中考数学总复习知识点总结实数

合集下载

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。

2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。

★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

数轴 1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。

中考数学实数总复习

中考数学实数总复习

专题基础知识回顾一实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如 (m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.5.无理数的比较大小:利用平方转化为有理数:如果 a>b>0,a2>b2 a>b ;或利用倒数转化:如比较与 .知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a乘法交换律:ab=ba知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路. 经典例题精析考点一、实数概念及分类1. (2010上海)下列实数中,是无理数的为()思路点拨:考查无理数的概念.2.下列实数、sin60°、、、3.14159、、、中无理数有( )个总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:【答案】b,603,6n+3考点二、数轴、倒数、相反数、绝对值4.(2010湖南益阳)数轴上的点a到原点的距离是6,则点a表示的数为()思路点拨: 数轴上的点a到原点的距离是6的点有两个,原点的左边、右边各有一个。

中考数学知识点总结(最全)

中考数学知识点总结(最全)

中考数学知识点总结第一章实数考点一、实数的概念及分类(有理数、无理数)考点二、实数的倒数、相反数和绝对值考点三、平方根、算数平方根和立方根考点四、近似数、有效数字和科学记数法考点五、实数大小的比较考点六、实数的运算(做题的基础,分值相当大)考点七、实数的综合与创新第二章代数式考点一、整式的概念与运算考点二、分式考点三、多项式考点四、求代数式的值考点五、因式分解考点六、二次根式考点七、代数式的综合与创新第三章不等式与不等式组考点一、不等式的概念考点二、不等式基本性质考点三、一元一次不等式考点四、一元一次不等式组考点五、列不等式(组)解应用题考点六、不等式的综合与创新第四章方程与方程组考点一、一元一次方程的概念考点二、一元二次方程考点三、一元二次方程的解法考点四、一元二次方程根的判别式考点五、一元二次方程根与系数的关系考点六、分式方程考点七、二元一次方程组考点八、方程的综合与创新第五章函数及其图像考点一、平面直角坐标系考点二、不同位置的点的坐标的特征考点三、函数及其相关概念考点四、正比例函数和一次函数考点五、反比例函数考点六、二次函数的概念和图像考点七、二次函数的解析式考点八、二次函数的最值考点九、二次函数的性质考点十、函数的综合与创新第六章统计与概率考点一、平均数、众数、中位数考点二、统计学中的几个基本概念考点四、方差与极差考点五、频率分布考点六、确定事件和随机事件考点七、随机事件发生的可能性考点八、确定事件和随机事件的概率之间的关系考点九、古典概型考点十、列表法求概率考点十一、树状图法求概率考点十二、利用频率估计概率考点十三、统计图考点十四、调查方式与随机事件考点十五、概率的计算与实际应用考点十六、统计与概率的综合与创新第七章图形的初步认识与三角形考点一、角与线考点二、三角形的概念与全等三角形考点三、等腰三角形与直角三角形考点四、命题、定理、证明考点五、投影与视图考点六、三角形的综合与创新第八章全等与相似考点一、比例线段考点二、平行线分线段成比例定理考点三、相似三角形考点四、全等与相似的综合与创新第九章四边形考点一、四边形的相关概念考点二、平行四边形考点三、矩形考点四、菱形考点五、正方形考点六、梯形考点七、四边形的综合与创新第十章解直角三角形考点一、直角三角形的性质与判定考点二、勾股定理考点三、锐角三角函数的概念与解直角三角形考点四、解直角三角形的实际应用考点五、解直角三角形的综合与创新第十一章圆考点一、圆的概念与性质考点二、过三点的圆考点三、直线与圆的位置关系考点四、圆和圆的位置关系考点五、三角形的内切圆考点六、正多边形和圆考点七、与正多边形有关的概念(对称性)考点八、圆的弧长及扇形面积考点九、圆的综合与创新第十二章图形的变换考点一、对称考点二、平移与旋转考点三、中心对称考点四、位似的概念、性质、画法、判定考点五、图形变换的综合创新、。

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。

其中,既不属于正数也不属于负数的数是零。

无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。

有理数包括正有理数、负有理数和零。

负无理数和正无理数的定义很明确。

2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。

3.数轴有三个要素:原点、正方向和单位长度。

实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。

4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。

5.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。

知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。

数轴上的每个点都对应着一个实数,反之亦然。

3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。

a的倒数是1/a(a≠0)。

6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。

确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。

7.近似数是一个与实际数值很接近的数。

它的精确度由四舍五入到哪一位来决定。

例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。

中考数学知识点总结大全

中考数学知识点总结大全

中考数学知识点总结大全初三数学知识点第一章实数重点实数的有关概念及性质,实数的运算内容提要一、重要概念1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。

4.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从左到右(如5 C.(有括号时)由小到中到大。

三、应用举例(略)附:典型例题1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。

初三数学知识点第二章代数式重点代数式的有关概念及性质,代数式的运算内容提要一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

初三 数学中考总复习 --实数

初三 数学中考总复习 --实数

第一章实 数1-1:实数的相关概念 知识要点:1、有理数:整数和分数统称为有理数。

2、无理数:无限不循环的小数,叫做无理数。

注意:有限小数和无限循环小数均能化成分数,属于有理数。

3、实数:有理数与无理数统称为实数。

正数:大于0的数,记为:0a >; 负数:小于0的数,记为:0a <; 0既不是正数,也不是负数。

4、实数的分类(按定义): 实数的分类(按正负性):0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数负整数有理数实数正分数分数负分数无理数:无限不循环的小数0⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数负整数负有理数负实数负分数负无理数 5、数轴:规定了原点、正方向和单位长度的一条直线,叫做数轴。

①实数与数轴上的点成一 一对应关系;②通常情况下,数轴上,右边的数总大于左边的数;正数大于0,负数小于0 ,正数大于负数,在负数中,绝对值大的数反而小,在正数中,绝对值大的数较大。

6、相反数:只有符号不同的两个数,叫做互为相反数,0的相反数是0,相反数的和为0。

注意:① a a -与一定互为相反数;② 若a b 与互为相反数,则:0a b +=; ③ 表示相反数的两个点关于原点对称。

7、倒数:乘积为1的两个数互为倒数。

注意:① 0没有倒数;1的倒数是1,-1的倒数是-1;② 1(0)a a a ≠与互为倒数,即:11a a⋅=;8、绝对值:在数轴上,表示一个数的点距原点的距离,叫做这个数的绝对值,记为 a 。

正数和0的绝对值是它本身;负数的绝对值是它的相反数。

即:(0)(0)a a a a a ≥⎧=⎨-<⎩任何一个实数的绝对值都是非负数,即:0a ≥;非正数:负数和0,即:0a ≤; 非负数:正数和0,即:0a ≥; 注意:11,10,1a a a a -=--≥≥则:即:;22,20,2a a a a -=--≥≤则: 即:。

中考冲刺实数概念与运算知识点总结

中考冲刺实数概念与运算知识点总结

实数的概念与运算知识点总结一、实数及其分类:1、有理数:整数和分数统称为有理数;2、无理数:无限不循环小数叫无理数;特别提示:常见的几种无理数:(1)根号型:如2,8等开方开不尽的数;(2)一些三角函数,如sin60º,tan30º;(但sin30º,tan45º等能算出具体数值的不是无理数);(3)构造性:如0.1010010001….等;(4)π及含π数:如7π;π-33、正负数:大于0的数叫正数,表示为a ﹥0;在正数前面加一个“﹣”的数叫负数,如﹣∣﹣5∣,负数都小于0,表示为a ﹤0。

切记0既不是正数也不是负数。

4、实数的定义:有理数和无理数统称为实数5、实数的分类:(1)按定义分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限循环或无限循环小负分数正分数分数负整数正整数整数有理数0 (2)按正负分类实数⎪⎩⎪⎨⎧负实数正实数0例:二、实数的相关概念:1、数轴:(1)定义:规定了原点、正方向、单位长度的直线叫做数轴。

特别提醒:①数轴有三要素:原点、正方向、单位长度。

②原点的确定和单位长度的大小,可根据各题的实际需要,灵活选取。

③同一数轴上的单位长度必须统一,不能出现同样的长度表示不同的数量。

(2)数轴的画法:①画一条直线;②在直线上选取一点为原点,并用该点表示0(在原点下表“0”);③确定正方向;,④选取适当的长度作为单位长度,向右一次表示为1,2,3,2…,向左表示为﹣1,﹣2,﹣5…(3)数轴的应用:2、相反数:(1)定义:只有符号不同的两个数叫做互为相反数。

特别提示:①“只有”指符号以外完全相同。

②相反数是成对出现的,是相互的。

(2)相反数表示法:一般地a 的相反数是a ;a+b 的相反数是-a-b;a-b 的相反数是b-a;a-b+c 的相反数是b-a-c ;特别地,0的相反数是0(3)相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等,且关于原点对称。

中考数学复习《实数的运算及大小比较》

中考数学复习《实数的运算及大小比较》



1
1
.
4
2.化简: - 3.140 2 - 2 2 - 8 3 1 .
2
3.计算:
3
-1
2019-
0
- 6tan30
1
1
3
64.
2
4.计算:1
2

1 6

1 12

.


1
nn
1
.




1.对于涉及到乘方、零指数幂、负整数指数幂、 特殊角三角函数值、二次根式的运算,应先将每 部分正确化简,再按实数的运算法则求得结果;
2.对于规律性试题,应先找出规律后再计算.
类型2 实数大小的比较
例2 下列实数 :3,0 ,-3,4.25,- 2 2 ,其中 最小的实数是( B )
A. 0
B. -3
C. 3
D. - 2 2
解析:先比正负,因为是选最小的实数,因此再 比两个负数的平方.-3,- 2 2的平方分别是9和8, 所以-3最小.
计算:2 sin 60 3 3 20 1 1 .
2
解: 2 sin 60 3 3 20 1 1 .
2 2 3 3- 3 1-2
2
=2.
练 一练
1.计算:
-
4


-
20190
-
2
sin
30
因此,㏒1001000=
㏒1010³ ㏒1010²




读懂概念或法则,并将其正确应用到所求问题, 是解决新概念问题的关键.
巩固提升

中考数学复习《实数的有关概念》

中考数学复习《实数的有关概念》

(C)
类型4
规律探究题
例6 (2018•益阳)小李用围棋排成下列一组有规律
的图案,其中第1个图案有1枚棋子,第2个图案有3 枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋 子……那么第9个图案的棋子数是 13 枚.

( 1) ( 2) ( 3) ( 4) ( 5)

( 1) ( 2)
( 3) ( 4) ( 5)
且到原点的距离 相等 .
3.乘积为 1 的两个数互为倒数. 倒数是它本身, 0 没有倒数.
1和-1 的
4.在数轴上,表示数a的点与 原点的距离 ,
称为数a的绝对值,记作 |a| , |a| ≥ 0.
当a≥0时,|a|= a ;当a≤0时,|a|= -a 5. 有理数 和 无理数 统称为实数. 其中, 整数 和 分数 是有理数, 无限不循环小数 是无理数. .
解 设第n个图形有an个棋子,观察得出:
a1=1,a2=3×1,a3=4=3×1+1,a4=6=3×2,
a5=7=3×2+1,… 发现 当n为奇数时,an=3k+1(其中n=2k+1)
当n为偶数时,an=3(k+1)(其中n=2k+2) ∴当n=9时,9=2k+1,解得k=4,
∴a9=3×4+1=13.
考点2
近似数与科学记数法
1.科学记数法:
把一个绝对值大于1的数写成 a×10n ,n比原来的
数的整数部分少 1 ;把一个绝对值小于1的数写 -n a × 10 成 ,n等于原来的数从左边数起第一个非
零数字前面的零的个数.其中,1≤|a|<10.
2.近似数:
一个数四舍五入到哪一位,就称这个数精确

中考数学知识点:实数的性质

中考数学知识点:实数的性质

中考数学知识点:实数的性质数学实数知识点篇一1、平方根如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。

a的算术平方根记为,读作“根号a”,a叫做被开方数。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。

求一个数a的平方根的运算,叫做开平方。

2、立方根如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。

求一个数的立方根的运算,叫做开立方。

3、实数无限不循环小数又叫做无理数。

有理数和无理数统称实数。

一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。

数学实数知识点篇二无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

数学中考复习必背知识点

数学中考复习必背知识点

数学中考复习必背知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!数学中考复习必背知识点数学中考复习必背知识点归纳即将中考,怎么熟背各科目的知识呢?初中生学习数学要注意知识点的总结,为了方便大家学习借鉴,下面本店铺精心准备了数学中考复习必背知识点内容,欢迎使用学习!数学中考复习必背知识点1实数的知识点1、数轴------规定了原点、正方向、单位长度的直线,叫做数轴。

(完整版)中考数学实数知识点汇总

(完整版)中考数学实数知识点汇总

中考数学实数知识点汇总一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数1、有理数:任何一个有理数总可以写成的形式,其中p 、q 是互质的整数,这是有理q p数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定结构的不限环234无限小数,如1.101001000100001……;特定意义的数,如π、°等。

45sin 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数a+b=0⇔2、倒数:(1)实数a (a≠0)的倒数是;(2)a 和b 互为倒数;(3)注意0没有倒a 1⇔1=ab 数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a≥0,称叫a 的平方根,叫a 的算术平方根。

a ±a (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:叫实数a 的立方根。

3a (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

中考数学3实数——实在的数

中考数学3实数——实在的数

实数
第三节:实数
一、总结第一、第二内容:
以上两节内容辨析了两个概念。

至此,在引入无理数后便可以解决如下的问题:
比如在度量长度的过程中只用有理数是表示不了√2,√5,√8,√33,√63,√93,0.123456789101112……这一类真实存在的长度的。

引入无理数后,√2,√5,√8,√33,√63,√93
,0.123456789101112……这一类真实存在的长度,直至数轴上所有的点(用方向和距离原点长度表示)都可以用无理数或者有理数来表示了,所以我们完全可以把无理数和有理数理解为“实在的数”。

二、有理数和无理数统称为“实数”
1、可以这样理解“实数”:比如上边长度测量中实实在在存在的长度(√
2、1
7之类)表示的数,而这些数可分为两类:一类为有理数、一类为无理数,它们共同构成了实数的集合。

2、数轴上的点和实数存在一一对应关系(数轴上能找到表示实数的对应点,数轴上的点同样能对应一个实数)——即实数占满了数轴。

三、学习中要注意的一点:
与物理、化学等其它需要试验支持结论的学科不同(实验中的数据处理往往
取尽可能准确的近似值),数学是经过严密的论证,和精确的求解得到的结果,所以在解答题目的时候常常用如√2,√33,π或者有理数当中的13,27这样的准确数值,而不用近似的小数值(除非题目本身有要求取近似值)。

2024年中考数学总复习第一部分考点精讲第一单元数与式第1课时实数

2024年中考数学总复习第一部分考点精讲第一单元数与式第1课时实数

命题点 1 实数的相关概念8年7考
1. (2023广东1题3分)负数的概念最早出现在我国古代著名的数学
专著《九章算术》中.如果把收入5元记作+5元,那么支出5元
记作( A )
A. -5元
B. 0元
C. +5元
D. +10元
第1课时 实 数
2. (2022广东1题3分)|-2|=( B )
1
A. -2
分类 常用正负数表示两种具有_相__反__意__义__的量,如“+5” 表示向东5米,则“-5”表示_向__西__5_米__
第1课时 实 数
返回目录
表示方法及三要素: 数轴
性质: _实__数__与数轴上的点是一一对应的
实数的相
a(a>0) 即|a|具有非负性
关概念
|a|= 0(a=0) 注:绝对值最小的实数
平方根为0 4.平方根等于它本身的数是0;算
立方根 实数a的立方 术平方根等于它本身的数是0,1; 根为_3_a__ 立方根等于它本身的数是0,±1
第1课时 实 数
返回目录
数轴比较法:数轴上两个点表示的数,右边的点表
示的数总比左边的点表示的数_大__
类别比较法:正数>0>负数;两个负数比较大小, 实数的大 绝对值大的反而小
3.π及化简后含有π的数:如__3__,_π_+__1_等(负面清单)
4.有规律的无限不循环小数:如0.101 001…(相邻两个1
之间依次多一个0)等
1、2、3答案不唯一
第1课时 实 数
返回目录
按大小分:正数、0、负数(既不是正数也不是负数的 实数的 数是__0_;非负数包括_正__数__和__0_)
算 = __4__(口诀:倒底数,反指数)

8年级数学实数中考内容总结

8年级数学实数中考内容总结

8年级数学实数中考内容总结
8年级数学实数中考内容总结:
1. 整数运算:包括整数加减乘除的计算,以及整数的混合运算。

2. 分数与小数:分数与小数的相互转化,分数的加减乘除运算,分数的约分与化简。

3. 实数范围的确定:实数的范围确定,例如在数轴上表示区间、绝对值等。

4. 整式的加减乘除:整式的加减乘除运算,包括整式的合并同类项、分配率等。

5. 方程与不等式:一元一次方程的解法,一元一次不等式的解法,以及方程和不等式的应用。

6. 百分数与比例:百分数与小数的相互转化,比例的应用,解决实际问题。

7. 有理数的乘方和开方:有理数的乘方与开方的计算,特别是平方根的计算。

8. 平面图形的性质:平面图形的性质和计算,例如矩形的面积和周长,三角形的面积和周长。

9. 直角三角形和勾股定理:直角三角形的性质和计算,勾股定
理的应用。

10. 统计与概率:数据的收集和整理,统计图表的构造和分析,概率的基本概念和计算。

以上是8年级数学实数中考内容的总结,希望对你有帮助!。

中考数学必背知识点(完整版)

中考数学必背知识点(完整版)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的,分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的,形式,其中p 、q 是互质的,整数,这是有理数的,重要特征。

2、无理数:初中遇到的,无理数有三种:开不尽的,方根,如2、34;特定结构的,不限环无限小数,如1.101001000100001……;特定意义的,数,如π、45sin °等。

3、判断一个实数的,数性不能仅凭表面上的,感觉,往往要经过整理化简后才下结论。

二、实数中的,几个概念1、相反数:只有符号不同的,两个数叫做互为相反数。

(1)实数a 的,相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的,倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的,绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的,绝对值是一个非负数,从数轴上看,一个实数的,绝对值,就是数轴上表示这个数的,点到原点的,距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的,实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的,平方根,a 叫a 的,算术平方根。

(2)正数的,平方根有两个,它们互为相反数;0的,平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的,立方根。

(4)一个正数有一个正的,立方根;0的,立方根是0;一个负数有一个负的,立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的,直线称为数轴。

原点、正方向、单位长度是数轴的,三要素。

中考数学总复习知识点总结实数

中考数学总复习知识点总结实数

中考数学总复习知识点总结实数一、实数的基本概念:1.自然数、整数、有理数和无理数。

2.实数的刻画方法:小数法和不循环小数法。

二、实数间的关系:1.实数的大小比较:大于、小于和等于。

2.实数的绝对值。

3.同号数相加、异号数相减。

4.实数的加法和乘法。

5.实数的分数乘法运算法则。

6.实数的倒数运算。

三、实数的性质:1.实数的交换律、结合律和分配律。

2.实数的乘法对加法的分配律。

3.非零实数的乘法逆元。

四、实数的运算性质:1.实数的四则运算:(1)实数的加法和减法运算。

(2)实数的乘法和除法运算。

(3)实数的乘方运算。

(4)实数的开方运算。

2.实数的运算性质:(1)实数的加法的封闭性。

(2)实数的乘法的封闭性。

(3)实数的加法和乘法的结合律、交换律和分配律。

(4)零的性质。

(5)1的性质。

(6)负数的性质。

(7)正数的性质。

五、无理数的性质:1.无理数的定义。

2.无理数的性质:(1)无理数表示法的唯一性。

(2)无理数的大小比较。

(3)无理数的四则运算。

(4)无理数的乘方和开方运算。

六、实数的表示:1.实数的方差和数轴表示法。

2.实数的有理数和无理数判断方法。

七、实数的乘方:1.正整数指数幂的运算和性质。

2.零指数幂和负整数指数幂的运算和性质。

3.实数指数幂的运算和性质。

4.乘方结果和指数的大小关系。

八、实数的开方:1.开方的定义和性质。

2.完全平方数和完全平方根。

3.开方的运算规则。

4.无理数的开方运算。

九、实数的运算应用:1.实数运算在方程和不等式中的应用。

2.实数运算在几何中的应用。

3.实数运算在实际问题中的应用。

以上是中考数学总复习知识点总结:实数的内容,希望对你的学习有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 实数
考点一、实数的概念及分类 (3分)
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如32,7等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如
3
π+8等; (3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60°等 考点二、实数的倒数、相反数和绝对值 (3分)
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数
如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)
1、平方根
如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±
”。

2、算术平方根
正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a
==a a 2 ;注意a 的双重非负性:
-a (a <0) a ≥0
3、立方根
如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数 (3—6分)
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法
把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较 (3分)
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,
,0b a b a >⇔>-
,0b a b a =⇔=-
b a b a <⇔<-0
(3)求商比较法:设a 、b 是两正实数,;1;1;1b a b
a b a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

考点六、实数的运算 (做题的基础,分值相当大)
1、加法交换律 a b b a +=+
2、加法结合律 )()(c b a c b a ++=++
3、乘法交换律 ba ab =
4、乘法结合律 )()(bc a c ab =
5、乘法对加法的分配律 ac ab c b a +=+)(
6、实数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

相关文档
最新文档