步进电机控制驱动电路设计.

合集下载

基于AT89C51单片机和ULN2003驱动芯片的步进电机控制及驱动电路系统的设计

基于AT89C51单片机和ULN2003驱动芯片的步进电机控制及驱动电路系统的设计

基于AT89C51单⽚机和ULN2003驱动芯⽚的步进电机控制及驱动电路系统的设计摘要 (1)Abstract (2)第⼀章.绪论 (2)1.1设计背景 (4)1.2关于国内外同类产品的发展和应⽤ (4)1.3 本⽂所做的⼯作 (5)1.4 研究内容与安排 (5)第⼆章系统总体⽅案设计 (7)2.1 设计原理 (7)2.2 主要元器件介绍 (8)2.2.1 四相六线步进电机的介绍 (8)2.2.2 AT89C51单⽚机芯⽚介绍 (10)2.2.3 ULN2003芯⽚介绍 (11)2.2.4 LED七段数码管介绍 (12)第三章步进电机控制及驱动系统电路设计实现 (13)3.1 硬件设计 (13)3.2 软件设计 (17)第四章电路调试 (18)第五章总结 (20)致谢 (21)参考⽂献 (22)附录 (23)摘要本⽂主要研究了⼀种基于AT89C51单⽚机和ULN2003驱动芯⽚的步进电机控制及驱动电路系统的设计。

该系统可分为:控制模块、驱动模块、显⽰模块、⼈机交互模块四⼤部分。

其中采⽤AT89C51单⽚机作为控制模块的核⼼,利⽤单⽚机编程实现了对步进电机启动停⽌、正转反转、加速减速等功能的基本控制。

驱动模块由芯⽚ULN2003A驱动步进电机⼯作;显⽰部分由七段LED共阴数码管组成;⼈机互换部分由相应的按键实现相应的功能。

通过实际测试表明本设计系统的性能优于传统步进电机控制器,具有结构简单、可靠性⾼、实⽤性强、⼈机接⼝简单⽅便、性价⽐⾼等特点。

此外,本⽂还介绍了步进电机的基本原理及AT89C51单⽚机的性能特点。

关键词:步进电机;ULN2003; AT89C51;AbstractThis article mainly introduced the basic principle of stepping motor and the performance characteristics of AT89C51.Design research based on AT89C51 and ULN2003 stepper motor driver chips control and drive circuit system.The system can be divided into: control module, drive module, display module, human–computer interaction module.The AT89C51 single chip microcomputer as the core of the control module, microcontroller programming has realized the start stop the stepper motor, forward reverse, speed reducer, and other functions of basic control.Driver module driven by chip ULN2003A stepper motor;Display section is made up of seven segment digital tube LED, Yin;Man-machine interchangeable parts by the corresponding button to achieve the corresponding function.Through the actual test show that the system performance is superior to the traditional stepping motor controller is designed, with simple structure, high reliability and strong practicability, simple and convenient man-machine interface, high cost performance, etc.Key words: stepper motor;ULN2003;AT89S52 devices.摘要 (1)Abstract (2)第⼀章.绪论 (4)1.1设计背景 (4)1.2 关于国内外同类产品的发展和应⽤ (4)1.3 本⽂所做的⼯作 (5)1.4 研究内容与安排 (5)第⼆章系统总体⽅案设计 (7)2.1 设计原理 (7)2.2 主要元器件介绍 (8)2.2.1 四相六线步进电机的介绍 (8)2.2.2 AT89C51单⽚机芯⽚介绍 (10)2.2.3 ULN2003芯⽚介绍 (11)图2.6 ULN2003逻辑图 ..................................................................................................................... 11 2.2.4 LED 七段数码管介绍............................................................................................................... 12 图2.7六位LED 共阴数码显⽰管图 (12)第三章步进电机控制及驱动系统电路设计实现 (13)3.1 硬件设计 (13)1B 11C 162B 22C 153B 33C 144B 44C 135B 55C 126B 66C 117B77C10COM 9U2ULN2003AXTAL218XTAL119ALE 30EA31PSEN 29RST9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78 P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1AT89C51 ............................................................................................................................................................ 14 3.2 软件设计.. (17)第四章电路调试 ................................................................................................... 18 第五章总结............................................................................................................. 20 致谢......................................................................................................................... 21 参考⽂献................................................................................................................. 22 附录 . (23)第⼀章.绪论1.1设计背景电⽓时代的今天,电动机⼀直在现代化的⽣产和⽣活中起着⼗分重要的作⽤。

步进电机驱动电路

步进电机驱动电路

R11 R10 361x4
IC6 TCP521-4
1 io4 Vdd 16 2 io6 io2 15 3 o/i io1 14 4 io7 io0 13 5 io5 io3 12 6 inh a 11 7 Vee b 10 8 Vss c 9
+5V
13 1A
14 Vcc 12 1Y
Nc
11 5A
10 5Y
+15V
14
1
Vcc 1A
1Y
3
1B
2
E7 E12/47u25V +5V
IC9
5
NE555
C41
8 VCC 4 RST
R26
470u 35V
C7
103
7 DHE 3 OUT D1
2 TGR 5 CTL
3
4 2A 2Y 6 5 2B 9 1A 1Y 8
1B 10
C16
R27 333 D2
6 TSD 1 GND
78L15
2
PC6
47u
25V
E2
C2
47u
25V
E3
C3
47u
25V
PC3 PC3 47u 25V
PT3
1
Vin
Vout
3
GND
78L15
2
PC7
47u
25V
E4
C4
47u
25V
驱动/电源板: H2P-8AH.PCB
P
222
N
1kV
2
3 1/9 12
8 10/7
PD1
PT4
1
Vin
Vout
3
GND

步进电机工作原理及控制电路

步进电机工作原理及控制电路

//按键标志变量
flag1=0;
//步进数标志变量
init();
//液晶初始化子程序
while(1)
{
keyscan();
//键盘扫描子程序
if(flag==1)
{
zz();
//正转子程序
}
else if(flag==3) {
fz(); } writebjs(8,count); } }
//反转子程序
it 动机正转,其励磁顺序如图所示。若励磁信号反向传送,则步进电动机反转。励
磁顺序: A→AB→B→BC→C→CD→D→DA→A
A-B 表4.3 1-2 相励磁法
步进电动机的负载转矩与速度成反比,速度愈快负载转矩愈小,当速度快至 其极限时,步进电动机即不再运转。所以在每走一步后,程序必须延时一段时间。 下面介绍的是国产20BY-0型步进电机,它使用+5V直流电源,步距角为18度。电 机线圈由四相组成,即A、B、C、D四相,驱动方式为二相激磁方式,电机示意图 和各线圈通电顺序如图4.2和表4.1所示:
6
法增大起动电流,以提高步进电机转动力矩,即提高其工作频率。由于步进电机
是感性负载,所以进入绕组的电流脉冲是以指数形式上升,即这时电流脉冲i为:
i = IH (1 − e−1/Tj )
(4.4)
公式
其中:i是电流脉冲瞬时值;
IH 是在开关回路电压为u时的电流稳态值;
Tj 是开关回路的时间常数,Tj = L / ( RL + RC )
θ s = 2Π / Nrk
公式(4.1) 或
θ s = 360o / Nrk
公式(4.2)
其中:k是步进电机工作拍数,Nr是转子的齿数。

步进电机的驱动控制电路

步进电机的驱动控制电路

绕组电 流小了, 输出转矩就会以12关系下降 1 21。此外, 在绕组电流截止时, 相绕组地两端 还会产生很高的反电动势。为提高步进电机 系统的性能和效率, 一般对驱动电路具有如 下要求: ①通电周期内能提供足够大的矩形波或 接近矩形波的电流。 ② 具有截止电流泻放回路, 以降低相绕组 两端的反电动势, 加快电流的衰减。 ③驱动电源效率高、功耗低, 运行稳定
蓄雾 蓄粼蹂。动路斩曝 盘瓷 严电 波 曹
,引言 步进电 机又称为脉冲电 它 机, 能将脉冲信 号变 换为 相应的角位移或直线位移, 输出 且 转 角、 转速与 输入脉冲的 个数、 频率有着严格的 同步关系川。由于步进电机能直接接受数字 量输入, 所以特别适合于微机控制。作为数字
控制系统中的重要执行组件, 步进电机广泛应 用于自 动指示装置、 数控机床、 计算机巡回检 测等多种领域中, 但一般数字电路的信号能量 不足以驱动步进电机, 因此需利用专门的电路 来驱动步进电机川。随着电力电子技术、自 动控制技术以及计算机技术的发展, 步进电机 驱动技术也得到 了 快速发展, 国内外对步进电 机驱动电路也进行了大量的研究和开发工作。
图3 高低压驱动
图1 步进电机驱动控制器
2 .2 工作要求 步进电机的励磁绕组是一个电感线圈, 其电感L 与励磁回路总电阻R 之比称为电机 驱动回路的时间常数 T , T = L/ R 。当步 即 进脉冲频率较低时,的影响可以不考虑, ( 电 机每走一步, 其相电流基本可以达到最大值。 当步进脉冲频率较高时, 的影响不能忽略, T 因为电机绕组中的电流是按指数规律 上 升 的, 大约经过 3 r 一5 T 的时间, 电流才能达 到稳态值。当步进脉冲频率较高, 使绕组通 电时间小于 3(时, 电机绕组的各相电流 1就 没有机会达到最大值, 而电机的转矩 MOC12,

四相步进电机驱动电路及驱动程序设计

四相步进电机驱动电路及驱动程序设计

四相步进电机驱动电路及驱动程序设计我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作,荣获一等奖。

电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。

程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。

整个舞蹈由运动数据所决定的一截截动作无缝连接而成。

本文主要介绍一下这个机器人的四相五线制步进电机驱动电路及程序设计.1、步进电机简介步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。

本文以四相制为例介绍其内部结构。

图1为四相五线制步进电机内部结构示意图。

2、四相五线制步进电机的驱动电路电路主要由单片机工作外围电路、信号锁存和放大电路组成。

我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。

8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。

每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。

电路原理图(部分)如图2所示。

(1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。

该系列单片机上集成8K的ROM,128字节RAM可供使用。

(2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。

ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。

关于这些芯片的详细介绍可参见它们各自的数据手册。

(3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。

我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。

这是一种基于总线分时复用的方式,以动态扫描的方式来发送控制信号,这和高级操作系统里的多任务进程调度的思想一致。

步进电机驱动电路设计

步进电机驱动电路设计

步进电机驱动电路设iti耍隧着数字化技术发展,数字控制技术得對了广泛而深入的应用。

步进电机是一种将数字信号直接转换成轴位務或线位務的控制腿动元件,具有快速起动和停止的特点。

S 为步进电动机组成的控翎系统结构简单,价招低廉,性能上能满足工业腔制的基本要求, 所以广泛地应用于手工业自动控翎、数控机床、组合机床、机器人、il算机外围设备、照相机,投影仪、像机、大型望远镜、卫星天线定位系貌、医疗器件以员各种可腔机MIR等等。

直流电机广泛应用于it算机外围设备(如硬盘、軟盘和光盘存棒器)、家电产品、医疗器械和电动车上,无刷直流电机的转子部普遍使用永龜林料组成的磁鋼, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。

在电工设备中的应用,除了直浦电磁铁(直济继电器、直滾接触器等)外,最重要的就是应用在直济废转电机中。

在发电厂里,同步发电Hl的助脱机、蓄电池的充电HI 等,都是直流发电Hl;錯炉给粉机的原动机是直流电动机。

此外,在许多工业部门,例如大塑轧鋼设备、大型精密机床、矿井卷畅机、市电车、电缆设备要求严怡线速度一致的地方等,通常都果用直流电动机作为原动机来isaji作机械的。

直逍发电机通常是作为直流电源,向负裁输岀电能;a 潦电动机则是作为原动机带动各种生产机械工作,向负我输出机械能。

在控初系坑中, 直潦电机还有其它的用迩,例如测速电机、何服电机等。

他们都是利用电和磁的相互作用来实现向机械能能的转换。

介鉛了步进电机和直流电机原理及其驱动程序控初控制模块,通11 AT89S52单片机及脉冲分配器(R林逻辑转换器)L298完成步进电机和宜流电机各种运行方式的控制。

实现步进电机的正反转速18控制并且显示数振。

整个系筑果用模快化设计,结枸简单、可靠,通il按建控制,操作方便,节省成本。

关鍵词:步进电机,单片机控制,AT89S52, L297, L2981步进电动机11.1步进电机简介11.2步进电机分类22步进电机工作原理32. 1步进电HI结构32. 2步进电机的旋转方武3 3设计原理53.1硕件电路组成53.2步进电机控制电路53.2.1廿数器工作模成63.2.2定时器工作模式6 4步进电机驱朋电路设it 74.1驱动芯片L29774.2驱动芯片L29884.3權盘电路94.4显示电路105步进电机控制程序11 总给14致15参考文151步进电动机1.1步进电机简介步进电动#1是一种稱电脉冲信号转換成角位務或线位務的精密执行元件,由于步进电机具有控制方便、体枳小等特点,所以在数控系统!自动生产线!自动灿表!绘图机和计算机外围设备中需到广泛应用。

步进电机驱动电路的设计

步进电机驱动电路的设计

U’o确定参考电位 o UI1和UI2两者都 UI1和UI2两者都 小于各自的参考电 压时,Uo=1, 压时,Uo=1,放电 管截止; 管截止; UI1和UI2两者都 UI1和UI2两者都 大于各自的参考电 压时,Uo=0, 压时,Uo=0,放电 管导通; 管导通;
V CC
RD 4
vIC
5
8
vI1
tW
T
脉冲周期T: 脉冲周期 :在周期性重复的脉冲系列 两个相邻脉冲间的间隔时间。 中,两个相邻脉冲间的间隔时间。 脉冲频率f: 脉冲频率 :单位时间内脉冲重复的次数 f=1/T。 。 占空比D:脉冲宽度与脉冲周期的比值 占空比 : D=tw/T。 。
如何获得脉冲信号? 如何获得脉冲信号?
利用脉冲振荡器直接产生脉冲信号; 利用脉冲振荡器直接产生脉冲信号;
典型的步进电机控制系统的组成
时钟电路
步进控制器——把输入的脉冲转换成环型脉冲 步进控制器——把输入的脉冲转换成环型脉冲, 把输入的脉冲转换成环型脉冲, 以控制步进电动机, 以控制步进电动机,并能进行正反转控制 功率放大器——把步进电动机输出的环型脉 功率放大器——把步进电动机输出的环型脉 冲放大, 冲放大,以驱动步进电动机转动
L297接线图与控制时序 L297接线图与控制时序
L298内部结构原理图 L298内部结构原理图
L298是一 是一 种双全桥驱动电 路,可用来驱动 各种小型直流电 机、两相双极步 进电机和四相单 极步进电机。 极步进电机。
L297和L298构成的步进电机控制系统 L297和L298构成的步进电机控制系统
0.9U m 0.1U m
tr
tf
上升时间t 脉冲上升沿从 脉冲上升沿从0.1Um上升到 上升到0.9Um所需的 上升时间 r:脉冲上升沿从 上升到 所需的 时间。 时间。 下降时间t 脉冲下降沿从 脉冲下降沿从0.9Um下降到 下降到0.1Um所需的 下降时间 f:脉冲下降沿从 下降到 所需的 时间。 时间。

步进电机H桥功率驱动电路设计

步进电机H桥功率驱动电路设计

步进电机H桥功率驱动电路设计步进电机是一种特殊的直流电机,可以通过一定的控制方式实现精准的角度控制。

步进电机的驱动电路通常采用H桥功率驱动电路,其中H桥电路是通过四个开关元件(通常是MOSFET管或者IGBT管)和两个电源组成的,能够实现电机的正、反向旋转。

H桥电路由四个开关元件组成,其中开关S1和S4连接在一起,共同控制电机的一个端口,开关S2和S3连接在一起,共同控制电机的另一个端口。

H桥电路有四种状态:S1和S4为导通状态,S2和S3为截止状态;S2和S3为导通状态,S1和S4为截止状态;S1和S3为导通状态,S2和S4为截止状态;S2和S4为导通状态,S1和S3为截止状态。

步进电机的驱动原理是通过控制H桥电路的四种状态,使得电机在施加电源电压的不同方向上旋转。

控制步进电机的一个重要参数是步距角,即电机每转一圈所走过的角度。

根据步距角的大小,步进电机可以分为全角步进电机和半角步进电机。

全角步进电机的步距角为360度/步数,控制方式可以是单相驱动方式或者双相驱动方式。

单相驱动方式只需要两个驱动电路,一个控制电机的一个端口,另一个端口通过调整S1和S4的导通时间来实现,通过调整导通的时间长短,可以控制电机的速度。

双相驱动方式需要四个驱动电路,分别控制电机的两个端口,通过交替切换四种状态来实现控制。

半角步进电机的步距角为360度/(2×步数)。

控制半角步进电机通常采用四相驱动方式,需要八个驱动电路,通过交替切换八种状态来实现控制。

四相驱动方式的原理是将步进电机的一个端口分成四段,通过施加电源电压的不同顺序,使得电机在不同的相邻段上产生磁场,并完成旋转。

步进电机的驱动电路设计需要考虑以下几个问题:1.驱动电路的工作电压范围,要能适应电机的额定电压以及工作电压波动范围。

2.驱动电路的开关元件的选型,要能够满足电流和功率的要求,并具有足够的开关速度。

3.驱动电路的保护措施,要考虑过流、过热等异常情况的保护。

基于单片机的步进电机控制电路设计

基于单片机的步进电机控制电路设计

基于单片机的步进电机控制电路设计
步进电机是一种应用广泛的电机,它的控制方式是通过逐步改变电流来驱动电机转动。

基于单片机的步进电机控制电路设计可以使步进电机的控制更加精确、方便和自动化。

下面将介绍一下如何设计一台基于单片机的步进电机控制电路。

首先,我们需要选择合适的单片机。

对于步进电机控制,需要一个I/O口数目足够的单片机,并且要求计算速度快、性能稳定。

常用的单片机有AT89C51、AVR、PIC、STM32等,其
中STM32拥有强大的计算能力和外设支持,非常适合用于步
进电机控制电路的设计。

接下来,我们需要考虑步进电机的驱动方式。

步进电机可以采用全步进或半步进两种方式驱动。

全步进控制方式会让电机一步步转动,步距为180度,转速慢但精确度高,而半步进控制方式可以让电机先半步,再进入全步进控制,提高了转速同时又保持了较高的精度。

最后,我们需要设计电路连接和代码编写。

在电路连接方面,需要将单片机输出引脚和驱动芯片的控制引脚相连,同时将驱动芯片输出端和电机的相应引脚相连。

在代码编写方面,需要根据所选单片机的指令集来编写步进电机控制引脚输出的程序,实现步进电机转速和方向的控制。

综上所述,基于单片机的步进电机控制电路设计需要选取合适的单片机,选择合适的步进电机驱动方式,并根据电路连接和
代码编写来实现电机的精确控制。

这样设计出的步进电机控制电路可以应用于各种机械设备控制,使之更加智能化和自动化。

步进电机驱动电路

步进电机驱动电路

02
步进电机驱动电路设计要素
驱动电路的组成及工作原理
驱动电路的组成
• 电源模块:为驱动电路提供稳定的电压和电流 • 控制模块:接收控制信号,控制电流的方向和大小 • 驱动模块:将控制信号转换为驱动电流,驱动电机运行
驱动电路的工作原理
• 控制模块根据输入的控制信号生成驱动信号 • 驱动模块根据驱动信号产生相应的驱动电流,驱动电机运行 • 电源模块为驱动电路提供稳定的电压和电流,保证电路正常工作
04
步进电机驱动电路在实际应用中的注意事项
驱动电路与步进电机的匹配问题
驱动电路与步进电机的匹配原则
• 度要求选择合适的驱动电路
驱动电路与步进电机的匹配方法
• 通过实验和计算确定最佳匹配方案 • 参考产品手册和应用案例进行匹配
驱动电路的控制策略与优化
未来应用场景的拓展
• 在智能家居、机器人等领域的应用 • 在航空航天、武器装备等领域的应用
未来驱动电路的设计方向
• 高性能、高效率、高可靠性的驱动电路设计 • 绿色环保、节能减排的驱动电路设计
CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
模块化驱动电路的优势
• 便于维护和升级 • 提高设计灵活性,易于扩展
新型驱动技术与控制方法的研究与应用
新型驱动技术
• 永磁同步电机等高效电机的研究与应用 • 无刷直流电机等环保电机的研究与应用
新型控制方法
• PID控制等先进控制算法的研究与应用 • 模糊控制等人工智能技术的研究与应用
步进电机驱动电路在未来应用场景的拓展
双极性驱动电路的优缺点
• 优点:驱动能力强,能实现正反转控制 • 缺点:结构较复杂,成本较高

三相步进电机驱动电路设计

三相步进电机驱动电路设计

三相步进电机驱动电路设计一、引言步进电机是一种将电脉冲信号转换为机械转动的电动机,具有结构简单、定位精度高、起动停止快的特点,被广泛应用于数控机床、机器人、自动化设备等领域。

本文将介绍三相步进电机驱动电路的设计。

二、驱动原理三相步进电机的驱动原理基于磁场交替作用的原理,通过控制电流的改变,使电机在不同的磁场中转动。

它分为两种驱动方式:全、半步进驱动。

全步进驱动方式中,步进电机每接收一个脉冲信号就转动一个步距,而在半步进驱动方式中,步进电机每接收一个脉冲信号就转动半个步距。

本文以全步进驱动为例进行设计。

三、电路设计1.电源电路:步进电机驱动电路需要一个稳定的直流电源,通常使用电容滤波器和稳压电路来提供稳定的电压输出,保证电机正常工作。

2.脉冲发生及控制电路:脉冲发生电路产生脉冲信号,用于控制步进电机的转动。

常用的发生电路有震荡电路和微处理器控制电路。

本文以震荡电路为例,通过计算电容充放电时间确定震荡频率。

3.驱动电路:驱动电路是步进电机的核心,它将脉冲信号转换为电流控制信号,控制步进电机的转动。

常用的驱动方式有双H桥驱动和高低电平驱动。

本文以双H桥驱动为例进行设计。

4.电流检测和反馈电路:为了控制步进电机的转速和转矩,需要对电机的电流进行检测和反馈。

常用的检测电路有电阻检测和霍尔效应检测。

通过检测电流大小,可以调节驱动电流,以达到控制步进电机的效果。

5.保护电路:为了保护步进电机和驱动电路的安全,需要设计相应的保护电路。

常见的保护电路有过流保护电路、过热保护电路和短路保护电路等。

四、总结本文介绍了三相步进电机驱动电路的设计。

通过合理设计电路,可以实现对步进电机的控制和保护,提高步进电机的运行效果和寿命。

未来,可以进一步研究和改进三相步进电机驱动电路的设计,以满足更高精度、更高速度的步进电机应用需求。

高稳定度步进电机驱动电路设计

高稳定度步进电机驱动电路设计

使在谐振 区也不容易失步 ,电机运行平稳、振动小 、噪声低 。
为了实现细分驱动 目的 ,步进 电机绕组用阶梯 电流波供 电。阶梯等级与细分数有关 ,系统中采用 3 2细分技术 ,即将
原来 的一 步分 成 了 3 小 步 来 完成 ,如 图 3所 示 。 2
A相
动频率 后的一段 时问 内,转矩随频率 线性下 降,其倾斜率不
维普资讯
维普资讯
2升频启动
在一定的负载转矩下, 电机能够不失步、不丢步、正常 启动 时所加的最高控 制频率称 为启动频率 ,其启动频率要 比 连续运行频率低很多。因此电机不可能一步达到运行频率 ,
必须从一个较低频率开始启动 ;但是步进电机 自身存在不 可 避免的低频共振现象 。即当控制脉冲频率等于或接近步进 电 机振荡频率 的 l (= ,,, 时, / k 1 3…) 电机就会出现强烈振荡甚至 k 2 失步或者无法工作 ,因此 电机 的启动过程要尽量避开 电机的
本系统要求 的运行频率是固定的,因此 曲线中的 f是固 2 定的,但是如何选取起始频率 f是研究过程中亟待解决 的问 一 题。 系统 的研究过程中,尝试了各种起始频率的选取 方法 , 在 最终发现若 电机起始频率 f 的选取遵循以下的原 则,步进 电 机就能够稳定地启动。 () 1若电机 的低频共振点低于电机启动频率 ,则起始频率 f 应 高于 电机的低频共振频率 、低于 电机 自身的启 动频率 , 并且与二者问都应 留有 足够 的余量 ; () 电机 自身的低频共振频率高于 电机的启动频率 ,则 2若 不可能按照原则() I的方法选取 ,即电机在启动过程 中会不可 避免地遇到低频共振点 ,此时起始频率 f的设定应低于启动 t
的片选信号 ,将各相对应的数据依 次转换 后送给功率放大 电

步进电机驱动电路制作图解

步进电机驱动电路制作图解

步进电机驱动电路制作图解
 前几天吧寒假作业糊弄完了,这几天没事干昨天晚上看到了步进电机然后就研究了半晚上原理
 今天在我的那个单片机试验箱里翻到啦一个35mm的步进电机,然后在配套资料里面找到了驱动电路的电路图如图
 下面我给大家讲讲原理(仅供参考):首先j18接口是加到单片机io 口上的j19接到步进电机j19的1234分别为步进电机的a,a1,b,b1
 首先8550是低电平导通,如果j18的1的电平为0,那幺三极管v8导通,v8导通之后j19的1脚的电平为1
 ,同时电流又通过R49让三极管v15导通由电路图可知,j19的2脚接到了v15的集电极,且j19的2脚和1脚是
 一组线圈,3和4脚是一组线圈,现在1脚电平为1,电流流经一组线圈。

步进电机驱动器电原理图

步进电机驱动器电原理图

6 5 4 3 2 1
6 J21 NM
R13 P521 270 D3
控制板 步进电机驱 动器电路原理图(控制部分)
时钟
R26 100
3
I/O CD4051BM
R27 270
+5
U5F MM74HC14 +5
40 C11 0.1u D1 +5
VCC GND
12
13
U5A 2
14
0.1 1 P1 R11 270 4N26 R54 +5 D2 OPTO CP DIR FREE
J2 1 2 3 4 5 6 7 8 CON8 R12 270
R36 10k T4C5 G2 C6 Z1
R34 10k T2 G2 C7 C8
CON2 DC 24 - 40V 4A 电源输入
220u/25V
C3 220u/25V
5.6V/0.3W
22u/100V 22u/100V R32 100 T5 ZL R37 10k D2 MUR1660CT T12 K0225
22u/100V 22u/100V R31 100 T3 ZL R35 10k T11 K0225
J2 1 2 3 4 5 6 7 8 CON8
接控制板
J13 1 2 3 4 CP 步进脉冲 DIR 正反转控制 FREE 自由状态控制 OPTO 光耦合器公共阳极
R39 10k
CON4 信号输入 R42 10k
- 15 -
+15 5 8 11 J1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CON18 +5 R46 10k +5 U7A CD4050B 2 +15 3 R43 4k7 2 U6A DM7407 U7B CD4050B 4 +15 +5 +5 U7C CD4050B 6 U7D CD4050B 10 +15 R44 4k7 7 4 U6B DM7407 9 +5 R3 2k U3B LM393 34 7 5 5 6 5 U6C DM7407 14

步进电机控制芯片与驱动电路

步进电机控制芯片与驱动电路
在一个完整的细分控制系统上,TC1002全面的控制马达运行状况,它能在任何时候改变马达状态,没有必要要复位控制器。它很容易使马达前进使用者设定的固定步数。另外在“整步”输出上,当马达长时间工作后,它会指出马达是否还处于整步状态上。TC1002通过输入时钟和方向两种信号就可控制马达,并可以工作在离散状态下。
步进电机控制芯片TC1002特点:
44引脚QFP封装
高达10MHz时钟
内部集成模拟SINE/COSINE发生器,DAC
PWM电流控制,可自动减少电流
14种细分选择,细分数的改变不会中断马达的运行
Standalone or Buss模式
5V电源供电
过流保护ቤተ መጻሕፍቲ ባይዱ
过温保护
错误输出
整步输出
消除共振
TC1002步进电机控制芯片方案成本低,成品成本大概在75-85之间,更多技术支持请联系HP134-3440-1340Q363379189邓生/邓工。
步进电机控制芯片TC1002的应用驱动电路如下:
上面这种应用是与IR2103搭配使用。也可以与L298、L6203搭配使用。控制驱动电路如下:
步进电机控制芯片与驱动电路
步进电机控制芯片TC1002是一个高性能二相步进电机细分驱动控制器。TC1002支持14种细分等级,最大256细分,最大支持4.2A和8.0A电流。TC1002它包含一个模拟SINE/COSINE信号发生器,完整的数字控制集成在一颗芯片中,高集成度减少产品的设计周期。尽量的减少了外部的分立元件,提供给设计者一个简单但又高效的产品。

步进电机控制驱动电路设计

步进电机控制驱动电路设计

步进电机控制驱动电路设计一、任务步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,它在速度、位置等控制领域被广泛地应用。

但步进电机必须由环形脉冲信号、功率驱动电路等组成控制系统方可使用。

设计一个三相步进电机控制驱动电路。

二、要求1.基本要求1)时钟脉冲产生电路,能实现步进电机的正转、反转、手动(点动)和自动控制;2)用IC设计一个具有“自启动”功能的三相三拍环形分配器;3)能驱动三相步进电机的功放电路。

使用的是三相步进电机,工作相电压为12V2.发挥部分1)设计的环形分配器可实现“三相单三拍”、“三相双三拍”和“三相六拍”的多工作方式选择;2)完成步进电机供电电源电路设计;3)其它创新。

操作说明(与实际电路相对应):(从上到下依次)(从左到右)短路环: 1 2 3 4 开关:1 4 工作模式:断开接通断开接通0 0 三相单三拍正转断开接通断开接通0 1 三相单三拍反转断开接通断开接通0 0 三相六拍反转断开接通断开接通0 1 三相六拍正转接通断开接通断开0 0 三相双三拍正转接通断开接通断开0 1 三相双三拍反转注意:按键按下为0 向上为1如果在工作时有异常情况请按复位键调节变阻器2可以调节速度的大小摘要本设计采用自己设计的电源来给整个电路供电,用具有置位,清零功能的JK触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,从而来完成题目中的要求。

并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。

本系统具有以下的特点:1.时钟脉冲产生电路,能实现步进电机的正转、反转、手动(点动)和自动控制;2.具有“自启动”的功能。

3.可以工作在“三相单三拍”、“三相双三拍”和“三相六拍”的多工作方式选择的状态下。

4.具有复位的功能。

(创新)5.具有速度可变的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机控制电路
下面的为对应的程序部分:
ORG 0000h
LJMP MAIN
MAIN: MOV P1,#0FFH
MOV SP,#30H
KEY: MOV A,#88H
MOV P0,A
MOV A,#00H
MOV P2,A
MOV A,#0FFH
MOV P3,A
JB P3.0,STOP
JNB P3.1,FOR3
JB P3.1,FOR6
JMP KEY
FOR3: JNB P3.2,FOR31
JB P3.2,FOR32
JMP FOR3
FOR31: JB P3.3,PLU31
JNB P3.3,REV31
JMP FOR31
FOR32: JB P3.3,PLU32
JNB P3.3,REV320
JMP FOR32
FOR6: JB P3.3,PLU60
方案四:使用单片机作为脉冲源和环形分配器
可以通过从单片机的引脚送出不同的信号来驱动电机,同时此方案有很好的人机交换的功能,在扩展功能的方面很好的空间,可以在其他引脚中送出信号来驱动七段数码管进而来显示不同的工作状态,也可以用单片机内部的定时器来计算速度的大小,进而显示出来,同时也可以增加按键的多少来扩展其他的功能。
RE31:MOV A,#0B7H
MOV P0,A
MOV A,#6EH
MOV P2,A
MOV A,R0
MOV DPTR,#TABLE
MOVC A,@A+DPTR
JZ REV31
MOV P1,A
JB P3.0,STOP
JB P3.3,PLU31
CALLDELAY
INC R0
JMP RE31
PLU32: MOV R0,#08H
关键字:555定时器脉冲源环行分配器功率放大电路
一、方案论证与比较:
(一)脉冲源的方案论证及选择:
方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。
图一555定时器产生的方法
方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。
10单三拍正转
11单三拍反转
1 0双三拍正转
1 1双三拍反转
图七六拍正反转的实现
S1
1六拍正转
2六拍反转
注:这里所提供的电路图虽然我们做试验时没有采用,但它们都是我们仿真通过的电路图。
此方案较上一个方案有较大提高,但还是电路较复杂,操作不方面,这里并不采用。
方案四:我们采用具有置位,清零功能的JK触发器74LS76作为主要器件来设计环行分配器,在这里综合前三个方案的优点,设计出了各个方面性能都比较好的方案。它集合了方案一的置位的功能,综合了方案三的操作方面的功能,并且又在此基础上增加了复位的功能,使此更加具有实用性,更加具有批量生产性。
JNB P3.3,REV61
JMP FOR6
STOP: MOV A,#77H
MOVP0,A
MOV A,#0EEH
MOV P2,A
MOV P1,#0FFH
JB P3.0,$
CALL DELAY
JMP KEY
PLU31: MOV R0,#00H
P31: MOV A,0B1H
MOV P0,A
MOV A,62H
课程实习报告
实习名称:电子设计制作与工艺实习
学生姓名:周文生
学号:201216020134
专业班级:T-1201
指导教师:李文圣
完成时间:2014年6月13日
报告成绩:
步进电机控制驱动电路设计
摘要:
本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。
P32: MOV A,#0B1H
MOV P0,A
MOV A,#73H
MOV P2,A
MOV A,R0
MOV DPTR,#TABLE
MOVC A,@A+DPTR
JZ PLU31
MOV P1,A
JNB P3.0,STOP
JNB P3.3,REV32
CALL DELAY
INC R0
JMP P32
REV61: JMP REV6
STOP1: JMP STOP
REV32 : MOV R0,#0CH
RE32: MOV A,#0B7H
MOV P0,A
MOV A,#07FH
MOV P2,A
MOV A,R0
MOV DPTR,#TABLE
MOVC A,@A+DPTR
JZ REV32
MOV P1,A
JNB P3.0,STOP1
JB P3.3,PLU32
CALL DELAY
INC R0
JMP RE32
PLU6: MOV R0,#10H
P6: MOV A,#0E1H
MOV P0,A
MOV A,#62H
MOV P2,A
MOV A,R0
MOV DPTR,#TABLE
MOVC A,@A+DPTR
JZ PLU63.3,REV6
MOV P2,A
MOV A,R0
MOV DPTR,#TABLE
MOVC A,@A+DPTR
JZ PLU31
MOV P1,A
JNB P3.0,STOP
JNB P3.3,REV31
CALL DELAY
INC R0
JMP P31
REV320:JMP REV32
PLU60:JMP PLU6
REV31: MOV R0,#04H
图三双三拍正转
图四单三拍正转
图五三相六拍正转
利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。
方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。
图六单,双三拍的电路图
单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。
S1 s2
图二晶振产生脉冲源电路
综上所述,我们采用方案一来设计脉冲源。
(二)环形分配器的设计:
方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。
方案二:使用单独的JK触发器来分别实现单独的功能。
CALLDELAY
INC A
JMP P6
REV6: MOV R0,#17H
相关文档
最新文档