理

数理统计中的重要公式整理

数理统计中的重要公式整理正文:数理统计是一门研究统计学原理和方法的学科,其重要性不可忽视。

在数理统计中,有一些重要的公式被广泛应用于各类统计问题的求解和分析。

本文将对数理统计中的重要公式进行整理,以帮助读者更好地掌握和应用这些公式。

1. 概率论与数理统计基本公式1.1 概率论基本公式:(1) 加法法则:P(A ∪ B) = P(A) + P(B) − P(A ∩ B)(2) 乘法法则:P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B)(3) 全概率公式:P(A) = ∑ P(A ∩ Bᵢ) = ∑ P(Bᵢ)P(A|Bᵢ)(4) 贝叶斯公式:P(A|B) = P(B|A)P(A) / P(B)1.2 数理统计基本公式:(1) 期望值公式:E(X) = ∑ XᵢP(Xᵢ)(2) 方差公式:Var(X) = E[(X - E(X))²] = E(X²) - [E(X)]²(3) 协方差公式:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E(XY) -E(X)E(Y)(4) 相关系数公式:ρ(X, Y) = Cov(X, Y) / σ(X)σ(Y)2. 统计推断中的重要公式2.1 参数估计公式:(1) 矩估计:θ̂= ḡ(m₁, m₂, ..., mₖ)(2) 最大似然估计:θ̂= argmax[∏ f(x; θ)](3) 最小二乘估计:θ̂= argmin[∑ (yᵢ - g(xᵢ; θ))²]2.2 假设检验公式:(1) z检验:z = (x - μ) / (σ/√n)(2) t检验:t = (x - μ) / (s/√n)(3) 卡方检验:χ² = ∑ (Oᵢ - Eᵢ)² / Eᵢ3. 抽样理论中的重要公式3.1 随机变量公式:(1) 期望值公式:E(X) = μ(2) 方差公式:Var(X) = σ²/n(3) 中心极限定理:Z = (X - μ) / (σ/√n) 服从标准正态分布3.2 总体参数估计公式:(1) 基本抽样分布(z分布):z = (X - μ) / (σ/√n)(2) t分布:t = (X - μ) / (s/√n)(3) X²分布:χ² = ∑ (Xᵢ - Eᵢ)² / Eᵢ4. 方差分析中的重要公式4.1 单因素方差分析公式:(1) 总平方和公式:SST = ∑ (xᵢj - x)²(2) 因素平方和公式:SFA = n ∑ (xₖ - x)²(3) 误差平方和公式:SSE = ∑ (xᵢj - xₖ)²4.2 F检验公式:F = (SFA / (k - 1)) / (SSE / (n - k))5. 相关分析中的重要公式5.1 简单线性回归公式:(1) 回归模型:Y = β₀ + β₁X + ε(2) 最小二乘估计公式:β̂₁ = ∑((Xᵢ - X)(Yᵢ - Ȳ)) / ∑((Xᵢ - X)²)β̂₀ = Ȳ - β̂₁X(3) 相关系数公式:r = Cov(X, Y) / (σ(X)σ(Y))6. 抽样调查中的重要公式6.1 简单随机抽样公式:(1) 抽样率:p = n / N(2) 估计总量公式:T = N * (X / n)(3) 估计方差公式:Var(T) = N² * ((1 - p/n) / n) * σ²7. 时间序列分析中的重要公式7.1 平稳时间序列公式:(1) 自协方差公式:γ(h) = Cov(Xₖ, Xₖ₋ₖ) = γ(-h)(2) 自相关系数公式:ρ(h) = Cov(Xₖ, Xₖ₋ₖ) / (σ(Xₖ)σ(Xₖ₋ₖ))通过对这些数理统计中的重要公式的整理,我们可以更加方便地在实际问题中应用这些公式,进行数据分析、参数估计、假设检验等统计推断工作。

医学统计学重点要点

医学统计学重点要点

医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。

样本:从总体中随机抽取部分个体的某个变量值的集合.总体参数:刻画总体特征的指标,简称参数。

是固定不变的常数,一般未知。

统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。

抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。

频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。

称m/n为事件A在n次试验中出现的频率或相对频率。

概率:频率所稳定的常数称为概率。

统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。

统计推断:包括参数估计和假设检验。

用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计.用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。

2.样本特点:足够的样本含量、可靠性、代表性。

3。

资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料.是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。

每个个体都能观察到一个观察指标的数值,有度量衡单位.(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。

包括二分类资料和多分类资料。

二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容.多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。

4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析.第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2。

误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。

3。

实验设计的三个基本原则:对照原则、随机化分组原则、重复原则.4。

统计学原理重要公式

统计学原理重要公式

统计学原理重要公式1.样本均值公式:样本均值是样本数据的总和除以样本的大小。

它的公式是:$$ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i $$其中,n是样本的大小,xi是第i个观测值。

2.总体均值公式:总体均值是从总体中取得的全部样本数据的总和除以总体的大小。

它的公式是:$$ \mu = \frac{1}{N} \sum_{i=1}^{N} x_i $$其中,N是总体的大小,xi是第i个观测值。

3.样本方差公式:样本方差是样本数据与样本均值差的平方和的平均值。

它的公式是:$$ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 $$其中,n是样本的大小,xi是第i个观测值,$ \bar{x} $是样本均值。

4.总体方差公式:总体方差是总体数据与总体均值差的平方和的平均值。

它的公式是:$$ \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 $$其中,N是总体的大小,xi是第i个观测值,$ \mu $是总体均值。

5.样本标准差公式:样本标准差是样本方差的平方根。

它的公式是:$$ s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} $$其中,n是样本的大小,xi是第i个观测值,$ \bar{x} $是样本均值。

6.总体标准差公式:总体标准差是总体方差的平方根。

它的公式是:$$ \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} $$其中,N是总体的大小,xi是第i个观测值,$ \mu $是总体均值。

7.样本比例公式:样本比例是样本中具有一些特征的观测值的比例。

$$ p = \frac{x}{n} $$其中,n是样本的大小,x是具有特征的观测值的数量。

均值、方差、标准差的概念及公式

均值、方差、标准差的概念及公式

均值、方差、标准差的概念及公式下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!均值、方差、标准差是统计学中非常重要的概念,在数据分析和研究中起着至关重要的作用。

统计学基本概念最新

统计学基本概念最新

一、聚类分析1.概念:聚类分析的职能是建立一种分类方法,它是将一批样品或变量,按照它们在性质上的亲疏程度进行分类。

或者说,聚类分析就是要找出具有相近程度的点或类聚为一类;距离的种类很多,其中欧式距离在聚类分析中用得最广,它的表达式如下:2.步骤:应用系统聚类法进行聚类分析的步骤如下:①确定待分类的样品的指标;②收集数据;③对数据进行变换处理(如标准化或规格化);④使各个样品自成一类,即n个样品一共有n类;⑤计算各类之间的距离,得到一个距离对称矩阵,将距离最近的两个类并成一类;⑥并类后,如果类的个数大于1,那么重新计算各类之间的距离,继续并类,直至所有样品归为一类为止;⑦最后绘制系统聚类谱系图,按不同的分类标准或不同的分类原则,得出不同的分类结果。

3.聚类分析的种类二、ARIMA模型(一) ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。

ARMA模型全称为自回归移动平均模型(Autoregressive Moving AverageModel,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。

其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。

ARIMA模型的基本思想ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。

这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。

现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。

ARIMA模型预测的基本程序(1)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

37、随机变量 38、离散型随机变量 39、连续型随机变量 40、概率分布 42、概率密度函数 43、概率分布的数学期望和方差 44、二项试验 45、二项分布 46、泊松分布 47、均匀分布 48、指数分布 49、正态分布
50、标准正态分布 51、标准分数(Z分数) 52、统计量 53、总体参数 54、中心极限定理 55、样本均值的分布 56、标准误 57、卡方分布 58、t分布 59、F分布 60、点估计(有效性、无偏性、一致性、充分性)
2
23.二项分布的概率函数p( x) = Cnx p x q n − x , x = 0,1,2,..., n, q = 1 − p 24.二项分布的数学期望和方差E ( X ) = µ = np,Var ( X ) = σ 2 = np(1 − p ) 25.泊松分布p( x) =
µ xe−µ
x! x! n Crx ⋅ C N− xr − 27.超几何分布p ( x) = ,0 ≤ x ≤ r n CN
( X i − µ )2 ∑
n −1
N ( X i − µ )2 ∑
5.标准差: ( )总体标准差:σ = σ 2 1 (2)样本标准差: = S2 S 6.变异系数 σ 标准差 总体:CV = ×100% = × 100% µ 平均数 S 样本:CV = × 100% X
⌢ ⌢ σ(p −p
1 2
)
⌢ ⌢ n1 p1 + n2 p2 ⌢ 总体比率合并估计 : p = n1 + n2
⌢ ⌢ ⌢ ⌢ p1 = p2时σ ( p1 − p2 )的点估计量 : S ( p1 − p2 ) =
⌢ ⌢ 1 1 p (1 − p) + n n 2 1
(n − 1)S 2 ≤ σ 2 ≤ (n − 1)S 2 47.一个总体方差的区间估计 : 2 2 (n − 1)S 2 48.一个总体方差的检验统计量 : χ = 2
84、相关、相关系数 (1)积差相关系数(皮尔逊相关) (2)等级相关(斯皮尔曼等级相关、和谐系数) (3)点二列相关 (4)二列相关 (5)多列相关 5 (6)四分相关 85、因变量 86、自变量 87、简单线性回归 88、回归模型
89、回归方程 90、散点图 91、残差 92、最小二乘估计 93、决定系数 94、复相关系数 95、回归系数 96、标准化回归系数 97、列联表 98、拟合度检验 99、独立性检验
100、期望频数(理论频数) 101、观察频数(实际频数) 102、φ相关系数 103、列联系数
二、重要公式
∑X 1. 样本平均数: = X
n N 3. 四分位差: D = IQR = QU − QL Q 4.方差: ( )总体方差:σ 2 = 1 (2) 样本方差: 2 = S
∑X 2. 总体平均数: = µ
2
L YY =
∑ (Y
n i =1 n i =1
i
−Y
) =∑Y
2 n i =1
i
n ∑ Yi − i =1 , n
X =

Xi n
,Y =
∑Y
i =1
n
i
n
10 .加权平均数
∑W X X = ∑W
i i
i
11 .分组数据样本平均数 12 .分组数据样本方差 13 .排列组合公式 S2
2
χα / 2
χ (1−α / 2)
σ
S12 49.两个总体方差的检验统计量 : F = 2 S2 50.拟合优度检验统计量 : χ 2 = ∑
i =1 k
( f i − ei )2 , df
ei
= k −1
51.独立假设条件下列联表的期望频数 : 第i行之和 × 第j列之和 eij = = n 样本容量 独立性检验统计量 : RTi × CT j
统计学中的基本概念和重要公式
一、基本概念 二、重要公式
一、基本概念 1、描述统计学 2、推断统计学 3、数据的几种尺度和类型 4、条形图 5、直方图 6、茎叶图 7、箱线图 8、累积频数 9、累积百分比 10、众数
11、中数(中位数) 12、百分位数 13、均值(平均数) 简单平均数 加权平均数 调和平均数 几何平均数 14、异众比率 15、范围(全距) 16、四分位差 17、方差(总体、样本)
14.事件补的概率P( A) = 1− P( A) 15.加法公式 P(A ∪ B) = P(A)+ P(B)- P(A∩ B) P(A ∩ B) P(A∩ B) 16.条件概率 P(A | B) = , P(B| A) = P(B) P( A) 17.乘法公式 P(A ∩ B) = P(B) ⋅ P(A | B) = P( A) ⋅ P(B| A) 18.独立事件 P(A∩ B) = P( A)P(B) 19.全概率公式P(B) = ∑ P( Ai ) ⋅ P(B| Ai )
18、标准差(总体、样本) 19、离散系数(变异系数) 20、偏度 21、峰度 22、样本 23、样本点(基本事件) 24、样本空间 25、样本容量 26、随机事件 27、相容事件、互斥事件 28、相关事件、独立事件
29、事件的概率: (1)概率的古典定义 (2)概率的统计定义 (3)主观概率的定义 30、条件概率 31、事件的补、并、交运算 31 32、概率的加法公式 33、概率的乘法公式 34、条件概率公式 35、全概率公式 36、贝叶斯公式
40.总体均值的单侧检验中所需样本容量 :
(Z n=
(µ 0 − µ1 )
α
− Zβ ) σ 2
2 2
, 用Zα 2 代替Zα即为双侧检验的公式
41.独立样本时, 两个总体均值之差的点估计量 : X 1 − X 2 X 1 − X 2的期望值与标准差 : E ( X 1 − X 2 ) = µ1 − µ 2 ,
i =1 n
P( Ai ) ⋅ P(B| Ai ) P( Ai ) ⋅ P(B| Ai ) 20.贝叶斯公式P(Ai | B) = = n P(B) ∑ P( Aj ) ⋅ P(B| A j )
j=1
21.离散型随机变量的数学期望E ( X ) = µ = ∑ xp( x) 22.离散型随机变量的方差Var ( X ) = σ 2 = ∑ ( x − µ ) p ( x)
1
(2)大样本, σ 1 , σ 2未知 X 1 − X 2 ± Zα 2 S ( X 1 − X 2 )
(
)
2 S12 S 2 + n1 n2
σ = σ 时, X 1 − X 2 的标准差σ ( X − X ) =
2 1 2 2
1 2
(
)
σ 12
1 1 + = σ ( + ) n1 n2 n1 n2
Xi − X Xi − µ ,或 Zi = S σ ∑ X i − X Yi − Y 8 .样本协方差 Cov ( X , Y ) = S XY = n −1 S XY L XY r XY = 9 .皮尔逊相关系数 = , S X SY L XX L YY 7 .标准分数 ( Z 分数 ) Z i =
( x − µ )2 −
2σ 2
=
λx e −λ
1 28.正态概率密度函数f ( x) = e 2π σ x−µ 29.标准正态分布变换Z =
σ
30. X的数学期望和标准差 : E( X ) = µ, 有限总体时σ X = 无限总体时σ X = N −n σ N −1 n
σ
n
(
)(
)
L XX =
∑ (X
n i =1
i
− X
) =∑
2 n
i =1
X i2
n ∑ Xi , − i =1 n
n
2
L XY =
∑ (X
n i =1
i
− X Yi − Y =
)(
) ∑
2
i =1
n n ∑ X i ∑ Yi i =1 , X i Y i − i =1 n
61、区间估计(显著性水平、置信度、置信区间) 62、假设检验 63、α错误(第一类错误) 64、β错误(第二类错误) 65、单侧检验 66、双侧检验 67、假设检验中的p值 68、独立样本 69、相关样本 70、因素 71、因素的水平
72、主效应 73、交互作用 74、多重比较 75、简单效应 76、离差平方和 77、自由度 78、均方(平均平方) 79、变异的分解 80、F值 81、临界值 82、零假设(虚无假设、原假设、无差异假设) 83、备择假设(研究假设、替换假设)
χ 2 = ∑∑
i j
(f
ij
− eij )
2
eij
, df = (R − 1)(C − 1)
52.检验K个均值的相等性 第j个处理的样本均值 : X j =
∑X
i =1
nj
ij
nj
, −Xj
第j个处理的样本方差 : S 2 = j
∑ (X
nj i =1
ij
)
2
n j −1
σ
n S , n
,
(3)总体正态, 小样本, 方差已知 X ± Zα 2 (4)总体正态, 小样本, 方差未知 X ± tα 2 34.估计µ时所需的样本容量 : n = ∆2
σ
n S n
,
2 Zα 2σ 2
⌢ ⌢ p (1 − p ) n ⌢ ⌢ 2 Zα 2 ⋅ p (1 − p ) 36. p的区间估计时所需的样本容量n = ∆2 37.大样本总体均值的检验统计量 : ⌢ 35.总体比率P的区间估计p ± Zα 2 X −µ 方差已知 : Z = , σ/ n X −µ 方差未知 : Z = S/ n X −µ 38.小样本总体均值的检验统计量 : t = , df = n − 1 S/ n ⌢ p − p0 39.总体比率检验统计量 : Z = p0 (1 − p0 ) n
相关文档
最新文档