数控工艺分析
数控零件加工工艺分析
数控零件加工工艺分析针对机械制造行业越来越普及的数控零件加工技术,对其加工工艺的分析显得尤为重要。
数控零件加工在过去数十年中经历了长足的进步,目前已成为现代制造业中应用最为广泛的一种制造方法。
本文将从数控加工工艺的基本概念、数控加工的特点、数控加工中的主要技术处理等方面进行分析论述,以使读者对数控零件加工技术有更深入的了解。
一、数控加工工艺概述数控加工工艺是指通过计算机程序控制机床或加工设备进行自动化加工的一种现代化制造技术。
具有高效、精度高、柔性、可靠性好、操作简便等特点。
与传统的手工或半自动化加工相比,数控加工能够提高生产效率,降低人为误差,减少人力和设备成本,从而在制造过程中提高了生产效率和质量稳定性。
二、数控加工的特点1. 高精度。
数控零件加工可以实现微米级别的精度,且加工精确度稳定性高,不易受到环境、人为等因素的影响。
2. 高效率。
数控加工能够实现机器加工的连续、自动化,生产效率比其他普通加工方法高出一个数量级。
3. 操作简便。
操作人员只需配置好加工程序,载入数控系统中,加工过程中不需要对设备进行频繁的调整。
三、数控加工中的主要技术处理1. 数控编程数控加工首先需要对零件进行CAD设计,然后再将设计图纸转化为数控程序,最终通过计算机传输至机床或设备中进行加工。
2. 数控加工轨迹规划加工轨迹规划是数控加工中比较关键的一步技术处理。
数控机床需要根据程序所编的轨迹精确定位进行加工。
轨迹规划需要考虑加工路径的时间、精度、运动平滑性等多个因素,以达到理想的加工效果。
3. 数控加工切削切削是数控加工中最重要的技术处理之一,加工质量的好坏、加工速度的快慢都与刀具材料、刃磨工艺、切削参数等有着密切关系。
数控加工中常用的切削方式有铣削、钻孔、车削、磨削等。
四、数控加工中的常见问题及解决方式在数控加工过程中,由于材料、设备、环境、程序等因素影响,常常会出现一些问题。
这些问题会导致加工件质量下降,工艺费用增加,使生产效率降低。
数控加工工艺分析
数控加工工艺分析数控加工工艺分析是指对数控加工过程中的各个环节和工艺条件进行细致分析和评估的过程。
通过对数控加工工艺的分析,可以有效提高加工效率、降低加工成本、改善产品质量,并且满足客户对产品的要求。
下面将从数控加工工艺设计、数控机床选择、刀具选择以及加工工艺参数等方面进行详细分析。
首先,数控加工工艺设计是数控加工的核心环节之一、在数控加工工艺设计时,需要确定加工过程中的每个工序的刀具路径和切削参数,包括切削速度、进给速度、切削深度等。
其中,切削路径的设计应尽量减少切削时间,减小切削力和刀具磨损。
切削参数的选择需要根据工件材料、刀具材料以及所要求的加工精度等方面综合考虑,以达到最佳的加工效果。
其次,数控机床的选择也是数控加工工艺分析的重要内容之一、数控机床的性能和精度直接影响加工质量和效率。
在数控机床选择时,应根据所要加工零件的尺寸、形状、材料以及工艺要求等因素来确定数控机床的类型和规格。
同时,还要考虑数控机床的刚性、稳定性、动态响应特性和自动刀具切换等功能,以满足不同加工需求的要求。
再次,刀具的选择对数控加工的质量和效率也有着重要影响。
刀具的选择应根据工件材料、切削任务以及加工精度的要求来确定。
一般而言,硬质合金刀具适用于加工硬材料和高速加工,而高速钢刀具适用于加工软材料,同时还可以根据不同的切削任务选择不同的刀具类型,如铣刀、钻头、车刀等。
最后,加工工艺参数的选择是数控加工工艺分析的重要环节之一、加工工艺参数的选择直接关系到加工质量和效率。
在选择加工工艺参数时,可以通过实验或者经验总结来确定最佳参数。
一般而言,切削速度应根据材料硬度、刀具类型以及切削任务来选择,进给速度应根据刀具的尺寸和刚性、加工表面的粗糙度要求以及加工工艺的稳定性来选择,切削深度应根据加工目标和刀具的性能来确定。
此外,还要注意加工中的冷却液、润滑剂的使用以及工件夹紧装置的设计与选择等。
综上所述,数控加工工艺分析是数控加工过程中十分重要的环节,通过对加工工艺设计、数控机床选择、刀具选择以及加工工艺参数的详细分析和评估,可以优化加工过程,提高加工效率和产品质量。
轴套零件的数控工艺分析与编程
轴套零件的数控工艺分析与编程轴套是一种常见的机械零件,广泛应用于各种机械设备中。
数控工艺分析与编程是指通过数控编程的方式对轴套的加工工艺进行分析,并编写相应的数控程序,以实现对轴套的高效、精确加工。
下面将详细介绍轴套零件的数控工艺分析与编程过程。
一、数控工艺分析数控工艺分析是指分析轴套零件的加工特点和要求,并确定相应的加工工艺路线和具体的加工参数。
具体分析如下:1.轴套的加工特点和要求:轴套通常由高强度的金属材料制成,具有高精度、高强度和耐磨损的特点。
在进行数控加工时,需要注意减小误差、提高加工精度和表面质量。
2.加工工艺路线:根据轴套的结构、尺寸和加工要求,确定加工工艺路线。
一般来说,轴套的加工工艺路线包括粗加工、精加工和表面处理等步骤。
-粗加工:主要包括车削、铣削、钻削等工艺,用于将原材料加工成近似形状的轴套毛坯。
-精加工:主要包括车削、钻削、拉削等工艺,用于将毛坯进一步加工成精确形状和尺寸的轴套。
-表面处理:主要包括抛光、热处理等工艺,用于提高轴套的表面质量和硬度。
3.加工参数确定:根据轴套的材料和加工要求,确定各工艺步骤对应的切削速度、进给速度、切削深度和切削用液等加工参数。
二、数控编程数控编程是指根据数控设备的编程语言和指令集,编写相应的数控程序,实现对轴套的自动化加工。
具体编程步骤如下:1.绘制零件图纸:根据轴套的几何形状和尺寸要求,绘制轴套的详细图纸。
图纸应包括轴套的三维模型、尺寸和加工要求等信息。
2.分析加工特点:根据轴套的加工特点和要求,对加工工艺进行分析,并确定加工工艺路线和加工参数。
3.编写数控程序:根据加工工艺路线和加工参数,编写数控程序。
数控程序是指通过一系列的数控指令,控制数控机床进行轴套的加工。
4.调试和优化:将编写好的数控程序输入数控机床,并进行调试和优化,确保加工过程的准确性和稳定性。
5.加工监控和质量检验:在整个加工过程中,需要进行对加工状态的监控和质量检验,确保轴套的加工质量符合要求。
数控加工工艺的分析与处理
数控加工工艺的分析与处理随着科技的不断进步,数控加工技术在制造业中得到了广泛应用。
数控加工工艺的分析与处理是保证数控加工过程顺利进行的关键环节。
本文将从数控加工工艺的基本原理、分析方法与处理措施三个方面进行探讨。
一、数控加工工艺的基本原理数控加工是利用计算机控制数控机床进行精密切削或造型加工的一种加工方法。
其基本原理是将图纸上的几何尺寸、形状和位置要求转化为数学模型,并通过计算机编程的方式将这些模型转化为数控指令,进而控制数控机床的运动轨迹、切削参数等,实现零件的加工。
数控加工工艺的前提是要了解工件的设计要求和材料特性。
通过分析工件的几何形状、尺寸、表面质量要求以及材料的硬度、可加工性等参数,确定适合的数控加工方案。
在具体加工过程中,还需要根据工件的形状复杂程度、加工精度要求等因素,合理选择数控机床、刀具和切削参数等。
二、数控加工工艺的分析方法1.几何形状分析:对于复杂形状的工件,需要进行多视图的几何形状分析,确定加工的主要特征面、特征线和特征点。
2.加工工艺分析:根据工件的几何形状、尺寸和表面质量要求,结合加工设备和材料,分析出适合的加工工艺路线,并绘制出对应的加工工艺卡。
3.切削力与热量分析:分析切削力和热量对加工过程的影响,根据材料的可加工性和切削力的大小,选择合适的切削参数和冷却液。
4.程序分析:通过工艺分析,确定数控加工的主要工序和加工路径,在制定程序时,遵循合理、简洁、安全、高效的原则。
三、数控加工工艺的处理措施1.加工设备优化:根据工件的加工要求,选择合适的数控机床及其附件,提高加工效率和精度。
2.刀具选择与刀具磨损处理:根据工件材料和切削要求,选择合适的刀具,并进行定期检查和更换,及时处理刀具磨损问题。
3.切削参数调整:根据工艺分析结果,合理调整切削速度、切削深度和进给速度等切削参数,以保证加工质量。
4.刀具路径优化:通过选择合理的切削路径和切削顺序,减少进刀次数和加工时间,提高加工效率。
零件数控加工工艺分析及工艺装备设计
零件数控加工工艺分析及工艺装备设计随着现代制造业的发展,数控技术已经成为了制造业的核心技术之一。
数控加工工艺因为其快速、精准、高效等特点而受到了广泛的应用。
其中,零件数控加工工艺分析及工艺装备设计是数控加工中的重要环节。
一、零件数控加工工艺分析零件数控加工工艺分析是制定数控加工工艺方案的第一步。
它通过对零件的结构、尺寸、材料、加工要求等因素进行分析,确定零件的加工工艺方案和加工流程。
具体分析如下:1. 零件结构零件结构是制定加工方案的重要要素之一。
在对零件结构进行分析时,需要考虑零件各部分的形状、大小、复杂程度、表面形状等因素,以确定加工时应采用的加工方法。
2. 零件材料零件材料对加工过程也有一定的影响。
材料的选取应考虑其加工性、物理性质、热性能、耐磨性等因素。
同时,还要与所采用的加工设备和工艺相匹配。
3. 加工精度和表面质量要求零件的加工精度和表面质量要求是制定加工方案的重要因素之一。
在分析时,应考虑零件的尺寸要求、几何公差、表面光洁度等指标,以确定零件的加工精度和表面加工方法。
二、工艺装备设计工艺装备设计是制定加工方案之后的下一步。
在进行工艺装备设计时,应根据零件的加工要求和加工方式,选择合适的加工设备,并针对设备性能进行优化设计。
具体设计包括:1. 设备选型在设备选型时,应考虑零件的加工要求、加工精度和加工效率等因素,选择合适的加工设备。
同时,还要考虑成本、设备可靠性、维护费用等因素,以确定最佳的设备选择方案。
2. 设备性能优化在设备性能优化方面,应根据零件的特性和加工要求,对设备进行优化。
具体措施包括:改进加工方式、提高设备的稳定性和精度、改进机床结构、提高设备自动化程度等。
3. 生产线设计在进行生产线设计时,应充分考虑零件加工全部流程,确保零件生产过程的顺畅和高效。
同时,生产线设计还要考虑安全性、灵活性和环保标准等因素。
三、总结零件数控加工工艺分析及工艺装备设计是数控加工的关键环节之一。
数控加工工艺分析办法
常用工件材料的高速切削速度范围表(m/min)
应用范围
目前,高速切削加工技术主要应用于车 削和铣削工艺,今后将涵盖所有的传统加工 范畴,从粗加工到精加工,从车削、铣削到 镗削、钻削、拉削、铰削、攻丝、滚齿等。
航空制造业、模具制造业、汽车制造业 等行业均已积极采用高速切削加工技术。
三、典型零件数控加工工艺分析实例
单元1 数控加工 工艺分析方法
广西机电职业技术学院
单元1 数控加工工艺分析方法
一、数控加工工艺分析方法
(一)零件图的工艺分析 (二)加工方法的选择 (三)工序的划分 (四)定位与夹紧方式的确定
(五)加工顺序的安排 (六)确定走刀路线和工步顺序 (七)切削用量的选择 (八)对刀点与换刀点的确定 (九)高速切削加工技术
二、典型零件数控加工工艺分析实例
(一)数控车削加工典型零件工艺分析实例 (二)数控铣削加工典型零件工艺分析实例
一、数控加工工艺分析方法
(一)零件图的工艺分析
1、零件图分析 (1)尺寸标注方法分析
注意基准统一原则,减少累积误差。 (2)零件图的完整性与正确性分析
几何图素条件要求充分。
(3)零件技术要求分析 尺寸精度、形状精度、位置精度、表面粗
(一)数控车削加工典型零件工艺分析实例
轴承套 数控车削加 工工艺(单 件小批量生 产),所用 机床为 CJK6240。
1、零件图工艺分析
采取以下工艺措施: 1)编程时取基本尺寸。 2)先加工左、右端面。 3)内孔尺寸较小,镗1﹕20锥孔、φ32孔及
15°斜面时需掉头装夹。
2、确定装夹方案
1)内孔加工时以外圆定位,用三爪自动 定心卡盘夹紧。
5、切削用量选择
根据被加工表面质量要求、刀具材料 和工件材料,参考切削用量手册或有关资 料选取切削速度与每转进给量,计算结果 祥见工序卡。
数控加工零件的工艺分析与数控铣削加工工艺
数控加工零件的工艺分析与数控铣削加工工艺数控加工是指利用计算机数控系统,通过编写程序控制机床工作来加工零件的一种加工方式。
在工业生产中,数控加工因其高精度、高效率、高灵活性等优点而被广泛应用。
其中数控铣削是一种常见的数控加工方式,本文将从工艺分析、数控铣削加工工艺等方面进行探讨。
一、数控加工零件的工艺分析工艺分析是数控加工的一项前置工作,它的目的是确定加工工艺,选择合适的加工设备和刀具,制定加工程序等,从而保证加工质量和效率。
具体而言,工艺分析主要包括以下几个方面:1. 零件的材质和形状:不同材质的加工性能不同,加工时需要选择相应的切削参数和刀具;而零件的形状和结构也会影响加工难度和精度,需要对其进行全面分析和评估。
2. 加工精度和表面质量要求:根据零件的要求,确定加工精度和表面质量目标,制定相应的切削参数和工艺措施。
3. 工序分析:对零件进行逐个工序分析,确定加工顺序、加工方向、加工路径和刀具选择等重要内容,同时把握好每个工序的加工质量和效率。
4. 刀具选择:根据加工材料、零件形状和要求,选择合适的刀具和刀具尺寸,保证零件的加工质量和加工效率。
5. 加工程序制定:通过数控编程软件,编写机床加工程序,包括各种切削参数、刀具路径、指令参数等信息,为数控加工提供参考。
二、数控铣削加工工艺数控铣削是一种高速旋转的刀具在工件表面上进行切削的加工方式,它广泛应用于金属、塑料等材料制件的加工中。
数控铣削在工件制作中具有大量价值和应用,且数控铣削加工工艺也是半自动化和自动化制造中的重要工艺之一。
要把好铣削的关,需要具备以下几点:1. 刀具选择:刀具的选择是影响加工效率和加工质量的重要因素之一。
首先需要考虑切削材料,选择高速钢、硬质合金、陶瓷等材质的刀具;其次要考虑刀具尺寸和形状,根据零件的要求选择合适的刀具。
2. 切削参数:切削参数包括切削速度、进给量和切削深度等,这些参数的选定与零件材料、刀具材料、刀具尺寸和表面质量等因素密切相关。
对于数控车削加工工艺分析
对于数控车削加工工艺分析数控车削加工是一种智能化的机械加工技术,它通过计算机程序控制旋转切削刃进行精密加工工艺。
这种工艺应用广泛,例如在机械零件加工、汽车零件加工、航空航天零件加工等领域都有广泛的应用,目前已经成为现代化生产制造的重要组成部分。
为了加深对数控车削加工工艺的了解,本文将对其原理、工艺特点以及影响加工质量的因素进行分析。
一、数控车削加工的原理数控车削加工采用计算机程序控制旋转切削刃的切入切出轨迹,在由精密控制系统控制旋转刀具和旋转工件期间,以非常高效和准确的方式切割材料,从而精密的完成机械零件的加工过程。
二、数控车削加工的工艺特点1. 具有良好的加工精度,能够加工出高精度的工件。
2. 高效率、高精度的加工速度和工艺性能,可适应不同工件的要求。
3. 可以对复杂的形状进行加工,不受常规工具的限制。
4. 可以进行多种立体加工,将一些复杂的形状在三维环境下加工成工件。
5. 可以进行长周期的连续加工,而且可靠性强。
三、影响加工质量的因素影响数控车削加工工艺质量的因素有很多,在设计和操作过程中需要进行充分考虑和控制,这样才能够保证加工出来的工件有稳定的质量、快速的加工速度、高效的生产效率。
1. 材料的性质材料的性质是决定加工工艺的一个重要因素。
因为不同材料的硬度和韧性特性不同,需要在数控车削加工过程中采用不同的切削参数。
材料越硬,加工难度越大,刀具寿命也会受到影响。
2. 设备选择设备选择是另一个影响加工质量的因素。
不同的数控车削加工设备有不同的处理能力,操作熟练程度也会影响最终的加工质量。
3. 加工环境加工环境是影响加工精度的另一个因素。
加工环境中产生的光、温、震动等因素都会对加工精度产生影响。
尤其是在高精度加工时,需要保持温度和光线等因素尽量稳定,以确保加工精度。
4. 物理和化学参数螺纹角、工件直径、转速、切削宽度等物理参数自然会影响到加工质量,需要根据具体情况调整。
此外,切削液、切削油等物化参数也是影响加工质量的因素,这会直接影响到工具的磨损和寿命。
数控加工工艺分析的一般步骤与方法
3)确定进给量
进给速度是数控机床切削用量中的重要参数,主要根 据零件的加工精度和表面粗糙度要求以及刀具与零件的材料 性质来选取。当加工精度和表面粗糙度要求高时进给量应选 择得小些。最大进给量受机床刚度和进给系统的性能影响, 并与数控系统脉冲当量的大小有关。
1)以零件的装夹定位方式划分工序 一般加工零件外形时以内形定位,加工零件内形时以外
形定位。可根据定位方式的不同来划分工序
2)按所用刀具划分工序 为了减少换刀次数,压缩空行程运行的时间,减少不必
要的定位误差,可以按照使用相同刀具来集中加工工序的方 法进行零件的加工工序划分。
数控车削加工工艺
3)按粗、精加工划分工序 一般情况下先进行粗加工,再进行精加工。通常在一次
0
50 100 零件批量
零件生产批量与总加工费用的关系
数控车削加工工艺
2.数控加工零件的工艺性分析
数控加工工艺分析主要从数控加工的可能性和方便性方 面分析: (1)零件图上尺寸数据的给出,应符合程序编制方便的原则
1)零件图上尺寸标注方法应该适应数控加工编程的特点 2)构成零件轮廓几何元素的条件要充分
(2)零件各加工部位的结构工艺性应符合数控加工的特点
1)零件的内腔和外形最好采用统一的几何类型和尺寸。这 样可以减少使用刀具的规格和加工中换刀的次数,使得 编程方便,生产效益提高。
2)应该采用统一的定位基准
数控车削加工工艺
3.加工方法的选择与加工方案的确定
(1)加工方法的选择
加工方法的选择要同时保证加工精度和表面粗糙度的要 求。由于获得同一级精度与表面粗糙度的加工方法有多种, 因而在进行选择时,要结合零件的形状、尺寸的大小和热处 理等具体要求来考虑。例如对于IT7级精度的孔,采用车削、 镗削、铰削、磨削等加工方法,均可达到精度要求。
数控机床技术中的工艺数据管理与分析
数控机床技术中的工艺数据管理与分析工艺数据是数控机床技术中至关重要的一部分,它对机床的性能和加工质量有着重要影响。
工艺数据管理与分析是指对机床加工过程中产生的各项工艺数据进行收集、整理、管理和分析,以便更好地控制和优化加工过程。
首先,工艺数据的管理是为了实现对加工过程的追溯和监控。
在数控机床加工过程中,需要对加工参数、加工时间、加工能耗等进行实时监测和记录,以便在出现问题时可以及时找出原因,并进行排除。
此外,工艺数据的管理还能够实现对加工质量的控制,通过与产品质量标准进行比对,及时调整加工参数,确保产品达到设计要求。
其次,工艺数据的分析可以帮助优化机床加工过程。
通过对工艺数据的分析和比对,可以找出加工过程中存在的问题,如加工误差、加工速度不稳定等,从而进行针对性的调整和改进。
此外,工艺数据的分析还可以帮助优化机床的使用和维护,通过分析机床的工作状态和故障情况,及时进行维护和保养,延长机床的使用寿命。
在数控机床技术中,工艺数据管理与分析的关键在于数据的准确性和及时性。
首先,要确保采集到的工艺数据是准确的,可以通过自动化数据采集系统和传感器等手段进行数据收集,减少人为误差的影响。
其次,要及时收集和存储工艺数据,可以借助计算机软件和云平台等技术手段,实现对工艺数据的实时监测和追溯。
同时,还需要建立合理的工艺数据分析模型和方法。
可以通过统计学和数学模型等方法对工艺数据进行分析和对比,找出其中的规律和问题,并提出改进措施。
此外,还可以使用数据挖掘和人工智能等技术手段,对工艺数据进行深度学习和预测,实现对加工过程的优化和控制。
综上所述,数控机床技术中的工艺数据管理与分析是确保机床加工性能和加工质量的重要手段。
通过对工艺数据的准确收集、及时管理和深度分析,可以实现对加工过程的控制和优化,提高机床的加工效率和加工质量,为企业的生产经营提供有力支持。
因此,加强工艺数据管理与分析的研究和应用,对于促进数控机床技术的发展和推广具有重要意义。
数控铣削加工工艺分析
数控铣削加工工艺分析数控铣削加工是现代制造业中常见的加工方式之一,它使用数控铣床进行金属材料的削除加工。
与传统的手工和半自动铣削相比,数控铣削具有高效、精度高、重复性好等优点。
本文将从工艺流程、工艺参数和加工工具选择等方面,对数控铣削加工的工艺进行详细的分析。
一、工艺流程1.加工准备:明确加工件的尺寸要求、材料和加工工艺要求,并选择合适的加工刀具和夹具。
2.编写加工程序:根据零件的几何形状和加工要求,编写数控机床可识别的加工程序。
3.加工装夹:根据加工程序,选择适当的夹具和装夹方式,在数控铣床上夹紧工件。
4.设定工艺参数:根据加工材料的性质和加工要求,设置合理的切削速度、进给速度和切削深度等参数。
5.加工加工:启动数控机床,进行自动化加工,监控加工过程的稳定性和正确性。
6.加工检验:对加工后的零件进行检验,检查尺寸精度和表面质量是否符合要求。
7.加工记录:记录加工过程中的工艺参数和检验结果,以备后续生产参考。
二、工艺参数1.切削速度:是指刀具在单位时间内切削的长度。
根据加工材料的硬度和切削性能,合理选择切削速度,既能保证加工效率,又能保证刀具寿命。
2.进给速度:是指刀具在单位时间内在加工方向上移动的距离。
进给速度的选择应考虑切削力和切削表面的要求。
3.切削深度:是指刀具在一次进给过程中所削除的材料层厚度。
切削深度的选择应使得切削力合理,既能保证加工效率,又能避免切削表面的质量。
4.刀具半径补偿:数控铣床会自动根据刀具半径补偿值进行补偿,使得加工轮廓与设计轮廓一致。
5.加工顺序:根据零件的几何形状和切削力的分布情况,合理选择加工顺序,避免零件变形和加工过程中的切削力过大。
三、加工工具选择1.刀具材料:刀具材料应具有一定的硬度、耐磨性和耐冲击性,常用的刀具材料有硬质合金、高速钢和陶瓷等。
2.刀具形状:根据零件的几何形状和加工要求,选择合适的刀具形状,如平面铣刀、立铣刀、球头铣刀等。
3.切削刃数:根据加工材料的硬度和切削性能,选择合适的刀具刃数,既能保证加工效率,又能保证刀具寿命。
数控加工工艺分析主要包括的内容
图2.1 计算机数控系统框图计算机数控系统的核心是CNC装置,它不同于以前的NC装置。
NC装置由各种逻辑元件、记忆元件等组成数字逻辑电路,由硬件来实现数控功能,是固定接线的硬件结构。
CNC装置采用专用计算机,由软件来实现部分或全部数控功能,具有良好的“柔性”,容易通过改变软件来更改或扩展其功能。
CNC装置由硬件和软件组成,软件在硬件的支持下运行,离开软件硬件便无法工作,两者缺一不可。
1.什么是插补?为什么要进行插补?插补:在实际加工中,用一小段直线或圆弧去逼近(拟合)零件轮廓曲线,即直线或圆弧插补。
插补的任务:就是根据进给速度的要求,在轮廓起点和终点之间计算出若干个中间点的坐标值。
2.现代CNC系统插补的实现方法(1)由硬件和软件的结合实现;(2)全部采用软件实现。
3.插补算法分类:目前应用的插补算法分两大类:脉冲增量插补、数据采样插补(1)脉冲增量插补:插补的结果仅产生一个行程增量,以一个个脉冲的方式输出给步进电机。
点比较法和数字微分分析器 (Digital Differential Analyzer 简称:DDA) 方法图1.7 开环数控系统(2)数据采样插补 (或称:时间分割法)适合于闭环和半闭环控制系统。
补原理:它是把加工一段直线或圆弧的整段时间t细分为许多相等的时间间隔,即:单位时间间隔(插补周期T)。
每经进行一次插补计算,直到加工终点(如图1.6所示)。
2)特点:①插补运算分两步完成:第一步:粗插补,第二步:精插补。
②粗插补:在给定的起点和终点的曲线之间插入若干个点用若干条微小直线段来逼近给定曲线,每小段直线长度即步长)相等,并与进给速度V有关,加工一小段直线的时间为一个插补周期T,则ΔL=VT。
经过一个插补周期就进行一次插补计算,算出在该插补周期内各坐标的进给量,边计算,边加工。
④精插补:在粗插补时算出的每条微小直线段上,再做“数据点的密化”工作。
4.逐点比较法举例(1)逐点比较法就是每走一步都要将加工点的瞬时坐标同规定的图形轨迹相比较,判断其偏差,然后决定下一步的走向;如果加工点图形外面去了,就要向图形里面走;如果加工点在图形里面,就要向图形外面走(如图1.8所示)。
数控加工工艺分析的一般步骤与方法
数控加工工艺分析的一般步骤与方法程序编制人员在进行工艺分析时,要有机床说明书、编程手册、切削用量表、标准工具、夹具手册等资料,根据被加工工件的材料、轮廓形状、加工精度等选用合适的机床,制龙加工方案,确泄零件的加工顺序,各工序所用刀具,夹具和切削用疑等。
此外,编程人员应不断总结、积累工艺分析方面的实际经验,编写出高质量的数控加工程序。
一、机床的合理选用在数控机床上加工零件时,一般有两种情况。
第一种情况:有零件图样和毛坯,要选择适合加工该零件的数控机床。
第二种情况:已经有了数控机床,选择适合在该机床上加工的零件。
无论哪种情况,考虑的因素主要有,毛坯的材料和类、零件轮解形状复杂程度、尺寸大小、加工精度、零件数量、热处理要求等。
概括起来有三点:①要保证加工零件的技术要求,加工岀合格的产品。
②有利于提高生产率。
③尽可能降低生产成本(加工费用)。
二、数控加工零件工艺性分析数控加工工艺性分析涉及而很广,在此仅从数控加工的可能性和方便性两方而加以分析。
(-)零件图样上尺寸数据的给出应符合编程方便的原则1. 零件图上尺寸标注方法应适应数控加工的特点在数控加工零件图上,应以同一基准引注尺寸或直接给岀坐标尺寸。
这种标注方法既便于编程,也便于尺寸之间的相互协调,在保持设汁基准、工艺基准、检测基准与编程原点设置的一致性方而带来很大方便。
由于零件设计人员一般在尺寸标注中较多地考虑装配等使用特性方面,而不得不采用局胤稚5.谋曜7.椒d 这样就会给工序安排与数控加工带来许多不便。
由于数控加工精度和重复定位精度都很高, 不会因产生较大的积累误差而破坏使用特性,因此可将局部的分散标注法改为同一基准引注尺寸或直接给岀坐标尺寸的标注法。
2. 构成零件轮廓的几卦素的条件应充分在手工编程时要计算基点或节点坐标。
在自动编程时,要对构成零件轮解的所有几何元素进行定义。
因此在分析零件图时,要分析几何元素的给泄条件是否充分。
如圆弧与直线,圆弧与圆弧在图样上相切,但根据图上给出的尺寸,在讣算相切条件时,变成了相交或相离状态。
机械类数控零件加工工艺分析毕业论文设计
机械类数控零件加工工艺分析毕业论文设计摘要:数控技术是现代机械制造的重要手段之一,对于提高零件加工精度、缩短生产周期和提高生产效率起着重要作用。
本文以其中一种机械零件为研究对象,通过对其加工工艺的分析与优化,探讨了数控加工工艺在提高终产品质量方面的应用价值。
关键词:数控加工,零件加工,工艺分析,优化1.引言随着机械制造业的不断发展,数控技术在零件加工中的应用越来越广泛。
传统的加工方式对于复杂形状零件的加工精度和效率无法满足要求,而数控加工可以通过程序控制加工设备的运动轨迹,提高加工精度和生产效率。
因此,对于数控加工工艺的分析与优化具有重要的意义。
2.零件加工基本工艺零件加工的基本工艺包括:设计与方案分析、工序规划与工艺策划、数控编程与加工、零件检测与工艺优化。
其中,数控编程与加工是实现数控加工的核心环节,通过编写工艺卡和数控加工程序,控制机床的运动轨迹,实现零件的精确加工。
3.加工工艺分析对于该机械零件,加工工艺的分析主要包括:零件的结构特点分析、工艺性分析和先进性分析。
3.1零件结构特点分析通过对零件结构的分析,了解零件的材料要求、加工精度要求以及表面处理要求等。
3.2工艺性分析工艺性分析是指根据零件结构特点,分析零件加工中可能出现的工艺性问题,并制定相应的工艺技术措施。
常见的工艺性问题包括:内外轮廓加工、槽加工、孔加工、螺纹加工等。
3.3先进性分析先进性分析主要从工艺技术的角度评价零件加工工艺的先进性,包括:数控编程、刀具选择、加工路径设计等。
通过引入先进的工艺技术,可以提高加工效率和加工质量。
4.加工工艺优化通过分析零件加工工艺中存在的问题和不足之处,可以提出相应的优化措施。
在数控编程方面,可以采用优化的刀具路径设计,减少切削路径的交叉和重复,提高加工效率。
在刀具选择方面,可以选用合适的刀具材质和刀具类型,提高切削效果。
在加工参数选择方面,可以根据零件材料和加工要求选择合适的进给速度、切削速度和切削深度,实现更高的加工质量。
数控加工零件的工艺性分析
数控加工零件的工艺性分析对数控加工零件的工艺性分析,主要包括产品的零件图样分析和结构工艺性分析两部分。
其中4.1.1所述“零件图的审查”内容同样适用于数控加工。
(1) 零件图样分析①零件图上尺寸标注方法应适应数控加工的特点,如图4-30(a)所示,在数控加工零件图上,应以同一基准标注尺寸或直接给出坐标尺寸。
这种标注方法既便于编程,也便于尺寸之间的相互协调,又有利于设计基准、工艺基准、测量基准和编程原点的统一。
零件设计人员在尺寸标注时,一般总是较多地考虑装配等使用特性,因而常采用如图4-30(b)所示的局部分散的标注方法,这样就给工序安排和数控加工带来诸多不便。
由于数控加工精度和重复定位精度都很高,不会因产生较大的累积误差而破坏零件的使用特性,因此,可将局部的分散标注法改为同一基准标注或直接标注坐标尺寸。
(a) (b)图4-30 零件尺寸标注分析(a) 同基准标注 (b) 分散标注②分析被加工零件的设计图纸,根据标注的尺寸公差和形位公差等相关信息,将加工表面区分为重要表面和次要表面,并找出其设计基准,进而遵循基准选择的原则,确定加工零件的定位基准,分析零件的毛坯是否便于定位和装夹,夹紧方式和夹紧点的选取是否会有碍刀具的运动,夹紧变形是否对加工质量有影响等。
为工件定位、安装和夹具设计提供依据。
③构成零件轮廓的几何元素(点、线、面)的条件(如相切、相交、垂直和平行等),是数控编程的重要依据。
手工编程时,要依据这些条件计算每一个节点的坐标;自动编程时,则要根据这些条件对构成零件的所有几何元素进行定义,无论哪一个条件不明确,都会导致编程无法进行。
因此,在分析零件图样时,务必要分析几何元素的给定条件是否充分,发现问题及时与设计人员协商解决。
(2) 零件的结构工艺性分析①零件的内腔与外形应尽量采用统一的几何类型和尺寸,这样可以减少刀具规格和换刀次数,方便编程,提高生产效益。
②内槽圆角的大小决定着刀具直径的大小,所以内槽圆角半径不应太小。
数控车床车削典型零件工艺分析
数控车床车削典型零件工艺分析数控车床是一种利用数控技术进行自动化车削加工的机床,广泛应用于制造业的各个领域。
下面将以数控车床车削典型零件为例进行工艺分析。
以加工一台螺杆为例,工艺分析如下:1.零件材质选择:根据螺杆的使用要求,选择适当的材料,常见的有碳钢、不锈钢等。
2.设计图纸:根据产品需求,在CAD软件中绘制螺杆的设计图纸,包括尺寸、形状等。
3.工艺规程编制:根据零件的设计要求,编制螺杆的工艺规程,包括车削工序、工艺参数、刀具选择等。
4.刀具选择:根据工艺规程选择适合的刀具,考虑切削力、刀具寿命等因素。
5.数控编程:根据工艺规程,利用CAM软件编写数控程序,确定刀具路径、切削深度、进给速度等参数。
6.夹紧装夹:将材料切割到合适的长度后,将工件固定在数控车床的主轴上,使用合适的夹具夹紧。
7.车削加工:根据数控程序进行车削加工,包括外径车削、内径车削、螺纹加工等工序。
8.检测与修正:每一道工序完成后,需要进行质量检测,确保零件尺寸、表面粗糙度等符合要求。
若发现问题,及时进行修正。
9.表面处理:根据产品要求,对螺杆表面进行处理,如抛光、镀层等。
10.质量检验:经过表面处理后,对零件进行再次质量检验,确保各项指标符合要求。
11.包装运输:将加工好的螺杆进行包装和标识,便于运输和使用。
以上是加工一台螺杆的工艺流程,数控车床的精度高、重复性好,能够高效、精确地进行复杂零件的加工。
在实际应用中,根据不同的零部件要求,工艺流程可能会有所不同,但总的来说,工艺分析包括材料选择、工艺规程编制、刀具选择、数控编程、夹紧装夹、车削加工、检测与修正、表面处理、质量检验、包装运输等环节。
通过合理的工艺分析和流程设计,可以实现零件的高效、精确加工,提高生产效率和产品质量。
零件的数控加工工艺分析(有全套图纸)
三.零件的数控加工工艺分析(一)数控加工的基础知识1.概述零件的数控加工过程在数控机床上加工零件时,首先要将被加工零件图上的几何信息和工艺信息数字化。
先根据零件加工图样的要求确定零件加工的工艺过程、工艺参数、刀具参数,再按数控机床规定采用的代码和程序格式,将与加工零件有关的信息如工件的尺寸、刀具运动中心轨迹、位移量、切削参数(主轴转速、切削进给量、背吃刀量)以及辅助操作(换刀、主轴的正转与反转、切削液的开与关)等编制成数控加工程序,然后将程序输入到数控装置中,经数控装置分析处理后,发出指令控制机床进行自动加工。
数控车床工作过程:如图所示。
数控车床工作大致分为下面几个步骤:1)根据零件图要求的加工技术内容,进行数值计算、工艺处理和程序设计。
2)将数控程序按数控车床规定的程序格式编制出来,并以代码的形式完整记录在存储介质上,通过输入(手工、计算机传输等)方式,将加工程序的内容输送到数控装置。
3)由数控系统接收来的数控程序(NC代码),NC代码是由编程人员在CAM软件上生成或手工编制的,它是一个文本数据,表现比较直观,较容易地被编程人员直接理解,但却无法为软件直接利用。
4)根据X、Z等运动方向的电脉冲信号由伺服系统处理并驱动机床的运动结构(主轴电动机、进给电动机等)动作,使机床自动完成相应零件的加工。
2.切削加工必须具备的两种运动1)主运动:主运动是切除工件多余金属层,形成工件新表面的必要运动。
它是由机床提供的主要运动。
主运动的特点是速度最高,消耗功率最多。
切削加工中只有一个主运动,它可由工件完成,也可由刀具完成。
如车削时工件的旋转运动、铣削和钻削时和钻头的旋转运动等都是主运动。
2)进给运动:进给运动是把切削金属层间断或连续投入切削的一种运动,与主运动相配合即可不断切削金属层,获得所需的表面。
进给运动的特点是速度小、消耗功率少。
切削加工中进给运动可以是一个、两个或多个。
它可以是连续的运动,如车削外圆时,车刀平行于工件轴线的纵向运动;也可以是间断的运动,如刨削是工件或刀具的横向运动。
数控加工工艺分析的一般步骤与方法
数控加工工艺分析的一般步骤与方法Last revised by LE LE in 2021数控加工工艺分析的一般步骤与方法程序编制人员在进行工艺分析时,要有机床说明书、编程手册、切削用量表、标准工具、夹具手册等资料,根据被加工工件的材料、轮廓形状、加工精度等选用合适的机床,制定加工方案,确定零件的加工工序,各工序所用刀具、夹具和切削用量等。
此外,编程人员应不断总结、积累工艺分析方面的实际经验,编写出高质量的数控加工工序。
一、机床的合理选用在数控机床上加工零件时,一般用两种情况。
第一种情况:有零件图样和毛坯,要选择适合加工该零件的数控机床。
第二种情况:已有了数控机床,要选择适合在该机床上加工的零件。
无论何种情况,考虑的主要因素有,毛坯的材料种类、零件轮廓复杂程度、尺寸大小、加工精度、零件数量、热处理要求等。
概括起来有三点:①要保证加工零件的技术要求,加工出合格产品。
②有利于提高生产率。
③尽可能降低生产成本及加工费用。
二、数控加工零件工艺性分析数控加工工艺分析涉及面广,在此仅从数控加工的可能性和方便性两方面加以分析。
㈠零件图样上尺寸数据的给出应符合编程方便的原则1.零件图尺寸标注方法应适应数控加工的特点,在数控加工零件图上,应以同一基准引注尺寸或是直接给出坐标尺寸。
这种标注方法即便于编程,也便于尺寸间的相互协调,在保持设计基准、工艺基准、检测基准与编程原点设置的一致性方面带来很大方便。
由于零件设计人员一般在尺寸标注中较多的考虑装配等使用性能方面,而不得不采用局部分散的标注方法,这样就会给工序安排与数控加工带来许多不便。
由于数控加工精度和重复定位精度都很高,不会因产生较大的积累误差而破坏使用性能,因此可以将局部的分散标注法改为同一基准引注尺寸或直接给出坐标尺寸的标注法。
2.构成零件轮廓的几何要素的条件应充分在手工编程时,要计算基点或节点坐标。
在自动编程时,要对构成零件轮廓的所有几何要素进行定义。
因此在分析零件图时,要分析几何要素的给定条件是否充分。
数控加工工艺分析与程序编制
围绕坐标轴X、Y、Z旋转的运 动,分别用A、B、C表示。它们 的正方向用右手螺旋法则判定。
图2.48 卧式铣床
附加轴 如果在X、Y、Z主要坐标以外,还有平行于它们的坐标,
可分别指定为P、Q和R。如立式车床坐标系图。
图2.53 机床坐标系(图中尺寸为MJ460×600机床规格)
机床坐标系
注意:在以下三种情况下,数控系统失去了对机床参考点的 记忆,因此必须使刀架重新返回机床参考点。
(1)机床关机后,又重新接通电源开关时。
(2)机床解除急停状态后。
(3)机床超程报警信号解除之后。
2)编程坐标系(或称工件坐标系)的设定 编程坐标系是用于确定工件几何图形上各几何要素
(如点、直线、圆弧等)的位置而建立的坐标系,是编程 人员在编程时使用的,它与机床坐标系平行。编程坐标系 的原点就是编程原点。而编程原点是人为设定的。数控车 床工件原点一般设在主轴中心线与工件左端面或右端面的 交点处。
面。刀具远离工
图2.46 卧式车床
件旋转中心的方向为X轴正方向。对于刀
具旋转的机床(如铣床、镗床、钻床等), 如果Z轴是垂直的,则面对主轴看立柱时, 右手所指的水平方向为X轴的正方向。
图2.47 立式铣床
如果Z轴是水平的,则面对 主轴看立柱时,左手所指的水 平方向为X轴的正方向 。
Y轴的确定 Y坐标轴垂直于X、Z坐标轴。
代码由字符组成,数控机床功能代码的标准有EIA(美国 电子工业协会)制定的EIA RS—244和ISO(国际标准化协会) 制定的ISO RS—840两种标准。国际上大都采穿孔带程 序段格式中的准备功能G和辅助功能M代码》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控加工工艺
5.10 数控加工工艺
数控加工的合理选用
形状复杂、加工面多、加工量大、生产批量较小的零件 (如批量较小的复杂箱体类零件)
普通机床无法加工或需使用 复杂工装才能加工的零件(如 复杂轮廓面或复杂空间曲面)
专用机床
零件批量
加工精度要求高的零件(如 某些径向尺寸和轴向尺寸精度 要求均很高的轴类零件)
程序内容
备注
N140 G80 G40 G00 Z15. T04 M06; 注销指令G81和刀具长度补偿,快速回换刀点,换T04刀具
N150 G43 D04 Z5.;
刀具长度补偿,快速趋近加工点
N160
G82 Z-6. R1. P1 F50 M98 L02; 选用钻阶梯孔固定循环功能G82,调用子程序L02,对4孔 倒角,在预定深度暂停1s,进给速度速度50mm/min
R40
35
R20
160 95
70 140
80 250
图5-25 壳体零件简图
5.10 数控加工工艺
2
1.6
6+00.1 16
10+00.2
数控加工工艺实例
工艺处理 对刀点选在孔轴线与
孔的上端面的交点,换 刀点选在所定零件坐标 系(X0,Y0,Z15)点
刀具轨迹坐标计算 4-M10螺纹孔中心坐标
容
铣 钻平4面 -
M心 钻 M 孔11 004
中底
孔 螺 纹 孔
口 攻倒螺角纹
4铣-M101m0 m 环槽
JS01-0266 1刀8 具 号 T1
T2 T3 T4 T5 T6
零件名称
机床型号
φ刀8具0 种硬类质 合金端铣 刀φ3中心钻 φ8.5高速 钢φ 1钻8 钻 头 (90o锋角 )M10×1.5 丝φ 1锥0 高 速 钢立铣刀
备注
L01
子程序名称
N010 X66. Y70.;
直线插补JB
N020 X100.04 Y8.946 I0 J-40.;
顺圆插补BC
N030 G01 X57.01 Y-60.527;
直线插补CD
N040 G02 X40. Y70. I-17.01 J10.527; 顺圆插补DE
N050 G01 X-40;
子程序结束,返回主程序O0618
L02
子程序名称
N010 G00 X-65. Y-95.;
刀具快速移动至螺孔1中心位置
N020 X65.;
刀具快速移动至螺孔2中心位置
N030 X125. Y65.;
刀具快速移动至螺孔3中心位置
N040 X-125.
刀具快速移动至螺孔4中心位置
N050 M99
பைடு நூலகம்
子程序结束,返回主程序O0618
G41 D21 G01 Y70. F60 M98 刀具半径左补偿,调用子程序L01加工上表面,进给速度
L01;
60mm/min
N060 G40;
注销刀补
N070 G00 Z15. T02 M06;
快速退回换刀点,换T02刀具
N080 X-65. Y-95.;
快速点定位
N090 G43 D02 Z5. S1000 M03;
1
2
刀具 A 折返点
B 3 4
5D
C
a)
X
b)
X
图5-21 孔加工路线示例
5.10 数控加工工艺
轮廓加工——刀具应从切向进入轮廓加工,加工完成后 不要在切点处取消刀补,要安排一段沿切向继续运动距离
Y
Y
刀具运动轨迹
刀具运动轨迹
(对刀点)
(对刀点)
1
5
2
4
圆弧切入点
3 切出时多 运动距离
17
264 35
N120 G43 D03 Z5. S500 M03;
刀具长度补偿,快速趋近工件加工点,主轴以500r/min正转
N130
G81 Z-23. R1 F50 M98 L02
选用钻孔固定循环功能G81,调用子程序L02,钻4-Φ8.53 螺纹底孔,进给速度50mm/min
5.10 数控加工工艺
程序段号
表5-9 壳体数控加工程序清单(续1)
谢谢观看
数控机床 通用机床
零件上某些尺寸难以测量和
控制的情况(如具有不开敞内
零件复杂程度
腔加工面的壳体或盒型零件) 图5-18 各类机床适应的加工范围
零件一次装夹,可完成铣、
镗、钻、铰、攻丝等多种操作
5.10 数控加工工艺
Real 图5-19 数控车床及数控车削零件
5.10 数控加工工艺
Real
图5-20 数控铣床(加工中心)及数控铣削加工示
N240 G01 Z-6. F30 M98 L01;
直线插补,调用子程序L01铣槽,进给速度30mm/min
N250 G40 G00 Z15.;
取消刀具补偿,快速上升
N260 X0 Y0;
回工件坐标原点
N270 M30;
程序结束
5.10 数控加工工艺
表5-9 壳体数控加工程序清单(续2)
程序段号
程序内容
选择加工方法:上表面
和
1
0
0 .1 0
mm环槽采用铣削
一次走刀加工;4-M10螺
纹孔先打中心孔再钻底孔
,螺纹底孔用钻头倒角
4-M10
3.2
12 3.2 10+00.1
3
φ80 +00.054
3.2
250 132
R40
35
R20
80 250
图5-25 壳体零件简图
160 95
70 140
2
1.6
6+00.1 16
壳体 HM5 0主0 轴 转速 S280 S100
0 S500
S500
S60
S300
材料
制表 进给 速度 F60
F100
F50
F50
F90 F30
HT300
宫长怡度
补偿 量 D1
半径
补偿 量 D21
D2
D3
D4
D5
D6 D26
5.10 数控加工工艺
程序段号
表5-9 壳体数控加工程序清单
程序内容
备注
5.10 数控加工工艺
数控加工工艺特点
加工过程严格按程序指令自动进行——数控加工工艺设 计要求详细、具体和完整。如工件在机床(或夹具)上装 夹位置、工序内工步的安排、刀具选用、切削用量、走刀 路线等,都必须在工艺设计中认真考虑和明确规定
自行调整能力较差——数控加工工艺设计应十分严密、 准确,必须注意到加工中的每一个细节,如每个坐标尺寸 的计算、对刀点和换刀点的确定、攻丝时的排屑动作等。 程序须经验证正确后,方可进行正式加工
刀具长度补偿,快速趋近工件加工点,主轴1000r/min正转
N100
G81 Z-20. R1 F100 M98 L02; 选用钻孔固定循环功能G81,调用子程序L02,钻4-Φ3中 心孔,进给速度100mm/min
N110
G80 G40 G00 Z15. T03 M06; 注销固定循环指令G81和刀具长度补偿,快速回换刀点,换 T03刀具
多采用工序集中原则,一次装夹可完成多个表面加工
刀具(相对工件)运动路径对生产率、加工精度影响很 大,需合理规划
使用夹具相对简单
5.10 数控加工工艺
数控加工走刀路线规划
点位加工——通常按空程最短安排走刀路线。位置精度 要求较求高的孔系加工,要注意避免反向间隙影响
Y
对刀点
1
2
A
B
3
4
D
C
Y
对刀点
O0618
程序名
N010 G92 X0. Y0. Z15.;
建立工件坐标系
N020 T01 M06;
换T01刀具
N030 G90 G00 X0. Y150.;
绝对值编程,快速点定位
N040 G43 D01 Z0. S280 M03;
刀具长度补偿,Z向快速趋近切削面,主轴以280r/min正转
N050
10+00.2
5.10 数控加工工艺
数控加工工艺实例
加工顺序 铣上平面→钻4-M10
中心孔→钻4-M10底孔 →4-M10螺纹底孔倒角 →4-M10攻丝→铣环槽
零件坐标系设定 如图,坐标原点为孔
轴线与零件上平面的交 点
4-M10
3.2
12 3.2 10+00.1
3
φ80 +00.054
3.2
250 132
圆弧切入点
切出点
O
XO
X
a)外圆加工
b)内孔加工
图5-22 内、外圆加工路线
5.10 数控加工工艺
形腔加工——在保证加 工精度前提下,使走刀路 径最短
a )
b
c
) 5-23 型腔加工路线比较
)
5.10 数控加工工艺
高速加工——保证刀具运动轨迹光滑平稳,并使刀具载 荷均匀
a)摆线加工
b)赛车线加工
计算,环槽各基点(J、 B、C、D…)及四个圆 弧的圆心坐标计算等
4-M10
3.2
12 3.2 10+00.1
3
φ80 +00.054
3.2
250 132
R40
35
R20
80 250
图5-25 壳体零件简图
160 95
70 140
5.10 数控加工工艺
表5-8 壳体数控加工工艺卡
零件号