初一数学专题二一元一次方程应用题
完整版七年级数学一元一次方程应用题专题练习
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
初一数学一元一次方程应用专题训练2(配套问题 附答案)
(1)若制作若干盒月饼共用了450kg面粉,请问制作大小两种月饼各用了多少面粉?(列方程解应用题)
(2)在(1)的条件下,该糕点厂将销售价定为每盒108元,测算发现每盒月饼可盈利80%,若该厂按此售价销售完这批月饼,共可盈利多少元?
初一数学一元一次方程应用专题训练2(配套问题 附答案)
1.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐 人,两车空出来;每车坐 人,多出 人无车坐.问人数和车数各多少?设车 辆,根据题意,可列出的方程是()
A. B.
C. D.
4.机械厂加工车间又85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,为了使每天加工的大小齿轮刚好配套,设安排x名工人生产大齿轮. D.
5.成都市某电影院共有4个大厅和5个小厅.其中1个大厅、2个小厅,可同时容纳1680人观影;2个大厅、1个小厅,可同时容纳2280人观影.设1个小厅可同时容纳x人观影,由题意得下列方程正确是( )
已知 个侧面和 个底面配套做成一个包装盒.
(1)若用 张白卡纸按方式一裁剪成侧面,用b张按方式二裁剪成底面,这样正好配套,那么 与 应满足的关系式是.
(2)采用方式一、方式二共裁剪 张白卡纸,求每种方式各裁剪几张才能正好配套:
(3)采用上述三种方式共裁剪 张白卡纸,使裁剪出的侧面和底面正好配套.请求出所有的裁剪方案,并说明哪种方案做成包装盒数量较多.
9.有两桶水,甲桶装有180千克,乙桶装有150千克,要使两桶水的重量相同,则甲桶应向乙桶倒水_________千克
初一上数学真题专题练习---一元一次方程的应用(二)
一元一次方程的应用(二)【真题精选】1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是分钟时,选择方式一与方式二的费用相同.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有人.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:(注:应纳税额=纳税所得额﹣起征额﹣专项附加扣除)小吴2019年1月纳税所得额是7800元,专项附加扣除2000元,则小吴本月应缴税款元;与此次个税调整前相比,他少缴税款元.17.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.一元一次方程的应用(二)参考答案与试题解析一.试题(共17小题)1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,4x=5(90﹣x),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?【分析】首先根据题意,设有x个椅子,则有40﹣x个凳子,然后根据:椅子腿数+凳子腿数=145,列出方程,求出椅子的数量,进而求出凳子的数量即可.【解答】解:设有x个椅子,则有40﹣x个凳子,根据题意列方程,4x+3(40﹣x)=145,解方程,得:x=25,∴40﹣x=40﹣25=15.答:有25个椅子,15个凳子.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据题意列方程得,120x=2×80(42﹣x)解得x=24,则42﹣x=42﹣24=18.答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.【分析】可设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,根据方式一与方式二的费用相同的等量关系列出方程计算即可求解.【解答】解:设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,依题意有58+0.25(x﹣150)=88,解得x=270.故当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.故答案为:270.【点评】本题考查了一元一次方程的应用,关键是理解方式一与方式二两种移动电话的计费方式.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?【分析】(1)分别计算出方案一和方案二的花费,然后比较大小即可解答本题;(2)设一班有x人,根据已知得出两种方案费用一样,进而列出方程求解即可.【解答】解:(1)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(2)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.【点评】本题主要考查了一元一次方程的应用,根据已知得出关于x的方程是解题关键.6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.【分析】(1)根据A、B两家公司的优惠方案所提供的数量关系直接列代数式化简即可;(2)根据购买A、B两个公司体育用品的费用相等,列出方程可求x的值;(3)首先求出还需要购买排球的个数,即x的值,再将x的值分别代入(1)中所求的代数式,与10500比较,即可求解.【解答】解:(1)由A公司的优惠方案得,购买A公司体育用品的费用为:0.8×(100×50+40x)=(32x+4000)元;购买B公司体育用品的费用为:100×50+40(x﹣50)=(40x+3000)元;(2)依题意有32x+4000=40x+3000,解得x=125.故此时x的值为125;(3)还需要排球:600﹣(100+50)﹣50﹣100×2=200(个).在A公司采购需要的费用为:32×200+4000=10400<10500,在B公司采购需要的费用为:40×200+3000=11000>10500,所以能满足训练要求,应在A公司采购.【点评】本题考查一元一次方程的应用,列代数式,根据数量关系列出代数式是正确计算的前提,理解两个公司的优惠方案是解决问题的关键.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?【分析】可设他们买了x张优惠票,根据等量关系:买票共花费了1640元,依此列出方程求解即可.【解答】解:设他们买了x张优惠票,根据题意列方程得:80x+120(x﹣3)=1640,80x+120x﹣360=1640,200x=2000,解得x=10.答:他们买了10张优惠票.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡【分析】设一年内在便利店购买咖啡x次,用x表示出购买各类会员年卡的消费费用,把x=75、85代入计算,比较大小得到答案.【解答】解:设一年内在便利店购买咖啡x次,购买A类会员年卡,消费费用为40+2×(0.9×10)x=(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.【点评】本题考查的是有理数的混合运算的应用,掌握有理数的混合运算法则是解题的关键.10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?【分析】设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有(106﹣2x)人.根据初一(1)班有20多人,不足30人得出20<x<30,再分①46<106﹣2x≤60,②106﹣2x>60两种情况进行讨论,根据三个班都以班为单位购票,则一共应付1365元列出方程,求解即可.【解答】解:设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有[101﹣x﹣(x﹣5)]=(106﹣2x)人.依题意可知,20<x<30,∴x﹣5<25,46<106﹣2x<66.①如果46<106﹣2x≤60,那么15x+15(x﹣5)+12(106﹣2x)=1365,解得x=28,符合题意.所以x﹣5=23,101﹣x﹣x+5=50;②如果106﹣2x>60,那么15x+15(x﹣5)+10(106﹣2x)=1365.解得x=38.∵38>30,∴x=38不合题意舍去.答:初一(1)班有28人,初一(2)班有23人,初一(3)班有50人.【点评】本题考查了一元一次方程的应用,设初一(1)班有x人,根据x的取值范围得出初一(2)班与初一(3)班人数的范围,进而进行分类讨论是解题的关键.11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?【分析】(1)根据总价=单价×数量,即可求出结论;(2)设复印x张时,两处的收费相同,由甲,乙两店收费相同,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=2张A门票的价格,据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张,依题意,得,解方程组,得,答:小明预订了B等级门票2张,C等级门票5张.【点评】本题考查了二元一次方程组的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?【分析】(1)根据表格中的数据列出相应的方程,从而可以得到初一(2)班的人数;(2)根据表格中的数据和(1)中的结果,可知两个班一起购买最省钱,从而可以求得可以省多少钱.【解答】解:(1)设初一(1)班x人,初一(2)班y人,根据题意可得:12x+10y=1106,由于x,y都是整数,且40<x<50,50<x<100,当初一(1)班有48人时,48×12=576,1106﹣576=530,530÷10=53.当初一(1)班有43人时,43×12=516,1106﹣516=590,590÷10=59.所以,初一(2)班共有53人或59人;(2)两个一起买票更省钱,①8×(48+53)=808,1106﹣808=298(元).②8×(43+59)=816,1106﹣816=290(元).这样比原计划节省298元或290元.【点评】本题考查二元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?【分析】(1)根据里程费+时长费,列式可得车费;(2)根据行车里程1千米,列式可得车费;(3)可设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据等量关系:里程费+时长费=车费37.4元,列出方程求出速度,进一步得到从学校到小华家快车行驶的路程.【解答】解:(1)应付车费=1.8×6+0.8×10=18.8(元).故应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据题意得,解得x=12.∴3x=36.∴(千米).答:从学校到小华家快车行驶了9千米.故答案为:18.8;14.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出方程是解题的关键.15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有3人.【分析】设该家庭中购买普通票的有x人,则可以购买优惠票的有人,根据网络购票优惠的钱数,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入中即可求出结论.【解答】解:设该家庭中购买普通票的有x人,则可以购买优惠票的有人,依题意,得:120x﹣120×0.9x=1080﹣996,解得:x=7,∴=3.故答案为:3.【点评】此题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:。
数学七年级一元一次方程应用题练习
姓名学号得分
一元一次方程应用题练习一
1.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人
分4本,则缺25本。
这个班有多少学生?
2、某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物,什么情况下买卡购物合算?(提示:分别讨论三种情况)
一元一次方程应用题练习二
1.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆
流行驶,用了2.5小时。
已知水流的速度是3千米/小时,求船在静水中的平均速度。
2.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母
2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
3.整理一批图书,由一个人做要40小时完成。
现在计划由一部分人先做4
小时,再增加2个人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作?。
初一数学一元一次方程应用题_计算题200题
1.某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?2.小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.3.李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.4,初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.5.x 为何值时,代数式21[x-21(x-1)]的值比代数式43x 的值小1.6.某商店出售某种商品,售价为每件900元.在降价竞争中,该商品按售价的九折出售,并让利40元销售,仍可获利10%,求该商品的进价.7. 以时速48公里通过站的快车,通过A 站,30分钟后因积雪时速变为32公里,比预定时间晚点30分通过B 站.求AB 两站间的距离.8.某中学初三师生270人出外参观,若租一辆45座小客车租金为250元,租一辆60座客车租金为300元.已知租用的大客车比小客车多一辆,问租用大小客车各多少辆?9.某工厂原计划每天生产100台机器,实际每天比原计划多 生产20台,那么生产m 台机器提前的天数是____ 10.若方程(a-1)x a 2+5=0是关于x 的一元一次方程,则a= ____11. 若方程53+3(x-20031)=54,则代数式7+30(x-20031)的值是____2 12.要锻造一个半经为5cm 高为8cm 的圆柱形毛坯,应截取半 径为4cm 的圆钢____cm 13.某项工程,甲乙两队单独完成各需12天.16天,则共同完 成此项工程的一半需要_____天. 14. 一个两位数,十位上的数字比各位上的数字小1,十位 上的数字与个位上的数字的和是这个两位数的51,这个两位 数是____用 方 程 解 决 问 题(1)---------比例问题与日历问题15、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的15多3吨,求甲、乙、丙三种货物各多少吨? 16、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3︰2,种西红柿和芹菜的面积比是5︰7,三种蔬菜各种的面积是多少公顷?17、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
一元一次方程应用题初一简单
一元一次方程应用题初一简单在初中数学学习中,一元一次方程是一个重要的概念。
它在解决实际问题时有着广泛的应用。
本文将介绍一些初一水平下的简单应用题,帮助读者更好地理解和掌握一元一次方程的使用。
情景一:购买文具小明去文具店买铅笔和橡皮,铅笔每支1元,橡皮每个0.5元。
他一共花了9元买了10支铅笔和橡皮。
请问他买了几支铅笔和几个橡皮?假设小明买了x支铅笔,y个橡皮。
根据题意,可以列出方程组:1.x + y = 102.x + 0.5y = 9通过解方程组,可以得到小明买了6支铅笔和4个橡皮。
情景二:植树某村庄共植树苗300棵,如果每天植树苗数目一样,需要植树苗几天?假设每天植树苗数目为x棵,需要植树m天。
根据题意,可以列出方程:x * m = 300通过解方程,可以得到每天需要植树100棵,植树m天。
情景三:体育课班级有男生和女生共30人参加体育课活动,男生的人数是女生的2倍。
男生站成一排,女生站成一排,男生一排站4个人,女生一排站3个人。
请问男生和女生各有几人?假设男生有x人,女生有y人。
根据题意,可以列出方程组:1.x + y = 302.4x = 3y通过解方程组,可以得到班级里有20名男生和10名女生。
结语一元一次方程是一个简单而重要的数学概念,通过上述情景的应用题,我们可以看到方程可以帮助我们解决各种实际问题。
希望读者在学习数学的过程中,能够灵活运用一元一次方程,提高解决问题的能力。
注意:以上仅为示例,实际题目可能更为复杂,需结合实际情况灵活运用解题方法。
初一一元一次方程相遇问题经典应用题
初一一元一次方程相遇问题经典应用题一、甲、乙两人从两地同时出发相向而行,甲每分钟走60米,乙每分钟走50米,经过15分钟两人相遇。
两地相距多少米?A. 1650米B. 1500米C. 1350米D. 1800米(答案:A)二、A、B两地相距480千米,甲、乙两车分别从A、B两地相对开出,经过4小时相遇。
已知甲车每小时行65千米,乙车每小时行多少千米?A. 55千米B. 60千米C. 65千米D. 70千米(答案:A)三、小明和小华从两地同时出发,相向而行。
小明每分钟走50米,小华每分钟走70米,经过12分钟两人相遇。
小明比小华少走多少米?A. 120米B. 140米C. 240米D. 280米(答案:C)四、两地相距900千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车每小时行70千米,两车经过几小时相遇?A. 6小时B. 8小时C. 10小时D. 12小时(答案:C)五、小红和小绿从两地同时出发,相向而行。
小红每分钟走45米,小绿每分钟走55米,两人相遇时,小红比小绿少走了100米。
两人相遇用了多少时间?A. 5分钟B. 10分钟C. 15分钟D. 20分钟(答案:B)六、A、B两地相距600千米,甲车从A地出发,每小时行60千米,乙车从B地出发,每小时行90千米。
两车相向而行,甲车先行1小时后,乙车才出发,乙车出发几小时后与甲车相遇?A. 3小时B. 4小时C. 5小时D. 6小时(答案:C)七、甲、乙两人分别从两地同时出发,相向而行。
甲每分钟走60米,乙每分钟走40米。
相遇时,甲比乙多走了200米。
两人相遇用了多少时间?A. 10分钟B. 15分钟C. 20分钟D. 25分钟(答案:A)八、两地相距800千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车的速度是甲车的1.2倍。
两车经过几小时相遇?A. 4小时B. 5小时C. 6小时D. 7小时(答案:B)。
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。
(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。
七年级一元一次方程应用题例题
七年级一元一次方程应用题例题
例题一:
问题描述:
某家庭共有父亲和儿子两人,父亲今年26岁,比儿子年龄大30岁。
求儿子目前的年龄。
解题过程:
设儿子目前的年龄为x岁,根据题意,可以得到方程:父亲的年龄 = 儿子的年龄 + 30 26 = x + 30 通过移项和化简方程,可以得到: x = 26 - 30 x = -4 即儿子目前的年龄为负4岁,这显然不符合实际情况。
因此,儿子目前的年龄无解。
例题二:
问题描述:
小红和小明共有零花钱190元,如果小红的零花钱是小明的2倍,求小红和小明各自的零花钱数。
解题过程:
设小红的零花钱为x元,小明的零花钱为y元,根据题意,可以得到方程: x + y = 190 x = 2y 将第二个方程代入第一个方程,得到: 2y + y = 190 3y = 190 y = 190 / 3 y = 63.33 小明的零花钱不能是小数,因此我们重新计算小明的零花钱: y = 63 代入第二个方程,计算小红的零花钱: x = 2*63 x = 126 因此,小红的零花钱为126元,小明的零花钱为63元。
通过以上两个例题,我们可以看到在解决一元一次方程应用题时,需要仔细分析题意,建立与变量的关系,并逐步求解方程,最终得到问题的答案。
希望同学们在做题时能够灵活运用方程求解的方法,解决实际问题。
精品 七年级数学上册 一元一次方程应用题2
一元一次方程应用题例1.已知关于x 的方程332ax a x +=+的解为4x =,求:23456...99100a a a a a a a a -+-+-++-的值.例2.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?例3.一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁.后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒.不久他们改坐成四人一桌,服务员再给每桌一瓶矿泉水.此外他们每人都要了一瓶可口可乐.聚会结束时服务员收拾到了50个空瓶.如果没人带走瓶子,那么聚会有几人参加?例4.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?每人每天 人数 数量 大齿轮16个 x 人 小齿轮10个例5.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。
若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?例6.某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后的利润为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?例7.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元,•销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?课堂练习题:1.某书中有一道解方程的题:113x x ++=, 处在印刷时被墨盖住了,查后面的答案,得知这个方程的解是2x =-,那么 处应该是数字( )A .7B .5C .2D .2-2.已知a 是不为0的整数,并且关于x 的方程322354ax a a a =--+有整数解,则a 的值共有( ) A .1个 B .3个 C .6个 D .9个 3.张师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,每件b 元的价格购进了30件乙种小商品(a >b );回来后,根据市场行情,他将这两种小商品都以每件2a b +元的价格出售,在这次买卖中,张师傅是( ) A.赚钱 B.赔钱 C.不赚不赔 D.无法确定赚和赔4.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么( )A .甲比乙更优惠B .乙比甲更优惠C .甲与乙同等优惠D .哪家更优惠要看原价5.甲仓库存煤200吨,乙仓库存煤70吨,若甲仓库每天运出15吨煤,乙仓库每天运进25吨煤,几天后乙仓库存煤比甲仓库多1倍?设x 天后乙仓库存煤比甲仓库存煤多1倍,则有( )A.2×15x=25xB.70+25x ﹣15x=200×2C.2(200﹣15x )=70+25xD.200﹣15x=2(70+25x ) 6.某同学在解方程513x x -=Θ+,把Θ处的数字看错了,解得43x =-,该同学把Θ看成了 7.已知4-是方程3602kx -=的解,则2011k = 8.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
采购烟花,爆竹,年货的初一一元一次方程应用题
采购烟花,爆竹,年货的初一一元一次方程应用题
春节即将来临,某公司计划采购烟花、爆竹和年货。
为了解这个问题,我们可以用一元一次方程来建立数学模型。
假设公司计划采购的烟花数量为x 箱,爆竹数量为y 箱,年货数量为z 箱。
根据题目,我们可以建立以下方程:
1. 采购烟花的总费用是 20x 元(因为每箱烟花20元)。
2. 采购爆竹的总费用是 30y 元(因为每箱爆竹30元)。
3. 采购年货的总费用是 50z 元(因为每箱年货50元)。
4. 公司计划的总预算是 1000 元。
因此,总预算方程可以表示为:20x + 30y + 50z = 1000。
由于采购的烟花、爆竹和年货的数量都是整数,我们需要找到满足这些条件的整数解。
现在我们要来解这个方程,找出 x、y 和 z 的值。
计算结果为: [{x: 10 - y - z/2, z: 2y}]
所以,公司应该采购的烟花数量为:10 - y - z/2 箱,爆竹数量为:y 箱,年货数量为:2y 箱。
初一数学一元一次方程应用题
一元一次方程的应用一、和、差、倍、分问题:1.某校初三年级甲、乙两班学生人数相等,甲班男女人数之比为4:5,乙班男生人数占全班人数的60%,假设把甲乙两班合成一个新团队,则新团队男生人数比女生人数多4人,求新团队总人数.2.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色平安帽,女生戴红色平安帽.休息时,他们坐在一起,大家发觉了一个有趣的现象,每位男生看到白色的平安帽和红色的一样多,而每位女同学看到白色的平安帽是红色的平安帽的2倍.求这群学生的总人数.3.目前X市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据X:202X学年度X市教育统计手册).(1)求目前X市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由X市X拨款解决,则X市X要为此拨款多少?4.某城市现有42万人口,方案一年后城镇人口增加0.8%,农村人口增加1.1%, 这样全市人口将增加1%,求这个城市现有的城镇人口数和农村人口数.二、劳力调配问题:某公司有两个工程队,甲工程队人数比乙工程队人数的12多28人,因有紧急任务,需从乙队抽调21到甲队,这时甲队人数刚好是乙队人数的23,问该公司两个工程队共有多少人?三、配套问题:1.箭鹿服装厂要生产某种型号学生服一批,已知每3 米长的某种布料可以做上衣2件或裤子3条,一件上衣和一条裤子为一套,方案用600 米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2.某车间有技术工人85人,平均每人每天可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?四、等积变形问题:在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?五、行程问题:1.某人从家里骑自行车到学校。
七年级一元一次方程常见应用题
七年级一元一次方程常见应用题一元一次方程常见应用题一、课本上常用等量关系:常见等量关系有总量=各部分量的和,暗示同一个量的两个不同的式子相等。
1、某人共用142元买了两种水果共20千克。
已知甲种水果每千克8元,乙种水果每千克6元,问这两种水果各有多少千克?2、解放军战士在一次施工中,要运回75吨砂子。
现出动大、小两种汽车17辆,大小汽车每辆各运砂5吨/次、3吨/次。
这些砂子正好一次运完。
问大、小汽车各几辆?3、把一些图书分给某班学生。
如果每人分4本,则剩余12本;如果每人分5本,则还缺30本。
问该班有多少学生?4、一宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住。
那么这宿舍有多少间,人有多少个?二、行船问题:常用等量关系有顺流路程=逆流路程,顺流速度=静水速度+水流速度,逆水速度=静水速度-水流速度。
1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离?2、一架飞机飞舞在两个城市之间,风速为每小时24千米。
顺风飞舞需要2小时50分钟,逆风飞舞需要3小时,求两城市间距离。
3、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。
4、轮船在静水中的速度为每小时20千米,水流速度为每小时4千米。
从甲码头顺流航行到一码头,再返回到甲码头,共用5小时。
求甲乙两个码头的距离。
三、工程问题:常用等量关系有工作总量=工作效率×工作时间,一般设工作总量为单位1.1、一件工程,甲独做需15天完成,乙独做需12天完成。
现先由甲、乙合作5天后,甲有其他任务,剩下工程由乙单独完成。
问乙还要几天才能完成全部工程?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管各一根。
人教版七年级数学上册一元一次方程应用题类型专练二【含答案】
一元一次方程应用题类型二数字类型1.(基础)阅读下列材料,并完成任务.学习了一元一次方程,我们就可以利用它把无限循环小数化为分数.以无限循环小数为例,它的循环节有两位,若设,由可得,0.730.73737373= 0.73x = 0.730.73737373= ,所以,解方程,得,于是,.10073.737373x = 10073x x -=7399x =730.7399= (1)类比应用:(直接写出答案,不写过程)___________;____________;0.2= 0.12=(2)能力提升:将化为分数形式,写出解答过程;1.23(3)拓展探究:请运用上面的方法说明.0.91=2.(基础)阅读理解题,阅读下列材料:若一个三位数的十位数字是个位数字的2倍,我们称这个三位数为“倍尾数”,如521.(1)已知一个“倍尾数”的百位数字比十位数字大1,其各位数字之和是16,求这个“倍尾数”;(2)若一个“倍尾数”的各位数字之和是17,求出所有符合要求的“倍尾数”.3.(中等)将正整数1至2018按照一定规律排成下表:13457891012141516171819212223242526272829303132……记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 32= ,a 55= ;(2)①若a ij =2018,那么i = ,j = ,②用i ,j 表示a ij = ;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由.4.(难)仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之“有限小数或无限循环小数均可化为分数”.例如:1140.254=÷=38185 1.655==÷=1130.33=÷= 反之2510.251004==16831.611055===那么怎么化成呢?0.313解:∵0.310 3.330.3⨯==+∴不妨设,则上式变为10x=3+x,解得x=即.0.3=x 1310.3=3 根据以上材料,回答下列问题:(1)将分数化为小数: =_________,=_________;74411(2)将小数化为分数:=_________, =_________;0.4 1.5(3)将小数化为分数,需要写出推理过程.1.021.02和差倍分类型5.(基础)某年级组织部分学生参加语文、数学、英语课外活动兴趣小组,下面两幅统计图反映了学生自愿报名(每人限报一科)的情况,请你根据图中信息回答下列问题:(1)该年级报名参加英语课外活动兴趣小组的人数占全年级人数的百分数是______,请补全条形统计图;(2)根据实际情况,需从英语课外活动小组抽调部分同学到数学课外活动小组,使数学课外活动小组的人数是英语课外活动小组人数的3倍,则应从中抽调多少名学生?6.(基础)晶晶看一本书,第一天看了总页数的,第二天看的是第一天的,剩下12页没有看3558完.这本书有多少页?7.(中等)如图,是线段上一点,,,点、点分别从点、P AB 15cm AB =10cm AP =C D P 点出发向点方向运动,点的运动速度为,点的运动速度为,运动的时间为B A C 1cm/s D 2cm /s .ts (1)运动后,求的长;1s CD (2)运动时间为多少时,点会与点重合;.D C (3)运动时间为多少时,的长度为.CD 2cm(4)当点继续在的延长线上运动时,是否存在,若存在,求出此时的运动时间,D BA 2CD AC =若不存在,请说明理由.8.(难)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中,若要使甲处植树的人数仍90100m <<然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?电费和水费类型9.(基础)某市对居民用水实行阶梯水费,收费标准如表:月用水量不超过12吨的部分超过12吨不超过20吨的部分超过20吨的部分收费标准(元/吨)a a +14(1)甲用户上月用水30吨,其该月水费为 元(用含a 的代数式表示);(2)若a =1.5,乙用户上月水费为30元,求乙用户该月的用水量.10.(基础)我市为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y (元)与所用的水量x (吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y 与x 之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨.11.(中等)为充分发挥市场机制和价格杠杆在水资源配置中的作用,促进节约用水,提高用水效率,2017年7月1日起某地实行阶梯水价,价目如表(注:水费按月结算,表示立方米):3m 价目表每月用水量单价(元/)3m 不超过18的部分3超出18不超出25的部分4超出25的部分7例:某户居民5月份共用水,则应缴水费(元).323m 3184(2318)74⨯+⨯-=(1)若A 居民家1月份共用水,则应缴水费_______元;312m (2)若B 居民家2月份共缴水费66元,则用水________;3m (3)若C 居民家3月份用水量为(a 低于,即),且C 居民家3、4两个月用水量3m a 320m 20a <共,求3、4两个月共缴水费多少元?(用含a 的代数式表示)340m 12.(难)某市居民使用自来水按月收费,标准如下:①若每户月用水不超过10m 3,按a 元/m 3收费;②若超过10m 3,但不超过20m 3,则超过的部分按1.5a 元/m 3收费,未超过10m 3部分按①标准收费;③若超过20m 3,超过的部分按2a 元/m 3收费,未超过20m 3部分按②标准收费;(1)若用水20m 3,应交水费 元;(用含a 的式子表示)(2)小明家上个月用水21m 3,交水费81元,求a 的值;(3)在(2)的条件下,小明家七、八两个月共交水费240元,七月份用水xm 3超过10m 3,但不足20m 3,八月份用水ym 3超过20m 3,当x ,y 均为整数时,求y 的值.行程类型13.(基础)快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米,慢车每小时行多少千米?14.(基础)小明和小亮练习一百米赛跑,小明的速度是6米/秒,小亮的速度是7.5米/秒.(1)列方程求解:若小明先跑3秒,小亮经过多长时间追上小明?(2)若小明先跑4秒,小亮能否追上小明?(直接写出结果,不必说明理由)15.(中等)A、B两地相距900km,甲车从A地驶向B地,2h后距B地800km,与此同时乙车以100km/h的速度沿着相同的道路从A地驶向B地.(1)甲车的速度为 km/h;甲车出发 h,乙车能追上甲车;(2)甲、乙两车,谁先到达B地?提前多长时间?(3)甲车出发 h.两车相距20km.16.(难)中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?比列分赔类型17.(基础)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?18.(基础)吉阳配件厂男工人数与女工人数的比是6:7,若调走30名女工,则女工与男工人数的比为5:6,这个车间原有女工多少人?202019.(中等)年春节前夕,突如其来的新型冠状病毒肺炎造成口罩紧缺,为满足社会需求,A B某一工厂需购买、两种材料,用于生产甲、乙两种口罩,每件分别使用的材料和数量如表:A种B种甲型30kg10kg乙型20kg 20kgA15B25其中种材料每千克元,种材料每千克元.10(1)若生产甲型口罩的数量比生产乙型口罩的数量多件时,两种口罩需购买材料的资金相同,求生产甲、乙两种口罩各多少件?A B385000500(2)若工厂用于购买、两种材料的资金不超过元,且需生产两种口罩共件,求至少能生产甲种口罩多少件?20.(难)七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?答案1.(1),;(2)见详解;(3)见详解29433【详解】解:(1)设,,则有,,0.2x =0.12y = 10 2.222x = 10012.121212y = ∴,,102x x -=10012y y -=解得:,,29x =433y =∴,,20.29= 40.1233= 故答案为,;29433(2)设,则有,0.23x =10023.232323x = ∴,解得:,10023x x -=2399x =∴,230.2399= ∴;··1221.2399=(3)设,则有,0.9x =109.9999x = ∴,109x x -=解得:,1x =∴.0.91=2.(1)这个“倍尾数”为763;(2)符合要求的“倍尾数”有863和584【详解】解:(1)设这个“倍尾数”个位上的数字为x ,则十位上的数字为2x ,百位上的数字为2x +1,由题意可得x +2x +2x +1=16解得:x=3则十位上的数字为2×3=6,百位上的数字为6+1=7∴这个“倍尾数”为763答:这个“倍尾数”为763;(2)设这个“倍尾数”个位上的数字为a ,则十位上的数字为2a ,百位上的数字为17-3a ,由个位数字可得:a 可以为0、1、2、3、4、5、6、7、8、9,由十位数字可得:a 可以为0、1、2、3、4,由百位数字可得:a 可以为3、4、5,∴a=3或4当a=3时,这个“倍尾数”为863;当a=4时,这个“倍尾数”为584;答:符合要求的“倍尾数”有863和584.3.(1)18,37;(2)①253,2,②8(i ﹣1)+j ;(3)不能,见解析【详解】解:(1)根据表格可以得出a 32=18;∵前面4行一共有8×4=32个数,∴第5行的第1个数为33,则第5行的第5个数为37,即a 55=37.故答案为18;37;(2)①∵2018÷8=252…2,∴2018是第253行的第2个数,∴i =253,j =2.故答案为253,2;②根据题意,可得a ij =8(i ﹣1)+j .故答案为8(i ﹣1)+j ;(3)设这5个数中的最小数为x ,则其余4个数可表示为x +4,x +9,x +11,x +18,根据题意,得x +x +4+x +9+x +11+x +18=2027,解得x =397.∵397÷8=49…5,∴397是第50行的第5个数,而此时x +4=401是第51行的第1个数,与397不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2027.4.(1)1.75, ;(2) ;(3)答案见解析.0.36 49519试题分析:(1)用分子除以分母即可;(2)设 根据例题得到, 设则 然后求解即0.4x = ,104x x =+ 1.510.5,=+ 0.5x =,105x x =+,可;(3)设根据题意得到,然后求得的值,最后再加上1即可.0.02x =,1002x x =+x试题解析:()174 1.75;4110.36÷=÷= ;故答案为1.75;0.36.(2)设根据题意得:10x =4+x ,解得: 0.4x = ,4.9x =设,则,解得: 0.5x = ,105x x =+,5.9x =551.510.511.99=+=+= 故答案为45,1.99(3)设根据题意得100x =2+x ,解得:0.02x =,299x =21011.021.9999=+= 5.(1)30%,补全的条形图如图,见解析;(2)从英语组抽调5名学生.【详解】解:(1)∵参加数学的学生有25人,占总体的50%,∴总人数为:25÷50%=50(人),∴参加英语课外活动兴趣小组的人数占全年级人数的百分数是,15100%30%50⨯=故 30%,参加语文课外活动兴趣小组的人数有:50-15-25=10(人),补全统计图如下:(2)设需从英语组抽调x 名同学到数学组,根据题意得:3(15-x)=25+x ,解得:x=5.答:应从中抽调5名学生.6.这本书有480页【详解】解:设这本书有x 页,根据题意可得方程:,35312585x x x +⨯+=2312,58x x -=解得:x =480,答:这本书有480页.7.(1)4cm ;(2)5s ;(3)3s 或7s ;(4)存在,或15s253s【详解】解:(1)当时,,,,1t =111CP cm =⨯=212BD cm =⨯=15105PB AB AP cm =-=-=∴,523PD PB BD cm =-=-=134CD CP PD cm=+=+=(2)当点与点重合时,,D C BD CP PB =+∴,∴25t t =+5t =∴运动时间为时,点会与点重合,5s D C (3)当点在点的左侧时C D ,,2CD BC BD =-=∴,522t t +-=∴;3t =当点在点的右侧时C D ,2CD BD BC =-=∴,()252t t -+=∴;7t =∴运动时间为或时,的长度为,3cm 7cm CD 2cm (4)∵点在的延长线上,D BA ∴,()255CD BD BC t t t =-=-+=-当点在上运动时,,C AP 10AC AP CP t =-=-∵,2CD AC =∴,()5210t t -=-∴.253t =当点在的延长线上运动时,,C PA 10AC CP AP t =-=-∵,2CD AC =∴,()5210t t -=-∴.15t =∴当点继续在的延长线上运动时,存在,此时的运动时间为,或.D BA 2CD AC =253s15s 8.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人【详解】解:(1)设应从乙处调x 人到甲处,则乙处剩下(96-x )人,列方程得: 220396x x +=(-)解得:x=17(2)设调往甲处y 人,甲处现有(220+y )人,则调往乙处(m-y )人,乙处现有(96+m-y )人,由此可得方程:()220y 396m y +=+-∴4y-3m 68=∴68+3m y 4=∵,y<m,m ,y 均为整数90100m <<当m=91时:(舍去)68+3m 341y =44=当m=92时:68+3m 344y ==8644=当m=93时:(舍去)68+3m 347y =44=当m=94时:(舍去)68+3m 350175y ==442=当m=95时:(舍去)68+3m 353y =44=当m=96时:68+3m 356y ==8944=当m=97时:(舍去)68+3m 359y =44=当m=98时:(舍去)68+3m 362181y ==442=当m=99时:(舍去)68+3m 365y =44=综上所述:当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人答:(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人9.(1)(20a +48);(2)乙用户该月的用水量为16.8吨.【详解】解:(1)12a +8(a +1)+(30﹣20)×4=20a +48(元),故该月水费为(20a +48)元,故(20a +48);(2)若a =1.5,12×1.5=18(元),12×1.5+8×(1.5+1)=38(元),∵18<30<38,∴乙用户该月的用水量超过12吨不超过20吨,设乙用户该月的用水量为x 吨,根据题意得:18+2.5(x ﹣2)=30,解得:x =16.8.答:乙用户该月的用水量为16.8吨.10.(1)2元;(2);(3)15吨.()3101030y x x =-<≤【详解】(1)解:当x =10时,水费是20元,则每吨水费为20÷10=2(元/吨)(2)解:当10<x ≤30时,设y =kx +b ,将(10,20)和(30,80)代入可得10203080k b k b +=⎧⎨+=⎩解得,310k b =⎧⎨=-⎩∴直线y =3x -10(10<x ≤30)(3)解:设居民三月份用水x 吨,则四月份用水x +4吨,当x =10时,水费:2×10+3×14-10=52(元)<82元,故x >10,则水费:3x -10+3(x +4)-10=82,6882x ∴-=解得x =15,答:这户居民三月份用水15吨.11.(1)36;(2)21;(3)a <15时,(187-4a )元;15≤a ≤18时,(142-a )元;18<a ≤20时,124元【详解】解:(1)∵12<18,∴应缴水费12×3=36(元),故36;(2)设B 居民家2月份用水x m 3,∴3×18+4×(x -18)=66,解得x =21.故21.(3)①当a <15时,4月份的用水量超过25m 3共缴水费:3a +3×18+4(25-18)+7(40-a -25)=187-4a ,②当15≤a ≤18时,4月份的用水量不低于22m 3且不超过25m 3共缴水费:3a +3×18+4(40-a -18)=142-a ,③当18<a ≤20时,4月份的用水量超过20m 3且不超过22m 3共缴水费:3×18+4(a -18)+3×18+4(40-a -18)=124.12.(1)25a ;(2)a =3;(3)y 的值为41或38【详解】解:(1)由题意得:10a +10×1.5a =25a (元)故答案是:25a .(2)根据题意,25a +2a =81解得a =3;(3)根据题意,30+4.5(x ﹣10)+30+45+6(y ﹣20)=240.4.5x +6y =3003x +4y =2004y =200﹣3x3504xy =-因为x 取11至19的整数,且y 为整数,所以x 应为4的倍数.当x =12时,y =41:当x =16时,y =38.综上所述,y 的值为41或38.13.21千米【详解】解:设慢车每小时行x 千米,根据题意得:,403253725x ⨯-=++解得:.21x =则慢车每小时行21千米.14.(1)12秒;(2)不能.【详解】解:(1)设小亮经过秒追上小明,x 依题意得,7.5636x x -=⨯,1.518x ∴=12x ∴=答:若小明先跑3秒,小亮经过12秒追上小明.(2)若小明先跑4秒,设小亮经过秒追上小明,y 则,7.5624y y -=,1.524y ∴=16y ∴=,7.57.516120,120100y m m =⨯=> 故小亮不能追上小明.15.(1)50,4;(2)乙车先到达B 地,提前7h ;(3)3.6或4.4.【详解】解:(1)甲车2h 行驶的路程900﹣800=100(km ),∴甲车的速度为100÷2=50(km/h );设甲车出发xh ,乙车能追上甲车,由题意得:50x =100(x ﹣2),解得x =4:故50,4;(2)2h 后甲车到达B 地的时间:800÷50=16(h ),乙车到达B 地的时间:900÷100=9(h ),16﹣9=7(h ),答:乙车先到达B 地,提前7h ;(3)设甲车出发xh ,两车相距20km ,①甲车在前,乙车在后,两车相距20km ,50x ﹣100(x ﹣2)=20,解得:x =3.6;②乙车在前,甲车在后,两车相距20km ,100(x ﹣2)﹣50x =20,解得:x =4.4,答:甲车出发 3.6h 或4.4h ,两车相距20km .故3.6或4.4.16.6.2【详解】解:设线路一的路程为y ,开车的速度为,骑行速度为,则线路二的路线为2y ,高铁的速度为1x 2x ,根据题意,15x 高铁的路程为:,295% 1.9y y ⨯=则骑行的路程为:,2 1.90.1y y y -=由两种出行方式所花费时间一致,∴,1121.90.15y y y x x x =+解得:;12 6.2x x =∴开车速度是骑行速度的6.2倍.17.(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【详解】解:(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x+20)元,可得: 20001400220xx =⨯+解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,2000x 200050∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x 个,乙种足球3x 个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.18.105【详解】设车间原有女工7a 人,则男工人数6a ,根据题意得730566a a -=解得a=15,经检验,符合题意,∴这个车间原有女工7×15=105人19.(1)生产甲、乙两种口罩分别为80件、70件;(2)至少能生产甲种口罩150件【详解】(1)设乙型口罩的数量为件,则甲型口罩的数量为件x ()10x +根据题意,得:()()()301510251020152025x x ⨯+⨯+=⨯+⨯∴70x =∴1080x +=∴生产甲、乙两种口罩分别为80件、70件;(2)设甲型口罩的数量为件,则乙型口罩的数量为件x ()500x -根据题意,得:()()()3015102520152025500385000x x ⨯+⨯+⨯+⨯-≤∴150x ≥∴至少能生产甲种口罩150件.20.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有人,则2x,4402x x ++=解得:,24x =∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等,人数为:(人);1(40424)62--=∴(1)班得总分为:(分);40656102420570⨯+⨯+⨯+⨯=由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有人,(2)y z +∴,(2)40y z y z +++=∴,3240y z +=∴七(2)班得总分为:(分);51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=∵,570600<∴七(2)班的总分高.。
列一元一次方程或二元一次方程组解应用题
实用标准文案文档列一元一次方程或二元一次方程组解应用题:(二)班级 姓名 座号1、 白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?3、某年级学生外出参观,如果每辆汽车坐45人,那么有15个学生没有坐位;如果每辆汽车坐60人,那么空出一辆汽车,问有几辆汽车?有多少个学生?4、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班共用土筐59个,扁担36根,求抬土与挑土的各有多少人?2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车情况如下表:第一次第二次甲种货车辆数(单位:辆) 2 5乙种货车辆数(单位:辆) 3 6累计运货吨数(单位:吨) 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费30元计算,问:货主应付运费多少元?5、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额×20%)6、保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460g;第二天收集1号电池2节,5号电池3节,总重量为240g。
求1号和5号电池每节分别重多少克?7、一只船的载重量为380t,容积为2000m3,有甲、乙两种货物,甲货物4m3/t,乙货物6m3/t,现要最大限度地利用船的载重量和容积,问两种货物各应装多少吨?8、某市按以下规定收取每月水费;若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水。
一元一次方程应用题(含答案解析)
一元一次方程应用题(含答案解析)一元一次方程应用题知能点1:市场经济、打折销售问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
初一数学分配问题、配对问题、行程问题
一元一次方程应用题(一)—分配问题一、比例问题:1、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?2、甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运货物12吨,则三辆卡车各运货物多少吨?3、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?4、一个三角形的三边长度的比是3:4:5,最短的边比最长边短4,则三边各是多少?5、.配制一种农药,其中生石灰和硫磺粉的重量比是1:3,硫磺粉和水的重量比是1:4,要配置这种农药2272克,各种原料各需多少千克?6、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?二、整体与部分问题:7、如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种笔的单价分别是多少?8、小明用172元钱买了两种书,共10本,单价分别为18元、10元。
这两种书小明各买了多少本?9、把1400元奖金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元.获得一等奖的学生有多少?第1页,共8页第2页,共8页10、服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米,现在已做成了80套成人服装,则用余下的布还可以做几套儿童服装?三、分配问题:11、种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树?12、把一些图书分给某班学生阅读,如果每人3本.则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?这批书共有多少本?13、小明看书若干日,若每日读书32页,尚余31页;若每日读书36页,则最后一天需要读39页,才能读完。
初中数学一元一次方程常见应用题
初中数学一元一次方程常见应用题
1. 题目:小明去购物,他买了3本数学书和5本英语书,共花费了45元。
如果数学书的单价比英语书贵5元,求数学书和英语书的单价分别是多少?
解题思路:
设数学书的单价为x元,英语书的单价为(x-5)元。
根据题目信息,我们可以列出一元一次方程:
3x + 5(x-5) = 45
解方程:
3x + 5x - 25 = 45
8x = 70
x = 8.75
答案:
数学书的单价为8.75元,英语书的单价为3.75元。
2. 题目:小明买了一些苹果和橙子,共20个水果,花费了27元。
已知每个苹果的价格是1.5元,每个橙子的价格是2元,求小明买了几个苹果和几个橙子?
解题思路:
假设小明买了x个苹果和y个橙子。
根据题目信息,我们可以列出一元一次方程:
1.5x + 2y = 27
还知道小明共买了20个水果,所以又可以列出一个方程:
x + y = 20
解方程:
1.5x + 2y = 27 (式子1)
x + y = 20 (式子2)
利用式子2,可得到x = 20 - y。
将x = 20 - y 代入式子1:
1.5(20 - y) + 2y = 27
30 - 1.5y + 2y = 27
0.5y = -3
y = -6
代入式子2:
x + (-6) = 20
x = 26
答案:
小明买了26个苹果和-6个橙子,但由于橙子的数量不能是负数,所以此题无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题
一、列方程解应用题的一般步骤(解题思路)
(1)找—找等量关系:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).
(2)设—设出未知数:根据提问,巧设未知数.
(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解—解方程:解所列的方程,求出未知数的值.
(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,
检验后写出答案.(注意带上单位)
【典型例题】
一、一般行程问题(相遇与追击问题)
1.行程问题中的三个基本量及其关系:
路程=速度×时间时间=路程÷速度速度=路程÷时间
2.行程问题基本类型
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速
度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千
米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?
3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车
车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?
4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,
骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴火车的速度为每秒多少米?⑵这列火车的车长是多少米?
二、环行跑道与时钟问题:
1、在6点和7点之间,什么时刻时钟的分针和时针重合?
2、甲、乙两人在400米长的环形跑道上跑步,甲每分钟跑240米,乙每分钟跑200米,二人同时同
地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?
3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵成平角;⑶成直角;
三、行船与飞机飞行问题:
航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
水流速度=(顺水速度-逆水速度)÷2
1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3
小时,求两码头之间的距离。
2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行
需要3小时,求两城市间的距离。
3、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,
求该河的水流速度。
四、工程问题
1.工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间
=工作总量
工作效率
工作时间
=
工作总量工作时间
工作效率
2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.
1、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单
独做,还需要几天完成?
2、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4
小时,剩下的工作两人合作,问:再用几小时可全部完成任务?
3、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而
且还比原计划多生产了60件,问原计划生产多少零件?
4、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙
再做几天可以完成全部工程?
5、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,
甲另有事,乙再单独做几天才能完成?
五、市场经济问题
1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将
标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?
3、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八
折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元?优惠价是多少?
4、某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?
5、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
六、调配与配套问题
1、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
2、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?
3、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6
人,问该班分成几个小组,共有多少名同学?
4、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
5、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
6、某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
七、方案设计问题
1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗精加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?
2、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
八. 和、差、倍、分问题:这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例1. 某学校今年为山区捐款28000元,比去年的2倍还多500元,去年该学校为山区捐款多少元?
例2. 根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?
九. 等积变形问题:
常用的公式:长方体体积=长×宽×高
圆柱体体积=πr h2
圆锥体体积=1
3
2πr h
长方形周长=2(长+宽),面积=长×宽
正方形周长=4×边长,面积=边长的平方
正方体体积=a3
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积。
例1. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252
⨯mm内高为81mm 的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数π≈314
.)
例2、将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈
3.14).。