工业机器人技术基础课件(最全)
合集下载
《工业机器人技术》教学课件-第1章工业机器人基本概念
❖ 欧盟:
☞ 著名企业:
✓ 工业机器人:ABB(瑞典&瑞士) 、KUKA(库卡, 德)、REIS(徕斯,KUKA成员) 。
✓ 服务机器人:德国宇航中心、Karcher、Fraunhofer
Institute for Manufacturing Engineering and Automatic (弗劳恩霍夫制造技术自动化研究所)等。 ❖ 中国: ✓ 工业机器人:全球最大的市场。
✓ 著名产品:涂装机器人(全球第一台喷涂机器人)、 码垛机器人(速度最快)。
➢ KUKA(Keller und Knappich Augsburg ,库卡 ) ✓ 主营城市照明、市政车辆; ✓ 1973年起从事工业机器人生产,德国最大的工业机器 人生产商; ✓ 2014收购德国REIS(徕斯);2017被美的收购。
✓ 1968年研发日本第一台工业机器人,产品以焊接机器 人最为著名。
➢ 其他:NACHI(不二越)、 DAIHEN( OTC集团成 员,欧希地) :著名的焊接机器人生产厂家。
❖ 欧洲 ➢ ABB(Asea Brown Boveri ) ✓ 瑞典ASEA(阿西亚)+ 瑞士Brown.Boveri (布朗勃法 瑞,BBC) ,全球著名自动化公司(排名第2); ✓ 主营电力设备( 世界首条100KV直流输电线路、世界 最大容量的7200MW/800kV特高压直流输电线路四川— —江苏 )、电气传动、低压电气; ✓ 1969年起从事工业机器人研发(欧洲最早),产量目 前居全球第三。
工业机器人技术
第一章 工业机器人基本概念
一、机器人的一般概念
1. 机器人的产生
❖ 机器人 ✓ 凡是用来代替人的机器,都属于机器人的范畴。 ✓ 机器人不一定类人。
☞ 著名企业:
✓ 工业机器人:ABB(瑞典&瑞士) 、KUKA(库卡, 德)、REIS(徕斯,KUKA成员) 。
✓ 服务机器人:德国宇航中心、Karcher、Fraunhofer
Institute for Manufacturing Engineering and Automatic (弗劳恩霍夫制造技术自动化研究所)等。 ❖ 中国: ✓ 工业机器人:全球最大的市场。
✓ 著名产品:涂装机器人(全球第一台喷涂机器人)、 码垛机器人(速度最快)。
➢ KUKA(Keller und Knappich Augsburg ,库卡 ) ✓ 主营城市照明、市政车辆; ✓ 1973年起从事工业机器人生产,德国最大的工业机器 人生产商; ✓ 2014收购德国REIS(徕斯);2017被美的收购。
✓ 1968年研发日本第一台工业机器人,产品以焊接机器 人最为著名。
➢ 其他:NACHI(不二越)、 DAIHEN( OTC集团成 员,欧希地) :著名的焊接机器人生产厂家。
❖ 欧洲 ➢ ABB(Asea Brown Boveri ) ✓ 瑞典ASEA(阿西亚)+ 瑞士Brown.Boveri (布朗勃法 瑞,BBC) ,全球著名自动化公司(排名第2); ✓ 主营电力设备( 世界首条100KV直流输电线路、世界 最大容量的7200MW/800kV特高压直流输电线路四川— —江苏 )、电气传动、低压电气; ✓ 1969年起从事工业机器人研发(欧洲最早),产量目 前居全球第三。
工业机器人技术
第一章 工业机器人基本概念
一、机器人的一般概念
1. 机器人的产生
❖ 机器人 ✓ 凡是用来代替人的机器,都属于机器人的范畴。 ✓ 机器人不一定类人。
工业机器人应用技术课件ppt(PPT163张)可修改文字
一、机器人控制系统的特点
(3)具有较高的重复定位精度,系统刚性好。除直角坐标机器 人外,机器人关节上的位置检测元件不能安装在末端执行器上,而 应安装在各自的驱动轴上,构成位置半闭环系统。但机器人的重复 定位精度较高,一般为±0.1 mm。此外,由于机器人运行时要求 运动平稳,不受外力干扰,为此系统应具有较好的刚性。
(5-20)
随此着外实 ,际还工要作考情虑的况各作的关不节业同之,间信可惯息以性采力存用、各哥储种氏在不力同等内的的控耦存制合中方作式用,。和重在力执负载行的影任响务,因时此,,系依统中靠还经工常业采用机一些器控人制策的略,动如重力补偿、
前馈、解耦或自适应控制等。
与在自由空间运作动再的控现制相功比能,机,器人可在重受限复空间进运行动的该控制作主业要是。增加此了外对其,作用从端操与外作界接的触角作用度力(来包看括力,矩)要的控制要求,
图5-1 机器人控制系统的分类
二、机器人控制系统的组成
图5-2 机器人控制系统组成框图
二、机器人控制系统的组成
(1)控制计算机。控制计算机是控制系统的调度指挥机 构,一般为微型机,微处理器分为32位、64位等,如奔腾 系列CPU等。
(2)示教编程器。示教机器人的工作轨迹、参数设定和 所有人机交互操作拥有自己独立的CPU及存储单元,与主 计算机之间以串行通信方式实现信息交互。
因而受限运动的控制一般称为力控制。
四现、场机 总器线人应智用能于求力生控控产制现制方场法,系在统微机具化测有量良控制好设备的之人间实机现双界向面多结,点数尽字量通信降,从低而对形成操了新作型者的网的络集要成求式全。分布因控制系统—— 现位场置总 控线制控部制分系的此统输,出(fieΔl多dqb1u和数s速co度情nt控ro况制l s部y要s分tem的求,输F控出CΔS制q)。2相器加,的其设和作计为机人器员人的不关节仅控要制增完量Δ成q,底用于层控伺制机服器人控的制运动器。
工业机器人技术基础课件(最全)ppt课件
右图就处于a)的奇异状态,直角下示教会报警。
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
直角坐标系
Never Stop Improving
— 6—
1 机器人工坐业标系机器人坐标系
机器人系统 关节坐标系
两者关系???
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
— 2—
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
1 机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
在分析机器人时会牵涉诸多坐标系,一些是操作者不须关心的,另外一些却是和工艺相 关的。常见的坐标系有: 关节坐标系 基座坐标系 工具坐标系 用户坐标系
Never Stop Improving
px a
p
py
b
1pz
c w
— 12 —
2 机器人位姿变换
坐标轴方向的描述:
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标来描述x、y、z轴的方向, 则
基坐标系
Never Stop Improving
— 7—
1 机器人工坐业标系机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
用户坐标系(工件坐标系):
用于描述各个物体或工位的方位的需要。用户常常在自
z
己关心的平面建立自己的坐标系,以方便示教。
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
直角坐标系
Never Stop Improving
— 6—
1 机器人工坐业标系机器人坐标系
机器人系统 关节坐标系
两者关系???
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
— 2—
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
1 机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
在分析机器人时会牵涉诸多坐标系,一些是操作者不须关心的,另外一些却是和工艺相 关的。常见的坐标系有: 关节坐标系 基座坐标系 工具坐标系 用户坐标系
Never Stop Improving
px a
p
py
b
1pz
c w
— 12 —
2 机器人位姿变换
坐标轴方向的描述:
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标来描述x、y、z轴的方向, 则
基坐标系
Never Stop Improving
— 7—
1 机器人工坐业标系机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
用户坐标系(工件坐标系):
用于描述各个物体或工位的方位的需要。用户常常在自
z
己关心的平面建立自己的坐标系,以方便示教。
工业机器人技术基础工业机器人的组成PPT课件
•
工业机器人的机械结构又称执行机构,也称操作机,通常
由杆件和关节组成。
肘 肩
• 从功能角度,执行机构可分为:
臂
腰
腕
机 座
6
二、机械部分 1.机械结构系统
工业机器人
机械结构 手部 腕部 臂部 腰部 机座
手部:末端执行器,其作用是直接抓取和 放置物件。 腕部:连接手部和臂部的部件,其作用是 调整或改变手部的姿态。
本节主要借鉴论文 《山东海洋渔业资源问题分析及其可持续发展策略》 (傅秀梅 戴桂林 管华诗)和《山东海洋渔业的现代化及其科技发展对策》 (山东海洋经济技术研究会)
4
渔业资源利用过程中面临的问题
山东省海洋渔业发展
渔业生态环境恶化
➢ 由于沿海城市工业和生活污水的排放以及养殖自污染,导致海洋生态环境恶 化和海底植被荒漠化; ➢ 近岸局部水域富营养化,赤潮等海洋灾害频发,严重影响了渔业的发展。 ➢ 养殖量大大超过环境容纳量,种质退化,养殖病害不断。
16
四、传感部分 1. 感受系统
• 感受系统包括内部检测系统与外部检测系统两部分。 • 内部检测系统的作用就是通过各种检测器,检测执行机
构的运动境况,根据需要反馈给控制系统,与设定值进 • 外行部比检测较系后统对检测执机行器机人所构处进环行境、调外整部以保证其动作符合设计要
物求体。状态或机器人与外部物体的关系。
• 臂部:手臂,用以连接 腰部和腕部,用以带动 腕部运动。
• 腰部:立柱,是支撑手 臂的部件,其作用是带 动臂部运动,与臂部运 动结合,把腕部传递到 需到的工作位置。
• 机座(行走机构):机 7 座是机器人的支持部分,
2
历史上的山东省海洋渔业发展概况
山东省海洋渔业发展
(完整版)工业机器人技术基础
其缺点是:功能编辑比较困难;难以使用传感器; 只能进行简单的轨迹编辑;示教时需要占用机器人,效 率低;编程的质量取决于编程者的熟练程度与经验。
21
• (2)离线编程
离线编程可以脱离机器人,直接在计算机上使用 离线编程软件,编辑所需的轨迹程序。其优点是:效 率高,编程时可不用机器人,机器人可进行其他工作 ;可预先优化操作方案和运行周期时间;可用传感器 探测外部信息,从而使机器人做出相应的响应;控制 功能中可以包括现有的CAD和CAM的信息,可以使用仿 真软件预先模拟运行程序,从而不会出现危险;可以 利用CAD软件编辑复杂的轨迹程序。
但离线编程中所需要的能补偿机器人系统误差的 功能、坐标系数据仍难以得到;仿真软件并不能完全 仿真真实的工作环境,还需要到现场进行调试。
22
3.1 示教编程
3.1.1 示教编程基础知识
(1) 机器人的运动方式
机器人的运动方式分为PTP方式和CP方式。 ➢ PTP方式为点到点方式(即机器人以全速从起始点运动
• 根据机器人不同的工作要求,主要有下面两种编程方法 :
• (1)示教编程 示教编程是机器人最基本和最简单的编程方法,目
前,相当数量的机器人仍采用示教方式编程,机器人示 教后可以立即应用。顾名思义,就是我们通常所说的手 把手示教,由人直接通过示教盒控制机器人的手臂按照 我们所要求的轨迹运动, 其优点是:简单方便;不需要 环境模型;对实际的机器人进行示教时,可以修正机械 结构带来的误差。
再现操作盒 控制柜
示教编程器
16
(3) 焊接系统
焊接系统是焊接机器人 完成作业的核心装备,主要 由焊枪、焊接控制器及水、 电、气等辅助部分组成。焊 接控制器是由微处理器及部 分外围接口芯片组成的控制 系统,它可根据预定的焊接 监控程序,完成焊接参数输 入、焊接程序控制及焊接系 统故障自诊断,并实现与本 地计算机及手控盒的通讯联 系。
21
• (2)离线编程
离线编程可以脱离机器人,直接在计算机上使用 离线编程软件,编辑所需的轨迹程序。其优点是:效 率高,编程时可不用机器人,机器人可进行其他工作 ;可预先优化操作方案和运行周期时间;可用传感器 探测外部信息,从而使机器人做出相应的响应;控制 功能中可以包括现有的CAD和CAM的信息,可以使用仿 真软件预先模拟运行程序,从而不会出现危险;可以 利用CAD软件编辑复杂的轨迹程序。
但离线编程中所需要的能补偿机器人系统误差的 功能、坐标系数据仍难以得到;仿真软件并不能完全 仿真真实的工作环境,还需要到现场进行调试。
22
3.1 示教编程
3.1.1 示教编程基础知识
(1) 机器人的运动方式
机器人的运动方式分为PTP方式和CP方式。 ➢ PTP方式为点到点方式(即机器人以全速从起始点运动
• 根据机器人不同的工作要求,主要有下面两种编程方法 :
• (1)示教编程 示教编程是机器人最基本和最简单的编程方法,目
前,相当数量的机器人仍采用示教方式编程,机器人示 教后可以立即应用。顾名思义,就是我们通常所说的手 把手示教,由人直接通过示教盒控制机器人的手臂按照 我们所要求的轨迹运动, 其优点是:简单方便;不需要 环境模型;对实际的机器人进行示教时,可以修正机械 结构带来的误差。
再现操作盒 控制柜
示教编程器
16
(3) 焊接系统
焊接系统是焊接机器人 完成作业的核心装备,主要 由焊枪、焊接控制器及水、 电、气等辅助部分组成。焊 接控制器是由微处理器及部 分外围接口芯片组成的控制 系统,它可根据预定的焊接 监控程序,完成焊接参数输 入、焊接程序控制及焊接系 统故障自诊断,并实现与本 地计算机及手控盒的通讯联 系。
(完整版)工业机器人技术基础课件(最全)
p
py
b
1pz
c w
2 机器人位姿 变换
坐标轴方向的描述:
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标 来描述x、y、z轴的方向,则
X 1 0 0 0T Y 0 1 0 0T Z 0 0 1 0T
1.已知机器人各关节的位置,求机器人 末端的位姿; 2.已知机器人末端的位姿,求机器人 各关节的位置.
3学机器人工运业动机器人基础知识
为什么要研究运动学:机器人的运动无非有两种:PTP(点到点) 及CP(连续运动)
3学机器人工运业动机器人基础知识
运动学的实用方式:
位置反 馈
3 机器人运动
学
D-H参数:
关节 坐标
系
两个关节轴线沿公垂线的距离an,称为连杆长度;另一个是 垂直于an的平面内两个轴线的夹角αn,称为连杆扭角,这两 个参数为连杆的尺寸参数;是沿关节n轴线两个公垂线的距离,
刚体的姿态可由动坐标系的坐标轴方向来表示。 令n、o、a分别为X′、y ′、z ′坐标轴的单位 方向矢量,每个单位方向矢量在固定坐标系上的 分量为动坐标系各坐标轴的方向余弦,用齐次坐 标形式的(4×1)列阵分别表示为:
2 机器人位姿 变换
刚体的位姿可用下面(4×4)矩
阵来描述:
nx ox ax xo
a)4、6轴共线附件,即5轴角度0附件。 b)2、3、5轴关节坐标系原点接近共线,即 已经到达工作范围边界。
c) 5轴关节坐标系原点在Z轴正上方附近。
右图就处于a)的奇异状态,直角下示 教会报警。
直角坐标系
1 系
机器人工坐业标机器人坐标系
工业机器人技术基础(完整版)
4
焊接机器人典型应用案例
轿车后桥双机协调弧焊系统
5
车身焊接线
6
轿车座椅骨架弧焊系统
7
火车侧梁弧焊系统
8
激光焊接系统
9
等离子焊接系统
10
1.1 弧焊机器人
• 机器人操作机:日本 MOTOMAN-UP20型6轴关节式机器人 • 机器人控制器:YASNAC XRC UP20型 • 负载能力:20kg • 自由度:6自由度 • 重复定位精度:±0.08mm • 工作范围:半径1658mm • 驱动:交流伺服电机。 • 焊接电源:MOTOWELD-S350, CO2/MAG焊机,可以实现碳钢、低合金高
成具有大批量、高质量要求的工作,如自动化
生产线中的点焊、弧焊
、喷漆、切割、
电子装配及物流系统的搬运 、包装、码垛
等作业的机器人。此外,机器人也可用于软质
材料的切削加工,如陶泥,泡沫,石蜡 ,有机
玻璃等。
3
1、Motoman机器人简介
• 焊接制造工艺由于其工艺的复杂性、劳动强度 、产品质量、批量等要求,使得焊接工艺对自 动化对于其工艺的自动化、机械化的要求极为 迫切,实现机器人焊接代替人工操作成为焊接 工作者追求的目标。
强钢和不锈钢等的焊接; 最大焊接电流350A • 保护气体:CO2、Ar+CO2、 Ar+CO2+O2 • 焊丝:直径0.9、1.2、1.6mm实心焊丝或药芯焊丝,如H08Mn2SiA等
11
1.2 弧焊机器人系统简介
机器人要完成焊接作业必须依赖于控制系统 与辅助设备的支持和配合。完整的焊接机器人系 统一般由如下几部分组成:机器人操作机、变位 机、控制器、焊接系统、焊接传感器、中央控制 计算机和相应的安全设备等。
焊接机器人典型应用案例
轿车后桥双机协调弧焊系统
5
车身焊接线
6
轿车座椅骨架弧焊系统
7
火车侧梁弧焊系统
8
激光焊接系统
9
等离子焊接系统
10
1.1 弧焊机器人
• 机器人操作机:日本 MOTOMAN-UP20型6轴关节式机器人 • 机器人控制器:YASNAC XRC UP20型 • 负载能力:20kg • 自由度:6自由度 • 重复定位精度:±0.08mm • 工作范围:半径1658mm • 驱动:交流伺服电机。 • 焊接电源:MOTOWELD-S350, CO2/MAG焊机,可以实现碳钢、低合金高
成具有大批量、高质量要求的工作,如自动化
生产线中的点焊、弧焊
、喷漆、切割、
电子装配及物流系统的搬运 、包装、码垛
等作业的机器人。此外,机器人也可用于软质
材料的切削加工,如陶泥,泡沫,石蜡 ,有机
玻璃等。
3
1、Motoman机器人简介
• 焊接制造工艺由于其工艺的复杂性、劳动强度 、产品质量、批量等要求,使得焊接工艺对自 动化对于其工艺的自动化、机械化的要求极为 迫切,实现机器人焊接代替人工操作成为焊接 工作者追求的目标。
强钢和不锈钢等的焊接; 最大焊接电流350A • 保护气体:CO2、Ar+CO2、 Ar+CO2+O2 • 焊丝:直径0.9、1.2、1.6mm实心焊丝或药芯焊丝,如H08Mn2SiA等
11
1.2 弧焊机器人系统简介
机器人要完成焊接作业必须依赖于控制系统 与辅助设备的支持和配合。完整的焊接机器人系 统一般由如下几部分组成:机器人操作机、变位 机、控制器、焊接系统、焊接传感器、中央控制 计算机和相应的安全设备等。
《工业机器人基础课件》
机器人的进化
随着技术的进步,机器人 开始拥有更高的智能和灵 活性,适应着不断变化的 人类需求。
工业机器人的作用和应用领域
生产自动化
工业机器人在生产线上可以高效地完成重复性 任务,提高生产效率并减少生产成本。
焊接和装配
工业机器人在焊接和装配过程中能够保证高质 量和一致性,提高制造过程的准确性。
涂装和喷漆
标准化
工业机器人的标准化是确 保设备安全性、互操作性 和可持续发展的重要保证。
结论和要点
• 工业机器人在现代制造业中发挥着重要作用,提高了生产效率和产品质量。 • 工业机器人面临着挑战,但随着技术的发展,它们将越来越智能、灵活和协作。 • 未来的工业机器人将与人类更加密切地合作,共同创造更美好的工作环境。
工业机器人在涂装和喷漆领域中提供高质量的 表面处理,确保涂层均匀且耐久。
包装和物流
工业机器人在包装和物流过程中能够精确地识 别、分类和包装产品,提高物流效率。来自 工业机器人的基本组成和工作 原理
1 基本组成
工业机器人由机械结构、传 感器、控制系统和执行器等 部分组成。
2 工作原理
工业机器人通过传感器获取 环境信息,控制系统分析信 息并发送指令,执行器完成 相应动作。
2
协作机器人
协作机器人将成为未来的趋势,与人类共同工作,提升生产力和工作环境。
3
数字化
工业机器人与物联网和云计算的结合将推动工业生产的数字化转型和智能化管理。
工业机器人的相关技术和标准
感知技术
工业机器人使用传感器技 术来感知周围环境,包括 视觉、力觉和声波等感知 能力。
控制技术
工业机器人的控制系统包 括运动控制、路径规划和 协调动作等技术,确保精 准和协调的工作。
工业机器人技术基础ppt-课件
再现操作盒 控制柜
示教编程器
16
(3) 焊接系统
焊接系统是焊接机器 人完成作业的核心装备,主 要由焊枪、焊接控制器及水 、电、气等辅助部分组成。 焊接控制器是由微处理器及 部分外围接口芯片组成的控 制系统,它可根据预定的焊 接监控程序,完成焊接参数 输入、焊接程序控制及焊接 系统故障自诊断,并实现与 本地计算机及手控盒的通讯 联系。
12
1.3 弧焊机器人系统的构成
1.机器人操作机 日本安川(YASKAWA)公司:MOTOMAN-UP20型 2.机器人控制器 YASNAC XRC UP20型 3.焊接电源 MOTOWELD-S350型弧焊电源 4.辅助系统 送丝机构、焊丝、焊接保护气体等
13
14
(1)机器人操作机
机器人操作机是焊接机器人 系统的执行机构,它由驱动器、传动 机构、机器人臂、关节以及内部传感 器(编码器)等组成。它的任务是精 确的保证末端操作器所要求的位置、 姿态和实现其运动。由于具有六个旋 转关节的铰接开链式机器人操作机从 运动学上已被证明能以最小的结构尺 寸为代价获取最大的工作空间,并且 能以较高的位置精度和最优路径到达 指定位置,因此这种类型的机器人操 作机在焊接领域得到广泛的应用。
成具有大批量、高质量要求的工作,如自动化
生产线中的点焊、弧焊
、喷漆、切割、
电子装配及物流系统的搬运 、包装、码垛
等作业的机器人。此外,机器人也可用于软质
材料的切削加工,如陶泥,泡沫,石蜡 ,有机
玻璃等。
3
1、Motoman机器人简介
• 焊接制造工艺由于其工艺的复杂性、劳动强度 、产品质量、批量等要求,使得焊接工艺对自 动化对于其工艺的自动化、机械化的要求极为 迫切,实现机器人焊接代替人工操作成为焊接 工作者追求的目标。
《工业机器人技术基础》教学课件—第1章 工业机器人概述
全球工业机器人和设备与系统技术的领先企业 工业机器人四大家族之一
焊接、 安装、切割、卷边、3D打印、铸造、搬运 航天、汽车、物流、电子、能源、医疗
法国
法国机器人在法国企业界迅速发 展和普及
如今法国机器人在国际工业机器人界 拥有不可或缺的一席之地
日本国内成立了日本 机器人协会,并在汽 车与电子等行业大量 使用机器人,实现了 工业机器人的普及
无论机器人的数量还 是机器人的密度,日 本都位居世界第一, 赢得了“机器人王国” 的称号
FANAC Robot R-2000iB
YASKAWA Robot MA1400
Kawasaki Robot RA10L
作为这个世界上第一个工业机器人和第一家机器人企业的联合 开创者,恩格尔伯格也从此被称为为“机器人之父”。
约瑟夫·恩格尔伯格(美)
Joseph F·Engelberger
研制出了世界上第一台工业机器人 被誉为“机器人之父”
乔治·德沃尔(美)
George Devol
第一台可编程工业机器人的发明者 成立世界上第一家机器人公司Unimation
20世纪70年代,德国就开始了“机器换人”的过程。同时德 国政府通过长期资助和产学研结合,扶植了一批机器人产业和人 才梯队,如KUKA机器人公司。
德国工业机器人
总数位居世界第二位,仅次于日本
随着德国工业迈向以智能生产为代表 的“工业4.0”时代,德国企业对工业 机器人的需求将继续增加。
库卡
品类齐全 领域广泛
采用仿人化设计 其手臂动作模仿人类的手臂
PUMA至今仍然工作在工厂第一线。不仅如此,有些大学还用 Puma系列的工业机器人作为教具。
推出通用工业机器人PUMA
工业机器人基础 ppt课件
ppt课件
18
运动控制模块
③操作机
①示教器 S6 串
S0 口 S5
S6
通 信
S1
模
S3
S4
块
主控制模块
驱动模 块 示教器的数据流关系
ppt课件
19
2.2 工业机器人的主要技术参数
机器人的技术参数反映了机器人可胜任的工作、具有的最高操作性能等 情况,是设计、应用机器人必须考虑的问题。
机器人的主要技术参数有自由度、分辨率、工作空间、工作速度、 工 作载荷等。
4
2.2.3 承载能力
承载能力是指机器人在工作范围内 的任何位姿上所能承受的最大重量,通 常可以用质量、力矩或惯性矩来表示。
• 承载能力不仅取决于负载的质量,而 且与机器人运行的速度和加速度的大 小和方向有关。
• 一般低速运行时,承载能力强。为安 全考虑,将承载能力这个指标确定为 高速运行时的承载能力。通常,承载 能力不仅指负载质量,还包括机器人 末端操作器的质量。
ppt课件
36
5. 用户坐标系 用户坐标系是用户根据工作的需要,自行定义的坐标系,用户可根据需要
定义多个坐 标系,如图 4-19所示。用户自定义可以方便的量测工作区间中各 点的位置并加以任务安 排,且更符合人的直观。在用户坐标系下,机器人末
端轨迹沿用户自己定义的坐标轴方 向运动,其运动方式见表 4-5。
图4-19 用户坐标系及各轴的运动
ppt课件
37
主运动轴 腕运动轴
表4-5 用户坐标系下机器人的运动方式
轴
运动方式
六轴联动
沿 用户定义的X 轴方向运动 沿用户定义的Y 轴方向运动
沿用户定义的Z 轴方向运动
末端点位置不变, 机器人分别绕 X 、Y、Z 轴转动
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无工具参数
Never Stop Improving
— 9—
工具坐标系
1 机器人坐工标业系机器人坐标系
工具坐标系: 建立工具坐标系方法:
直接输入法 三点法(工具末端对一固定点示教三个不同姿态的点) 五点法(工具末端对一固定点示教五个不同姿态的点)
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
pz
Never Stop Improving
— 11 —
2 机器人位姿变换
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
齐次坐标: 如用四个数组成(4×1)列阵
px
p
py
1pz
表示三维空间直角坐标系{A}中点p,则列阵[px py pz 1]T称为三维空间点p的齐次坐标。
— 2—
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
1 机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
在分析机器人时会牵涉诸多坐标系,一些是操作者不须关心的,另外一些却是和工艺相 关的。常见的坐标系有: ➢ 关节坐标系 ➢ 基座坐标系 ➢ 工具坐标系 ➢ 用户坐标系
右图就处于a)的奇异状态,直角下示教会报警。
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
直角坐标系
Never Stop Improving
— 6—
1 机器人坐工标业系机器人坐标系
机器人系统 关节坐标系
两者关系???
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
Never Stop Improving
— 3—
1 机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
关节坐标系主要描述各关节相对于标定零点的绝对位置,旋转轴常 用°表示,线性轴的常用mm描述。 作用:
单轴点动:单轴示教机器人,常用于调试时验证关节的旋转方向、 软限位;
— 4—
关节坐标系
1 机器人坐工标业系机器人基础知识
直角坐标系:
直角坐标系,包括很多种,但我们常常狭隘的将基座坐标系 称为直角坐标系。
直角坐标系的Z轴即第一轴的Z轴,X轴为回零后的正前方 ,Y轴由右手定则确定。原点随着df参数的大小上下变动。
直角坐标系下,用户可控制机器人末端沿坐标系任一方 向移动或旋转,常用于现场点位示教。
基坐标系
Never Stop Improving
— 7—
1 机器人坐工标业系机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
用户坐标系(工件坐标系):
用于描述各个物体或工位的方位的需要。用户常常在自
z
己关心的平面建立自己的坐标系,以方便示教。
作用:
方便示教;
2 机器人位姿变换
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
三点法
Never Stop Improving
五点法
— 10 —
工具坐标系
2 机器人位姿变换
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
机器人点的位置描述: 在选定的直角坐标系{A},空间任一点P的位置可用3×1的位置矢量AP表示
点的位置描述
px
A
p
py
解除机器人奇异位置,当机器人出现奇异报警时,只能在关节坐标 系下通过单轴点动解除奇异报警;
轴正负极限报警:只能在关节坐标系下通过单轴点动解除正负超限 报警;
关节坐标系下的坐标值均为机器人关节的绝对位置,方便用户调试 点位时观察机器人的绝对位置,避免机器人出现极限位置或奇异位置
Never Stop Improving
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
机器人 末端
Never Stop Improving
右手定则
— 5—
直角坐标系
1 机器人坐工标业系机器人基础知识
(2)直角坐标系 由于轨迹为空间插补,所以会遇到指定的位置和姿态不
能到达,即奇异现象。 常见的奇异有:
a)4、6轴共线附件,即5轴角度0附件。 b)2、3、5轴关节坐标系原点接近共线,即已经到达工作范 围边界。 c) 5轴关节坐标系原点在Z轴正上方附近。
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
工业机器人技术基础(2)
Never Stop Improving
— 1—
汇川技术
2016年12月
目录
1 机器人坐标系 2 机器人位姿变换 3 机器人运动学 4 机器人动力学 5 机器人性能指标
Never Stop Improving
Never Stop Improving
px a
p
py
b
1pz
c w
— 12 —
2 机器人位姿变换
坐标轴方向的描述:
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标来描述x、y、z轴的方向,则
y
基于用户坐标系的点位,方便生产线复制,减少调试工 作量;
离线仿真软件提取的基于定义坐标系轨迹控制点,可直 接用于实际 z
x
Never Stop Improving
— 8—
1 机器人坐工标业系机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
X 1 0 0 0T Y 0 1 0 0T Z 0 0 1 0T
(4×1)列阵[a b c o]T中第四个元素为零,且a2+b2+c2=1,则表示某轴(某矢量)的方向; (4x1)列阵[a b c w]T中第四个元素不为零,则表示空间某点的位置。
Never Stop Improving
— 13 —
工具坐标系: 在未加工具参数时,工具坐标系在机器人末端的法兰盘上,但
方向与基座坐标系不同。如右上图所示。
安装工具后,需加入工具参数,可以看作在机器人末端连杆的 延长,此时工具坐标系为表示新的工况需向末端延长,形成新的坐 标系。如右下图所示。
在示教时,也可以沿着工具坐标系的X、Y、Z轴平行的方向平 移,也可以末端不动绕工具坐标系的X、Y、Z轴转动。