第三章 紫外吸收光谱分析

合集下载

第三章 紫外-可见吸收光谱分析

第三章   紫外-可见吸收光谱分析

2.不饱和脂肪烃 .
在不饱和烃类分子中,除含有σ键外,还含有π 键,它们可以产生 σ→σ*和π→π* 两种跃迁。 如果存在共轭体系,则随共轭系统的延长, 吸收带将明显向长波方 向移动,吸收强度也随之增强 在共轭体系中, π→π*跃迁产生的吸收带又称为K(Konjugation) 带。其特点是:强度大,εmax›104;位置一般在217~280nm λmax和εmax的大小与共轭链的长短及取代基的位置有关 根据K带是否出现,可判断分子中共轭体系的存在的情况。在紫外光 根据 带是否出现,可判断分子中共轭体系的存在的情况 带是否出现 谱分析中有重要应用。
紫外- §3-3 紫外-可见分光光度法的应用 一、 定性分析 二、纯度检查 三、结构推测 四、定量分析 单组分样品的定量分析 多组分样品的定量分析
一、 定性分析
1、依据:吸收光谱的特征——形状、波长、峰数目、强度、 吸光系数。 、依据:吸收光谱的特征 形状、 形状 波长、峰数目、强度、 吸光系数。 2、方法:对比法 、方法: (1) 对比吸收光谱特征数据 (2) 对比吸光度或吸光系数的比值
3.芳香烃 .
苯有三个吸收带 E1带180∼184nm ε=47000 E 2带200∼204 nm ε=7000 苯环上三个共扼双键的 π → π*跃迁特征吸收带 B带 230-270 nm
ε=200
π → π*与苯环振动引起; 含取代基时, B带简化,红移 当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600

紫外吸收光谱分析

紫外吸收光谱分析
单色器选择
单色器是将光源发出的复合光分解为单色光的装置。在紫外吸收光谱分析中,常 用的单色器有棱镜单色器和光栅单色器。棱镜单色器分辨率较低,适用于宽波段 扫描;光栅单色器分辨率较高,适用于窄波段扫描和定量分析。
样品池设计与使用注意事项
样品池设计
样品池是承载样品的装置,其设计应考虑到样品的性质、浓度以及分析波长等因素。常 用的样品池有石英比色皿和玻璃比色皿,前者适用于紫外区域的分析,后者适用于可见 光区域的分析。此外,样品池的光程长也是需要考虑的因素,一般根据分析需求选择合
03 样品前处理与实验条件 优化
样品溶解与稀释方法
选择合适溶剂
根据样品的性质选择合适的溶剂 ,确保样品在溶剂中完全溶解, 避免产生浑浊或沉淀。
稀释倍数确定
根据样品的浓度和仪器的检测范 围,确定合适的稀释倍数,使样 品在检测时处于线性范围内。
pH值调整及缓冲液选择
pH值调整
根据样品的性质和实验需求,使用酸或碱调整样品的pH值,确保样品在合适 的pH值下进行实验。
多组分体系同时测定策略探讨
1 2 3
多波长测定法
利用不同组分在紫外光谱中的特征吸收峰,选择 多个波长进行同时测定,实现多组分体系的分析 。
差分光谱法
通过比较样品与参比溶液在特定波长下的吸光度 差异,消除背景干扰,提高多组分体系测定的准 确性。
化学计量学方法
结合化学计量学算法,对多组分体系的紫外吸收 光谱数据进行解析,实现各组分浓度的同时测定 。
应用举例
在药物分析中,利用紫外光谱法可以 快速识别原料药或制剂中的主成分, 以及可能的杂质或降解产物。
导数光谱法在Biblioteka 合物鉴定中应用原理导数光谱法通过对原始紫外光谱进行数学处理(求导),可 以突出光谱的细微特征,提高混合物中各组分的分辨率。

第三章 紫外可见吸收光谱分析 (assdfhgfj)

第三章 紫外可见吸收光谱分析 (assdfhgfj)
酰基(-OCOR) 烷基(-R) 0 +5 卤素(-Cl,-Br) 烷氧基(-OR) +5 +6
max= 基+nii
(3)双键上取代基:
异环(稠环)二烯母体: 同环(非稠环或稠环)二烯母体:
max=214 nm
max=253 nm
niI
: 由双键上取代基种类和个数决定的校正项 (1)每增加一个共轭双键 +30 (2)环外双键 (3)双键上取代基:
A 有差异,在λmax处吸光度A 的差异最大。此特性
可作为物质定量分析的依据。 在λmax处吸光度随浓度变化的幅度最大,所以
测定最灵敏。吸收曲线是定量分析中选择入射光波长
的重要依据。
光吸收的基本定律
朗波比耳定律定律: A = lg(I0/I) = K b c 产生过程: 1729年,波格(Bouguer)发现物质对光的吸收A与 吸光物质的厚度b有关。 1760年,波格的学生朗白(Lambert)发现,如果溶液
三.有机化合物的紫外—可见吸收光谱
分子中价电子吸收紫外光产生电子跃迁形成紫外谱。
因此,紫外谱决定于分子中价电子的分布和结合情况。 分子轨道理论:σ、σ*、n、π*、π键轨道 有机化合物的紫外—可见吸收光谱是三种电子跃迁的结 果:σ 电子、π 电子、n电子。
s* s
H
C O H p
n

E
K E,B
R
π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近紫 外区,εmax一般在104L· mol-1· cm-1以上,属于强吸收。 (1) 不饱和烃π →π *跃迁
H c H c H H max=162nm
助色基团取代 p → p(K带)发生红移。

仪器分析 第三章 紫外可见吸收光谱法

仪器分析 第三章 紫外可见吸收光谱法

第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。

◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。

◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。

2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。

◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。

◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。

◆准确:近紫外-可见分光光度法(200-780 nm)。

3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。

4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。

2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。

◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。

◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。

2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。

◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。

◆电子能级能量差:1~20 eV。

电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。

7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。

◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。

高分子材料研究方法--紫外可见吸收光谱 ppt课件

高分子材料研究方法--紫外可见吸收光谱  ppt课件

ppt课件
16
常用的是π→π*跃迁和n→π*,这两种跃迁都 需要分子中有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
π→π*
n→π*
吸收峰波长 与组成双键的
有关
原子种类基本无关
吸收强度 强吸收 104~105 弱吸收 <102
极性溶剂 向长波方向移动 向短波方向移动
ppt课件
O:
例:H C
H ppt课件
10
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
σ* π*
n → σ* π→π* n→π*跃迁
n
π

σ→σ*

σ
ppt课件
11
主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
ppt课件
不同波长的光
ppt课件
L 4
A
图3-1 紫外可见吸收光谱示意图
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
ppt课件
min

5
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应 的波长(最大吸收波长 λmax) 不变。并且曲线的形状也 完全相同。
CH3Br λmax=204nm
ppt课件
14
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右

第三章 紫外-可见吸收光谱法

第三章    紫外-可见吸收光谱法

3-1 概述
3-1 概述
紫外光
波长为10-400nm的电磁辐射,分为远紫外光 的电磁辐射, 波长为 的电磁辐射 (10-200nm)和近紫外光(200-400nm)。 )和近紫外光( )。 远紫外光可被大气中的水气、 远紫外光可被大气中的水气、氮、氧和二氧化 碳所吸收,只能在真空中研究, 碳所吸收,只能在真空中研究,故又称真空紫 外光。我们讨论近紫外光谱。 外光。我们讨论近紫外光谱。
紫外-可见吸收光谱法 第三章 紫外 可见吸收光谱法
UltravioletUltraviolet-Visible Absorption Spectrometry UV-Vis UV-
章节内容
第一节 概述 紫外-可见吸收光谱 第二节 紫外 可见吸收光谱 第三节 紫外-可见分光光度计 紫外 可见分光光度计 紫外-可见吸收光谱法的应用 第四节 紫外 可见吸收光谱法的应用
(5)出射狭缝 紫外-可见分光光度计使用石英棱镜。 棱镜单色器的缺点在于色散率随波长变 化,得到的光谱呈非均匀排列,而且传递 光的效率较低。 光栅单色器在整个光学光谱区具有良好 的几乎相同的色散能力。因此现代紫外-可 见分光光度计 多采用光栅单色器。 (三)吸收池 (四)检测器 (五)信号显示器
二、分光光度计的构造类型
的配位体强度小于NH 如:H2O的配位体强度小于 3的, 的配位体强度小于 所以, ( 所以,Cu(H2O)6呈浅蓝色,吸收峰 ) 呈浅蓝色, 794nm;Cu(NH3)6深蓝色,吸收峰 深蓝色, ; ( 663nm。 。 一些常见配位体配位场强弱顺序: 一些常见配位体配位场强弱顺序: I-<Br-<Cl-<F-<OH-<C2O4-=H2O<SCN-< 吡啶=NH3<乙二胺 联吡啶 邻二氮菲 乙二胺<联吡啶 吡啶 乙二胺 联吡啶<邻二氮菲 <NO2-<CN-

紫外~可见光谱分析

紫外~可见光谱分析
4、n→π* 跃迁:主要是既含有C=C双 键,又含有C=O、C=S、N=O、N=N等杂原子的 有机分子,由于n与π*这两种分子轨道的能量 间距较小,因此,产生这种跃迁需要吸收的光 子在石英紫外区,其波长范围较宽,能被普通 的紫外可见光谱分析所利用。这类跃迁的几率 更低,其摩尔吸光系数约101~102 。
出射狭缝:使分析所需波长的单色光通过。
准光镜 光源
棱镜
成像物镜
入射狭缝
出射狭缝



棱镜单色器的结构原理示意
狭缝大小的影响
紫外-可见分光光度计
单色器中入射狭缝越窄,则光谱带上任 意一点的波长成分越纯,光谱的质量就越高; 出射狭缝越小,则产生单色光的带宽小、单色 性好、但能量小,影响仪器的信噪比。
第三章
第三章 紫外—可见吸收光谱分析(分子)
第一节 概述:
第二节 紫外-可见吸收光谱 与分子结构的关系
第三节 紫外-可见分光光度计的 基本组成与结

第四节 紫外-可见分光光度计的 性能
第五节 紫外-可见吸收光谱法的
第一节 概 述:
紫外~可见吸收光谱分析,简称UV-V IS。
利用分光光度计测量物质对紫外~可 见光的吸光度和通过物质的紫外~可见吸收光 谱来确定物质的组成、含量,推断物质结构的 分析方法,称紫外~可见吸收光谱分析,又称 为紫外~可见分光光度法。
(1)单色器的组成:
紫外-可见分光光度计
入射狭缝:只许光源分一束光进入。
准光镜:将光源产生的光转变为平行光束, 使其照射在色散元件上的入射角均相等。
色散元件:为棱镜或光栅,将复合光色散成 按一定波长顺序排列的单色光。
成像物镜:将色散原件产生的单色平行光, 在其焦平面的不同位置聚焦,成为出射狭缝对应波长 的单色光。

第三章 紫外可见吸收光谱分析法

第三章  紫外可见吸收光谱分析法

ε1(CrO42- ) 1.84×103 4.81×103 1.88×103
ε2(Cr2O72- ) 10.7×102 7.24×102 1.89×102
求1.00×10-4 、 2.00×10-4 、 3.00×10-4 、4.00×10-4 M K2Cr2O7 溶液在 PH 5.60缓冲溶液中,用一厘米比色池在345、 370、400nm波长处测定时的吸光度?并分别于345 nm, 370 nm 及400 nm作吸光度对浓度的曲线,比较偏离吸收定律的原因。
按用途分: 常用比色池 0.5, 1.0, 1.5, 2.0厘米 微 量 池 0.5毫升以下 流 动 池 5-11微升
按材料不同分:
玻璃池
340-1000nm
石英池
200-340nm
紫外级石英池 185-220nm
吸收池的光学面必须严格垂直于光束方向。
(四) 检测器 ( Detectors )
作用: 光信号转变为电信号。
(CH3)3N 227
140 2520 600 100 900
C.n→π*跃迁 和π→π*跃迁
● ●
产生有机物最为有用的吸收光谱,n电子和π电子比较 容易激发,吸收峰波长>200nm,该两类跃迁要求分子中含有 不饱和的官能团,含有π键的基团就称为生色团或发色团。
这两类跃迁的吸收峰强度不同,前者的摩尔吸收系数 很低,仅在10-100范围内 ,后者这比前者大100-1000倍。
A. 几种光检测器性能的比较
光电池
光电管
波长(nm)
(Wavelength)
(photocells)
400-750
响应速度

(Speed of response)

分析化学(仪器分析)第三章-仪器分析(UV)

分析化学(仪器分析)第三章-仪器分析(UV)

1
第一节
概述
一、紫外-可见吸收光谱法
根据溶液中物质的分子或离子对紫外和可见光谱
区辐射能的吸收来研究物质的组成和结构的方法。
包括比色分析法和紫外-可见分光光度法。 紫外-可见吸收光谱的产生:分子价电子能级跃迁。 波长范围:10-800 nm.
(1) 远紫外光区: 10-200nm
(2) 近紫外光区: 200-400nm (3) 可见光区:400-800nm
结束结束结束25一基本部件二分光光度计的构造原理26紫外可见分光光27光源单色器样品室检测器显示光源在整个紫外光区或可见光谱区可以发射连续光谱具有足够的辐射强度较好的稳定性较长的使用寿命
第三章 紫外-可见吸收光谱法
第一节 概述
第二节 紫外-可见吸收光谱
第三节 紫外-可见分光光度计
第四节 紫外-可见吸收光谱法的应用
金属离子的影响,将引起配位体 吸收波长和强度的变化。变化与成键 性质有关,若共价键和配位键结合, 则变化非常明显。
23
3.电荷转移吸收光谱
电荷转移跃迁:辐射下,分子中原定域在金属
M轨道上的电荷转移到配位体L的轨道,或按相反
方向转移,所产生的吸收光谱称为荷移光谱。
Mn+—Lbh M(n-1) +—L(b-1) h [Fe2+SCN]2+ [Fe3+SCN-]2+ 电子接受体
34
2. 定量分析
依据:朗伯-比耳定律—分子吸收光谱定量分析 的基本定律,它指出:当一束单色光穿过透明介质 时,光强度的降低同入射光的强度、吸收介质的厚 度以及光路中吸光微粒的数目成正比。
吸光度: A= e b c 透光度:-lgT = e b c
35

第三张紫外吸收光谱分析习题及答案

第三张紫外吸收光谱分析习题及答案

一填空1.紫外吸收光谱研究的是分子的(电子)能级跃迁,它还包括了(振动)和(转动)能级跃迁。

2朗伯-比尔定律适用于(平行单色光)对(均匀非散射性)溶液的测定3 .在朗伯—比尔定律I/I o = 10-abc中, I o是入射光的强度, I是透射光的强度, a是吸光系数, b是光通过透明物的距离, 即吸收池的厚度, c是被测物的浓度, 则透射比T =_I/I o________, 百分透过率T% =_I/I o ×100%_____, 吸光度A与透射比T的关系为____-logT___。

4 .振动能级间跃迁产生的光谱叫振动光谱,又叫红外光谱。

5紫外-可见光光谱中(最大吸收峰)所对应的波长称最大吸收波长。

二选择1不需要选择的吸光度测量条件为(D)A入射光波长B参比溶液C吸收光读数范围D测定温度2某溶液的渗透率为30%,其吸光度为(A)A-lg0.3 B-lg7.0 C3-lg30 D-lg0.73指出下列化合物中,哪个化合物的紫外吸收波长最大( A )。

A. CH3CH2CH3B. CH3CH2OHC. CH2=CHCH2CH=CH2D. CH3CH=CHCH=CHCH 34电磁辐射的微粒性表现在哪种性质上(B )。

A. 能量B. 频率C. 波长D. 波数5测量某样品,如何测量时吸收池透光面有污渍没有擦干净,对测量结果有何影响(D) A影响不确定B无影响C偏高D偏低三判断1溶液的透射比越大,表示物质对光的吸收越小(正确)2在符合朗波比尔定律的范围内,有色物质的浓度增加,最大吸收波长不变,则透光度减小(正确)3分光光度法既可以用于单组份测定,也可以用于多组分测定。

(正确)4不同物质吸收光谱的形状以及波长都不同。

(正确)5分子内部三种运动形式能量大小比较为电子能级>振动能级>转动能级。

(正确)四名词解释1吸光度A:物质对光的吸收程度。

2透光率T:透射光的强度与入射光强度之比称为透射比与透光率。

第三章紫外光谱和质谱

第三章紫外光谱和质谱

③ π-π*跃迁
是π电子从π成键向反键π*轨道的跃迁,含有π电子基团的不饱和有 机化合物,都会发生π-π*跃迁,如有 、 等的有机化合
物。π-π*跃迁所需的能量比σ-σ*跃迁小,也一般比n-σ*跃迁小,吸收 峰一般在200nm附近。
π-π*还具有以下特点:
吸收波长一般受组成不饱和键的原子影响不大,如 及 的λmax 都是 175 nm;摩尔吸光系数都比较大,通常在104以上,为强吸收带;
特点:光谱原理简单,识谱容易,信息量较少, 应用仍较广泛。
一、基本原理
1.紫外光谱的产生 E = E0 + E平动 + E转动 + E振动 + E电子 图中A、B表示不同能量的两个电 子能级,在每个电子能级中还分 布着若干振动能量不同的振动能 级,它们的振动量子数V=0、1、 2、3…表示,而在同一电子能级 和同一电子能级和同一振动能级 中,还分布着若干能量不同的转 动能量,它们的转动能级数J=0、 1、2、3……表示。 在分子能级跃迁所产生的能级变化ΔE中,电子能级跃 迁的能量变化ΔEe是最大的,一般在1~20eV之间, 它对应的电磁辐射能量主要在紫外-可见光区。
3.某些常见化合物的吸收光谱 ① 饱和烃及其取代衍生物 饱和烃中只有σ键,即只有σ电子,因此只能产生σ-σ*跃 迁,饱和烃的取代衍生物引入具有未成键n电子的杂原子, 可以产生n -σ*跃迁,吸收波长变大 。 如CH4的吸收波长为125 nm,而CH3Cl、CH3Br和CH3I的 吸收波长分别为173、204 和258 nm。 饱和烃是测定紫外-可见光谱时的良好溶剂。 ② 不饱和烃及共轭烯烃 可以产生σ-σ*跃迁和π-π*跃迁,一般在近紫外光区,为强吸收带在 分析上较有实用价值。 不饱和烃中,如果存在着共轭体系,共轭使电子离域大,-*能 量降低,跃迁几率增加,吸收波长变长,吸收变大。共轭程度越大, 则λmax越大,εmax也越大。 如:乙烯(193 nm),1,3-丁二烯(217 nm),己三烯(258 nm),辛四 烯(300 nm) 在共轭体系下,π-π*跃迁所产生的吸收带,又称为K带。

第三章 紫外吸收光谱分析

第三章 紫外吸收光谱分析

b. 滤光片单色器
组成:
性能: 吸收滤片 光谱通带宽度(nm) 20-30 透 过 率(T% ) 5-20%
准直镜
入口狭缝、 滤光片、出口狭缝
干涉滤光片 10-15 40-60%
狭缝
c. 棱镜和光栅单色器 光谱通带宽度 少于 1nm 组成: 狭缝、色散元件、准直元件( 透镜 、反射镜 )
棱镜和光栅单色器比较
空紫外分光光度计,故在实际应用中受到一定的限制。
我们通常所说的紫外-可见分光光度法,实际上是指近非 真空紫外、可见分光光度法(200 ~ 800 nm)。
3.2 化合物紫外—可见光谱的产生
在紫外和可见光谱区范围内,有机化合物的吸收带主要由五种分
子轨道间的下述四种跃迁:σ→σ*、π → π*、n →σ *、n →π *及电荷
分子能级的能量间隔各异,因此不
同物质将选择性地吸收不同波长或
能量的外来辐射,这是UV-Vis定性 分析的基础。
苯蒸气的吸收曲线
2. 紫外-可见光谱的仪器原理
2.1. 紫外吸收仪器原理图
以下分别是单光束、双光束分光光度计的示意图以及仪器照片
2.2 仪器部件介绍
0.575
光源
单色器
检测器
显示 器
吸收池
吸收带:通常,分子是处在基态振动能级上。当用紫 外、可见光照射分子时,电子可以从基态激发到激发态的 任一电子能级上。因此,电子能级跃迁产生的吸收光谱, 包括了大量谱线,并由于这些谱线的重叠而成为连续的吸 收带,这就是为什么分子的紫外-可见光物质结构不同或者说其
E. 信号指示系统 它的作用是放大信号并以适当方式指示或记录下来。 常用的信号指示装置有直读检流计、电位调节指零装置 以及数字显示或自动记录装置等。很多型号的分光光度 计装配有微处理机,一方面可对分光光度计进行操作控 制,另一方面可进行数据处理。 总 结 :

第三章 紫外可见吸收光谱法

第三章 紫外可见吸收光谱法

3.金属离子影响下配体的 p → p* 跃迁 显色剂大多含有生色团和助色团,与金属离子 配位时,其共轭结构发生变化导致吸收光谱发生红 移或蓝移。 例:茜素磺酸钠 弱酸性-黄色- λmax=420nm 弱碱性-紫红色- λmax=560nm
pH为4~5时与Al3+配位后,为红色,λmax=475nm,相对于 酸性茜素磺酸钠吸收峰红移,相对于碱性茜素磺酸钠吸收峰 蓝移。
480-490
490-500 500-560 560-580 580-610 610-650 650-780
绿蓝
蓝绿 绿 黄绿 黄

红 红紫 紫 蓝


绿蓝
蓝绿
3.特点:
(1) 灵敏度较高,可达10-4~10-7g/mL; (2) 准确度较高,一般为1% ~5%; (3) 仪器价格较低,操作简便、快速; (4)应用范围广。既能进行定量分析,又可进行 定性分析和结构分析;既可用于无机物化合 物分析,也可用于有机物化合物分析;还可 用于络合物组成、酸碱解离常数的测定等。
标准谱图库:46000种化合物紫外光谱的标准谱图 有一定局限性,需与红外、核磁、质谱等法相结合 进行准确鉴定。
(二)结构分析
紫外—可见吸收光谱中有机物发色体系信息分析的一般规律: (1)若在220~280nm内无吸收峰,可推断化合物不含苯环、共轭 双键、醛基、酮基、溴和碘(饱和脂肪族溴化物在200-210nm有 吸收)。
必须在配体的配位场作用下才可能产生;
一般的规律:轨道分裂能随场强增加而增加,吸 收峰波长则发生紫移。 例如:水合铜离子(Ⅱ)是浅蓝色的λmax=794nm ,而 它的氨络合物却是深蓝色的λmax=663nm 。
摩尔吸收系数ε很小,对定量分析意义不大。但可 用于络合物的结构及无机络合物的键合理论研究。

紫外吸收光谱分析原理

紫外吸收光谱分析原理

紫外吸收光谱分析原理
紫外吸收光谱分析是一种常用的分析方法,用于测定物质在紫外光波段的吸收特性。

其原理基于分子在紫外光波长的辐射下,会吸收特定波长的光能,而波长较短的紫外光可以提供充分的能量,使得分子的电子跃迁至能级更高的激发态。

在紫外吸收光谱分析中,常用的仪器是紫外可见分光光度计。

该仪器通过使用一束连续可见光谱范围的光源,并将光分成几种不同波长的组分。

这束光线经过样品后,会发生吸收作用,被吸收的光能量与样品中存在的物质量成正比。

未被吸收的光线则通过光谱仪,最终转化为一个电子信号。

在分析过程中,将样品和参比物(一般是纯溶剂)分别放入两个
光路,并测量它们的吸收谱线。

通过比较两者的吸收度差异,可以得到样品物质在不同波长下的吸收特性。

这种减法方法可以排除溶剂本身的吸收对结果的影响,提高测量的准确性。

紫外吸收光谱分析在许多领域中都有广泛的应用,特别是在药学、生物化学和环境监测等领域。

通过测定样品的吸收谱线,可以定量测定物质的浓度、检测它们的组分以及判断样品的纯度。

同时,该分析方法快速、灵敏度高,无损伤性,不需要特殊样品处理,是一种非常有效的分析手段。

紫外-可见吸收光谱分析

紫外-可见吸收光谱分析

• 分子、原子或离子具有不连续的量子化能级,仅当
照射光光子的能量(hυ)与被照射物质粒子的基态和 激发态能量之差相当时才能发生吸收。不同的物质微粒 由于结构不同而具有不同的量子化能级,其能量差也不 相同。所以物质对光的吸收具有选择性。
三、吸收曲线(吸收光谱)
• 吸光度(A)--波长(λ)曲线称--。 • 光吸收程度最大处的波长叫 • 最大吸收波长,用λmax表示。 • 高锰酸钾的λmax=525nm。 • 浓度不同时,光吸收曲线形状不同,最大吸收波长
1852年,比耳(Beer)发现:
• 当单色光通过液层厚度b一
• 定的有色溶液时,溶液的吸
• 光度A与溶液浓度C成正比:

A= lg(I0/I)= k2 C
• --- 比耳定律

( C--有色溶液的浓度 k2--比例常数 )
• 将朗白定律与比耳定律合并起来:

A = lg(I0/I) = K b c
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸收光
颜色
波长范围

40/0n-m450

450-480
绿蓝
480-490
蓝绿
490-500
绿
500-560
黄绿
560-580

580-600

600-650

650-700
二、物质对光的选择性吸收
当一束光照射到某物质或其溶液时,组成该物质的 分子、原子或离子与光子发生“碰撞”,光子的能量就 转移到分子、原子上,使这些粒子由最低能态(基态) 跃迁到较高能态(激发态):M + hυ → M* 这个作用叫物质对光的吸收。

紫外-可见吸收光谱

紫外-可见吸收光谱

第二节 紫外—可见吸收光谱
一、有机化合物的紫外-可见吸收光谱 二、无机化合物的紫外-可见吸收光谱
一、有机化合物的紫外-可见吸收光谱
(一)电子跃迁类型 分子轨道理论:一个成键轨道必定有一 个相应的反键轨道。通常外层电子均处 于分子轨道的基态,即成键轨道或非键 轨道上。
当外层电子吸收紫外或可见辐射后,就 从基态向激发态(反键轨道)跃迁。主要有四 种跃迁所需能量ΔΕ大小顺序为:n→π* < π→π* < n→σ* < σ→σ*
羧酸及羧酸的衍生物虽然也有n*吸 收带,但是, 羧酸及羧酸的衍生物的羰基 上的碳原子直接连结含有未共用电子对的 助色团,如-OH、-Cl、-OR等,由于这些助 色团上的n电子与羰基双键的电子产生 n共轭,导致*轨道的能级有所提高, 但这种共轭作用并不能改变n轨道的能级, 因此实现n* 跃迁所需的能量变大,使 n*吸收带蓝移至210nm左右。
2. 配位场跃迁 配位场跃迁包括d - d 跃迁和f - f 跃迁。元素周期表中第四、五周期的过度金 属元素分别含有3d和4d轨道,镧系和锕系元 素分别含有4f和5f轨道。在配体的存在下, 过度元素五 个能量相等的d轨道和镧系元素 七个能量相等的f轨道分别分裂成几组能量 不等的d轨道和f轨道。
当它们的离子吸收光能后,低能态的 d电子或f电子可以分别跃迁至高能态的d 或f轨道,这两类跃迁分别称为d - d 跃 迁和f - f 跃迁。由于这两类跃迁必须 在配体的配位场作用下才可能发生,因 此又称为配位场跃迁。
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外 区的近紫外端或近紫外区,摩尔吸光系数 εmax一般在104L·mol-1·cm-1以上,属于 强吸收。不饱和烃、共轭烯烃和芳香烃类均 可发生该类跃迁。如乙烯π→π*跃迁的 λmax为162nm,εmax为1×104L·mol-1·cm -1。

紫外吸收光谱分析.

紫外吸收光谱分析.

H3CO
例1
246 +3 +25 274 nm (276nm ) CI 例2 基本值: 246 邻位环残基 +3 邻位—OH取代 + 7 间位CI取代 +0 OH 256nm (257nm) 例3 基本值: 246 H CO 邻位环残基 +3 间位—OCH3取代 +7 对位—OCH3取代 +25 281nm(278nm)
图2.23 紫外—可见吸收曲线
2.3.2 紫外吸收光谱的基本原理
1 电子跃迁类型
(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收 光子后被激发跃迁到σ*反键轨道
(2)n→σ* 跃迁 指分子中处于非键轨道上的n电 子吸收能量后向σ*反键轨道的跃迁 (3)π→π* 跃迁 指不饱和键中的π电子吸收光波 能量后跃迁到π*反键轨道。
(4) 吸收带分类
i R—带
它是由n→π* 跃迁产生的吸收带,该带的特点是吸 收强度很弱,εmax<100,吸收波长一般在 270nm以上。 ii K—带 K—带(取自德文: konjuierte 共轭谱带)。它是 由共轭体系的π→π* 跃迁产生的。它的特点是:跃 迁所需要的能量较R吸收带大,摩尔吸收系数εmax >104。K吸收带是共轭分子的特征吸收带,因此用 于判断化合物的共轭结构。紫外-可见吸收光谱中应 用最多的吸收带。
图2.28 溶剂对π→π*,n→π*的影响
4 溶剂pH值对光谱的影响
pH的改变可能引起共轭体系的延长或缩短,从而 引起吸收峰位置的改变,对一些不饱和酸、烯醇、 酚、及苯胺类化合物的紫外光谱影响很大。如果化 合物溶液从中性变为碱性时,吸收峰发生红移,表 明该化合物为酸性物质;如果化合物溶液从中性变 为酸性时,吸收峰发生蓝移,表明化合物可能为芳 胺。

紫外可见吸收光谱

紫外可见吸收光谱

2. 电荷迁移跃迁
——指配合物中配位体与金属离子之间,一个电子
由一方的一个轨道跃迁到另一方相关的轨道上。 ——产生电荷迁移跃迁的必要条件:一组分是电子
给予体,另一组分是电子接收体。
例: [Fe3+ (SCN-)]2+ h [Fe2+(SCN)]2+
电子接受体 电子给予体
——电荷迁移跃迁光谱的很大,一般在104以上,
——当苯环上有羟基、氨基等取代基时,吸收峰红移, 吸收强度增大.像羟基、氨基等一些助色团,至少 有一对非键n电子,这样才能与苯环上的电子相互 作用,产生助色作用.
——取代基不同,变化程度不同,可由此鉴定各种 取代基
例: 苯
λmax B带 254
λmax
E2
204
甲苯
262
208
苯酚
271
213
苯甲酸
(一)紫外可见吸收光谱 由紫外可见分光光度计获得
光源——单色器——吸收池——检测器——显示器
ΔE电 = h 光 (200—800 nm)
激发态 基态
吸收曲线
将不同波长的光透过某一固定浓度和 厚度的待测溶液,测量每一波长下待测溶 液对光的吸收程度(即吸光度),然后以 波长为横坐标,以吸光度为纵坐标作图, 可得一曲线。这曲线描述了物质对不同波 长的吸收能力,称吸收曲线或吸收光谱。
不同波长的光
L
图3-1紫外可见吸收光谱示意图
A
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
min

A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

第三章紫外吸收光谱

第三章紫外吸收光谱

溶剂的影响
C
∆Εn<∆Εp
O
C
C
π∗
∆Ε n > ∆Ε p π∗
∆Ε n n C
π∗ ∆Ε p
π∗ ∆Ε n π ∆Ε p
O 非极性
C
极性
C
π 极性
非极性
n → π*跃迁:兰移; λ↓ ;ε↑ 兰移; 兰移
λmax(正己烷) λmax(氯仿)
π → π*跃迁:红移; λ↑;ε↓ λ↑;
λmax(甲醇) λmax(水)
C H3 C O
n π∗ ; R带
π
π∗ ; K带
生色团与助色团
生色团: 生色团: 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的 。这两种跃迁均要求有机物分子中含有不饱和基团。这类含 有π键的不饱和基团称为生色团。简单的生色团由双键或叁键 体系组成,如乙烯基、羰基、亚硝基、偶氮基—N=N—、乙 炔基、腈基—C㆔N等。 助色团: 助色团: 有一些含有n电子的基团(如—OH、—OR、—NH2、— NHR、—X等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共轭作用,增 强生色团的生色能力(吸收波长向长波方向移动,且吸收强度 增加),这样的基团称为助色团。
基本值 217 基本值 253 增加值 +30 +5 +5 0 +6 +30 +5 +60
解析示例
有一化合物C10H16由红外光谱证明有双键和异丙基存在, 其紫外光谱λ max=231 nm(ε 9000),此化合物加氢只能吸收2 克分子H2,,确定其结构。 解:①计算不饱和度Ω = 3;两个双键;共轭?加一分子氢 ②λmax=231 nm, ③可能的结构 ④计算λ max
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b. 滤光片单色器
组成:
性能: 吸收滤片 光谱通带宽度(nm) 20-30 透 过 率(T% ) 5-20%
准直镜
入口狭缝、 滤光片、出口狭缝
干涉滤光片 10-15 40-60%
狭缝
c. 棱镜和光栅单色器 光谱通带宽度 少于 1nm 组成: 狭缝、色散元件、准直元件( 透镜 、反射镜 )
棱镜和光栅单色器比较
迁移跃迁产生。无机化合物的吸收带主要由电荷迁移和配位场跃迁 (即d—d跃迁和f—f跃迁)产生。

σ→σ*和 n →σ *跃迁,吸收波长:< 200nm (远紫外区);

π → π*和 n →π *跃迁,吸收波长: 200~400nm (近紫外区);
紫外-可见分光光度法检测:共轭烯烃、共轭羰基化合物及芳香化合物等。
号,并记录下来,然后以波长为横坐标,以电信号(吸光度 A)为纵坐标,
就可以得到一张光强度变化对波长的关系曲线图-紫外吸收光谱图,如下:
• Lambert-Beer定律
也称吸收定律,A称为吸光度(absorbance),吸 收度或光密度(OD,optical density),a称为吸收系数
(absorotiviry),是化合物分子的特性,它与浓度(c)和光
3.3. 有机化合物的紫外-可见吸收光谱的类型
价电子跃迁
基态有机化合物的价电子包括成键σ电子、成键π电子和非键
电子(以 n表示)。分子的空轨道包括反键σ *轨道和反键π *轨道, 因此,可能的跃迁为σ→σ*、π → π*、n →σ*、n →π*等。下列几 种跃迁的特点是: 1. σ→σ*跃迁 它需要的能量较高,一般发生在真空紫外光区。有机饱和烃中 的C-C和C-H键属于这类跃迁,例如乙烷的最大吸收波长λmax为 135nm。 2. n →σ*跃迁 主要是含有O、N、P等杂原子的有机分子。实现这类跃迁所需 要的能量较高,其吸收光谱落于远紫外光区和近紫外光区,如 CH3OH和CH3NH2的n →σ*跃迁光谱分别为183nm和213nm。
光谱分析的紫外区:通过石英(SiO2)、且不为氧所吸收的
200~420nm谱区;可见光谱区为420~760nm。
1.1 分子吸收光谱的产生
在分子中,除了电子相对于原子核的运动外,还有核间相对位 移引起的振动和转动。这三种运动能量都是量子化的,并对应 有一定能级。下图为分子的能级示意图。
图1. 分子中电子能级、振动能级和转动能级示意图
第三章 紫外吸收光谱分析
1. 紫外-可见吸收光谱概述
紫外—可见(Ultraviolet-visible)分光光度法是利用某些物质
分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方
法。利用分子在紫外可见谱区的吸收光谱进行无机和有机物质
的定量测定,辅助定性分析(如配合IR)。
分析依据的信息是组成分子的原子外层价电子的运动特征。
单波长双光束分光光度计
比值 光束分裂器 光源 单色器
吸收池
检测器
显示
• 双光束分光光度计是自动比较了透过参比溶液和样品溶液的光的强度,它不受
光源(电源)变化的影响。
• 双光束分光光度计还能进行波长扫描,并自动记录下各波长下的吸光度,很快 就可得到试液的吸收光谱。所以能用于定性分析。
2.3 紫外光谱图例图
A. 光源
用于提供足够强度和稳定的连续光谱。分光光度计中常用的光源有热辐射光源和气 体放电光源两类。 热辐射光源用于可见光区,一般用白炽灯,如钨丝灯和卤钨灯;钨灯和碘钨灯可使 用的范围在340 ~ 2500nm。
气体放电光源用于紫外光
区,如氢灯和氘灯,它们
可在160 ~ 360 nm范围 内产生连续光源。
分子总能量: E分子 = E电子 + E振动 + E转动
当用频率为n的电磁波照射分子,而该分子的较高能级与
较低能级之差△E恰好等于该电磁波的能量 hn时,即有:
△ E = hn ( h为普朗克常数)
此时,在微观上出现分子由较低能级跃迁到较高的能级;在宏观上则透
射光的强度变小。 用一连续-辐射的电磁波照射分子,将照射前后光强度的变化转变为电信
外光谱区域,而且在整个波长区域中具有良好的、几乎均匀一致的色散 率,且具有适用波长范围宽、分辨本领高、成本低、便于保存和易于制
作等优点,所以是目前用的最多的色散元件。其缺点是各级光谱会重叠
而产生干扰。
C. 吸收池
吸收池用于盛放分析试样,一般有石英和玻璃材料两种。石英池 适用于可见光区及紫外光区,玻璃吸收池只能用于可见光区。为减 少光的损失,吸收池的光学面必须完全垂直于光束方向。在高精度 的分析测定中(紫外区尤其重要),吸收池要挑选配对。因为吸收 池材料的本身吸光特征以及吸收池的光程长度的精度等对分析结果 都有影响。紫外光谱仪吸收池恰好安排在光电转换前。
E. 信号指示系统 它的作用是放大信号并以适当方式指示或记录下来。 常用的信号指示装置有直读检流计、电位调节指零装置 以及数字显示或自动记录装置等。很多型号的分光光度 计装配有微处理机,一方面可对分光光度计进行操作控 制,另一方面可进行数据处理。 总 结 :
钨灯卤素灯 或氘灯
棱镜或光栅, 玻璃或石英
3. π → π*跃迁 有机分子中的C=C键和C=O键都属这类。它需要的能量低于σ→σ*跃迁, 吸收峰一般处于近紫外光区,在200 nm左右,其特征是摩尔吸光系数大,一 般εmax≥104,为强吸收带。如乙烯(蒸气)的最大吸收波长λ max为162 nm。 K带 4. n →π*跃迁 既含有C=C键,又含有杂原子的有机分子。这类跃迁发生在近紫外光区。 它是简单的生色团如羰基(280-310nm)、硝基等中的孤对电子向反键轨道 跃迁。其特点是谱带强度弱,摩尔吸光系数小,通常小于100,属于禁阻跃 迁。R带 5. 电荷迁移跃迁 用电磁辐射照射化合物时,电子从给予体向与接受体相联系的轨道上跃 迁。因此,电荷迁移跃迁实质是一个内氧化-还原的过程,而相应的吸收光 谱称为电荷迁移吸收光谱。 例如,某些取代芳烃可产生这种分子内电荷迁移跃迁吸收带。谱带较宽, 吸收强度较大, ε max可大于104 。
• 按用途分: 常用比色池 0.5, 1.0, 1.5, 2.0厘米 微 量 池 0.5毫升以下 流 动 池 5-11微升
D. 光检测系统
检测器,用于检测光信号。利用光电效应将光强度信 号转换成电信号的装置,也叫光电器件。 常用的光检测系统主要有光电池、光电管和光电倍增 管。
几种光检测器性能的比较
玻璃或 石英比 色皿
光电池 或光电 管
对数转 换或不 转换
模拟或数字, 微机处理与 否
光源
单色器 比 色 皿
检测器
放大器
显示
稳压电源
• 分光光度计的类型
单光束分光光度计
0.575
光源
单色 器 吸收 池
检测 器
显 示
特点是:结构简单,价格便宜。主要适用于定量分析,而不适用于作定性 分析。另外,结果受电源的波动影响较大。
光电池:用半导体材料制成的光电转换器。用得最多的是 硒光电池。其结构和作用原理
硒光电池
光电管:它是在抽成真空或充有惰性气体的玻璃或石英 泡内装上2个电极构成,其结构如图:
1 是光电管的阳极,它由 一个镍环或镍片组成; 2 是光电管的阴极,它由 一个金属片上涂一层光敏 物质构成,如涂上一层氧 化铯。涂上的光敏物质具 有这样一个特性:当光照 射到光敏物质上时,它能 够放出电子; • 光电效应的原理:当一定强度的光照射到阴极上时, 3 为电池,其作用是在阴、 光敏物质要放出电子,放出电子的多少与照射到它的 阳极之间加上一电压; 光的大小成正比,而放出的电子在电场的作用下要流 4 为放大器,放大由光电 向阳极,从而造成在整个回路中有电流通过。而此电 管产生的电信号; 流的大小与照射到光敏物质上的光的强度的大小成正 比。
棱镜有玻璃和石英两种材料。它们的色散原理是依据不同波长的光通 过棱镜时有不同的折射率而将不同波长分开。 由于玻璃会吸收紫外光,所以玻璃棱镜只适用于350~3200nm的可见和 近红外光区波长范围。 石英棱镜适用的波长范围较宽,为185~4000nm,即可用于紫外、可见、 红外三个光谱区域。
光栅是利用光的衍射和干涉作用制成的。它可用于紫外、可见和近红
B. 分光系统
分光系统也叫单色器。 单色器是能从光源辐射的复合光中分出单色光的光学装置, 其主要功能:产生光谱纯度高的光波且波长在紫外可见区域 内任意可调。 能起分光作用的色散元件主要是棱镜和光栅。 a. 性能要求: ⑴ 高效能 ⑵ 宽波长范围 ⑶ 容易调节波长 ⑷ 好的波长精度和重现性 ⑸ 高的光谱纯度 ⑹ 好的机械稳定性
分子能级的能量间隔各异,因此不
同物质将选择性地吸收不同波长或
能量的外来辐射,这是UV-Vis定性 分析的基础。
苯蒸气的吸收曲线
2. 紫外-可见光谱的仪器原理
2.1. 紫外吸收仪器原理图
以下分别是单光束、双光束分光光度计的示意图以及仪器照片
2.2 仪器部件介绍
0.575
光源
单色器
检测器
显示 器
吸收池
光电池 Photocells 波长(nm) Wavelength 响应速度(s) Speed of response 灵敏度 Sensitivity 400~750 慢 低
光电管 Phototubes 190~650(蓝敏) 600-1000(红敏) 约 10-8 105~106
光电倍增管 Photomultipliers 180~900 10-9 108~109
1.2 1
Absorbance (AU)
0.8
0.6
231
0.4
0.2
0 200 300 400 500 600 Wavelength (nm)
横坐标:波长(nm)纵坐标:A, K, e, loge, T% 最大吸收波长:λmax 最大吸收峰ε值: εmax 例:丙酮: λ max = 279nm (ε=15)
相关文档
最新文档