kv雷电冲击电压发生器

合集下载

110KV冲击电压发生器

110KV冲击电压发生器
T1 AC V K R0 D C T2 D R0 G0 R0 1 C R G C 4 R C R G C rt 6 3 R C R G C rt 8 5 R C R G C rt 10 7 R C G’ C2 9
rt
2
rf
rt
ห้องสมุดไป่ตู้
rf
rf
rf
rf
图 2 1000kV 冲击电压发生器电路图
图中 T1 :单相调压器; T2 :试验变压器;D1,D2:高压整流硅堆; r :保护 电阻; R :充电电阻; Rt :波头电阻; R f :波尾电阻; C1 :各级电容; C : 负荷电容; CT 2 、 CT 2 :弱阻尼电容分压器的高压臂电容; CE :弱阻尼电容分压 器的低压臂电容; : RT 1 、 RT 2 分压器高压臂的弱阻尼电阻; S 0 :点火球隙; S1 、
(二) 设计要求
1. 冲击电压发生器规范
DL/T848《高压试验装置通用技术条件》第5部分:冲击电压发生器部分规 定了冲击电压发生器装置(以下简称装置)的产品分类、技术要求、试验方法、 检验规则及标志、包装、运输和贮存。适用于额定电压为300kV~4700kV,额定 能量为5kJ~480kJ的冲击电压发生器装置的制造、使用的维修。 根据该规范,冲击电压发生器主要技术要求有: 1. 输出标准雷电冲击电压输出电压波形应符合GB/T 16927.1的规定: a)波前时间1.2µs,允许偏差± 30%; b)半峰值时间50µs,允许偏差± 20%, c)峰值允许偏差± 3%。 2. 输出标准雷电冲击截波波形应特合GB/T 16927.1的规定:
G C0 Rt
Rf Cf Cx
图1: 冲击电压发生器原理图
图中C0:主电容;G:隔离间隙;Rf:波前电阻;Rt:波尾电容;Cf:波前 电容;Cx:被试品。

雷电冲击电压发生器的特点有哪些 发生器如何操作

雷电冲击电压发生器的特点有哪些 发生器如何操作

雷电冲击电压发生器的特点有哪些发生器如何操作雷电冲击电压发生器紧要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。

多种波形冲击电压发生器可雷电冲击电压发生器紧要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。

多种波形冲击电压发生器可产生标准雷电波、操作波、雷电截波、振荡雷电波、振荡操作波、线路绝缘子陡波、合成绝缘子陡波和变压器感应操作波共八种冲击电压波形,技术指标符合国家标准和IEC标准的规定。

产品特点:回路电感小,并实行带阻滤波措施,在大电容量负载下能产生标准冲击波,负载本领大;电压利用系数高,雷电波和操作波分别不低于85%和80%;调波便利,操作简单,同步性能好,动作牢靠;接受恒流充电自动掌控技术,自动化程度高,抗干扰本领强;成套装置:冲击电压发生器本体、充电装置、弱阻尼电容分压器、多球截波或单球截波装置、陡波装置、陡波分压器、掌控台和测量装置。

能产生:标准雷电波、操作波、雷电截波、振荡雷电波、振荡操作波、线路绝缘子陡波、合成绝缘子陡波、变压器感应操作波等八种冲击电压波形雷电冲击电压发生器额定参数值标称电压:±900kV级电压:±150kV额定能量:21.9kJ每级主电容:0.325μF150kV(单台脉冲电容器0.65μF/75kV)冲击总电容:0.05417μF总级数:6级负荷电容:300—2000PF以下能产生以下几种波形1、标准雷电冲击电压全波,±1.2/50μs电压利用系数>90%(空载);波头时间1.2±30%微秒,波尾时间50±20%微秒。

2、1000~1500V/nS合成绝缘子陡波冲击电压,最大幅值600kV。

3、盘形悬式绝缘子2.8p.u.4、针式绝缘子2.0p.u.5、柱式绝缘子2.3p.u.这几种冲击电压波形参数及其偏差均符合有关国家GB311及GB16927标准的要求。

雷电冲击电压发生器原理 波头波尾电阻

雷电冲击电压发生器原理 波头波尾电阻

雷电冲击电压发生器原理1. 概述雷电是自然界中常见的电现象,其强大的能量往往会对人类的生产生活造成严重的影响。

为了防止雷电对设备和建筑物造成损害,人们发明了各种防雷设备,其中就包括雷电冲击电压发生器。

本文将重点介绍雷电冲击电压发生器的原理以及其在防雷领域的应用。

2. 雷电冲击电压发生器的作用我们需要了解雷电冲击电压发生器在防雷领域的作用。

雷电冲击电压发生器是一种专门用于防雷的设备,其主要作用是在雷电冲击发生时把电压分配到耐雷设备上,从而避免雷击对设备造成损害。

3. 雷电冲击电压发生器的原理雷电冲击电压发生器的工作原理主要包括两个方面:波头电阻和波尾电阻。

4. 波头电阻波头电阻是指在雷电冲击发生时,电压波前的电阻,其作用是降低电压的波峰,从而减小雷电冲击对设备的影响。

波头电阻需要具备高强度、高频率响应和快速放电的特点,用于消耗雷电冲击的能量,保护被保护设备的安全。

5. 波尾电阻波尾电阻是指在雷电冲击后的电压波尾的电阻,其作用是将残余的电压波尾导向接地,以确保雷电冲击后设备的安全。

波尾电阻需要具备高功耗、高耐压、高放电容量和长寿命等特点,用于将电压波尾慢速放电,保障设备不受雷电冲击的损坏。

6. 雷电冲击电压发生器的应用雷电冲击电压发生器在工业、建筑、交通等领域都有广泛的应用。

例如在电力系统中,雷电冲击电压发生器可以保护变压器、线路等设备免受雷电冲击的影响;在建筑领域中,它可以抵御雷电对建筑物的损害;在交通领域中,它可以保护信号设备、通信设备等免受雷击的影响。

7. 结语雷电冲击电压发生器作为一种重要的防雷设备,其原理及应用对防止雷击对人类生产生活造成的损失具有重要意义。

通过了解其原理和应用,我们可以更好地了解防雷设备的工作原理,提高防雷设备的使用效果。

希望本文对读者有所帮助,多谢关注。

8. 雷电冲击电压发生器的发展趋势随着科技的不断发展,雷电冲击电压发生器的技术也在不断进步。

未来,人们对雷电冲击电压发生器提出了更高的要求,希望其在防雷领域能够有更加广泛和深远的应用。

冲击电压发生器功能、波形介绍

冲击电压发生器功能、波形介绍

电力系统中的高压电气设备在投入运行之前需要进行冲击电压试验来检验其在过电压作用下的绝缘性能。

随着电力科技的发展,需要进行冲击电压试验的试品种类日益增多。

冲击电压发生器是一种产生脉冲波的高电压发生装置。

原先它只被用于研究电力设备遭受大气过电压(雷击)时的绝缘性能,后来又被用于研究电力设备遭受操作过电压时的绝缘性能。

所以对于冲击电压发生器,要求不仅能产生出现在电力设备上的雷电波形,还能产生操作过电压波形。

冲击电压的破坏作用不仅决定于幅值,还与波前陡度有关。

对某些设备还要采用截断波来进行试验。

此外,冲击电压发生器还可用来作为纳秒脉冲功率装置的重要组成部分;在大功率电阻束和离子束发生器以及二氧化碳激光中,可作为电源装置。

根据实测,雷电波是一种非周期性脉冲,它的参数具有统计性。

他的波前时间(约从零上升到峰值所需时间)为0.5μs~10μs,半峰值时间(约从零上升到峰值后又降到1/2峰值所需时间)为20μs~90μs,累积频率为百分之50的波前和半峰值时间约为1.0μs~1.5μs和40μs~50μs。

操作冲击电压波的持续时间比雷电冲击电压波长得多,形状比较复杂,而且他的形状和持续时间,随线路的具体参数和长度的不同而有异,不过目前国际上趋向于用一种几百微秒波前和几千微秒波长的长脉冲来代表它。

雷电波又可分全波和截波两种。

截波是利用截断装置把冲击电压发生器产生的冲击波突然截断,电压急剧下降来获得。

截断的时间可以调节,或发生在波前或发生在波尾。

为了保证多次试验结果的重复性和各试验间试验结果的可比性,对波形及波形定义应有明确规定。

为此国际电工委员会和国家标准规定了标准雷电冲击全波及截波的波形和标准操作冲击电压波形,如图1至图4所示。

图1:雷电冲击电压全波图1中0为原点。

有时用示波器摄取到的波形,在0点附近往往模糊不清,或是有起始之振荡。

在产生冲击电压的发生器内电感大时,波形起始处也可能有一小段较为平坦。

此时波形的原点(起始点)在时间轴上不容易确定。

GDCY-2400kV-360kJ冲击电压发生器技术方案2019.01.22

GDCY-2400kV-360kJ冲击电压发生器技术方案2019.01.22

GDCY-2400kV/360kJ冲击电压发生器技术方案一、使用范围:GDCY系列冲击测试系统能够产生冲击电压用于模拟雷击和开关浪涌。

级能量范围在2.5-1620千焦。

最大放电电压为100-7200千伏..产品不仅满足IEC,ANSI/IEEE等国际标准,还满足其他国家的国家标准。

基本系统可以用不同的方式容易地进行升级,以满足各种特殊的试验。

大量的附加电路和配件都可以用来优化冲击测试系统以便其测试不同的被试品。

发生器以其独特性的,模块化的以及专有的完美结构适用于运输以及在线安装。

其内部的回路电感被做得非常的小。

二、系统配置:三、适用标准:IEC60060-1/2/3 高压测试技术IEC60076-1/2/3/4/6 电力变压器IEC61083-1/2 在高压脉冲试验中测量用的仪器和软件IEC60243-1 绝缘材料电气强度IEC60099-1-4 避雷器IEC61010-1-2-3 测量,控制和实验室用电器设备的安全要求GB7449-87 电力变压器和电抗器的雷电冲击和操作冲击试验导则ZBF24001-90 冲击电压测量实施细则GB311.1-1997 高压输变电设备的绝缘配合GB/T16927.2-1997 高压试验技术(测量系统)GB/T16896.1-1997 高电压冲击试验用数字记录仪GB/T3048.13-92 电线电缆冲击电压试验方法GB4704-92 脉冲电容器及直流电容器四、冲击电压测试系统工作条件:海拔高度: ≤1000 m高压部件的极限温度: - 5℃~+45℃非冷凝条件下周围的相对湿度: ≤90% (at 20℃)使用环境: 室内抗震强度: ≤7.5 级需有可靠的接地点,接地电阻: ≤ 0.5Ω五、冲击电压测试系统2400kV/360kJ技术参数:结构型式: H额定输入电压: 0.4kV额定输入电流: 125A额定输入频率: 50/60Hz额定冲击电压: ±2400 kV (1.2/50μS)额定级充电电压: ±200kV额定充电时间(0-100%): <90s额定冲击容量: 125nF (每个电容3μF/100kV)级数: 12级容量: 1.5μF额定能量: 360kJ级能量: 30 kJ电容器寿命: 100000次全电压充放电运行时间: 在100%额定电压下, 设备可持续运行. 波形参数:标准雷电波(LI): 1.2±30%/50±20%μS 满足IEC60060-2 标准转换波(SI): 250±20%μs /2500±60%μs雷电截波(LIC): 2-6us陡波:>2500kV/us最低输出电压: <10 %Un充电电压的不稳定性: <±1.0 %同步范围: >20%同步放电失控率: <2%点火范围: 10%~100%Un效率: LI: >85% (负载)LI: >90% (空载)SI: >70% (负载)SI: >75%(空载)冲击电压系统图纸:六、主要产品技术参数:1. 冲击电压发生器结构模式: H额定冲击电压: ±2400 kV额定级充电电压: 200kV额定冲击容量: 125nF (每个电容3μF/100kV)级数: 12级容量: 1.5μF额定能量: 360kJ级容量: 30 kJ波形: LI / SI满足IEC60060-2同步范围: >20%同步放电失控率: <2%点火范围: 10%~100%Un电容器寿命: 100000次全电压充放电运行时间: 在100%额定电压下, 设备可持续运行..结构特征:1.1 GDCY-2400kV/360kJ冲击电压发生器用H型结构电容器的每级都是由四个玻璃纤维所支撑,构成一个稳定的冲击电压发生器组件结构。

10KV配电电力电压选配200KV雷电冲击电压发生器_电力案例

10KV配电电力电压选配200KV雷电冲击电压发生器_电力案例

10KV配电电力电压选配200KV雷电冲击电压发生器_电力案例国网招投标资格预审越来越严格了,由于市场上部分供应商低价中标,低利润的情况下选择廉价的产品供货,各种电力变压器、绝缘子抽检不合格,投入使用中很快便出现质量问题。

面对这一连锁反应,又无法控制现有“低价中标”政策和评审办法,国家电网、南方电网、国电、华电等单位在招标资格预审上制定严格出厂检测标准,生产中质检车间没有强制性的检测产品和生产标准设备无法获得资质。

武汉汇卓电力为国内多家知名变压器生产商、开关成套设备厂供应专业检测设备。

推荐一款适用于10KV及以下空气间隙、电抗器开关、绝缘子串、套管、电力变压器和互感器等试品进行标准雷电冲击电压全波试验。

HZCJ-V -200KV冲击电压发生器试验装置-技术方案。

200KV雷电冲击电压发生器一般使用条件海拔高度:1000m;环境温度:-5℃~+40℃;相对湿度:90%;最大日温差:25℃;使用环境:户内;无导电尘埃;无火灾及爆炸危险;不含有腐蚀金属和绝缘的气体存在;电源电压的波形为实际正弦波,波形畸变率<5%200KV雷电冲击电压发生器遵循标准GB/T 311.1高压输变电设备的绝缘与配合GB/T 16927.1高电压试验技术第一部分一般试验要求GB/T 16927.2高电压试验技术第二部分测量系统 GB/T 16896.1 高电压冲击试验用数字记录仪JB/T 7616 高压线路绝缘子陡波冲击耐受试验DL/T 557高电压线路绝缘子陡波冲击试验、定义、试验方法和判据ZBF 22001冲击电压试验实施细则200KV雷电冲击电压发生器额定参数值1、标称电压:200kV2、额定级电压:100kV3、标称能量:10kJ4、冲击总电容:0.625微法(单台脉冲电容器2.5微法/50千伏,共4台).5、总级数:2级6、标准波形参数:(1) 标准雷电冲击电压全波,1.2/50s电压利用系数>85%(空载200PF时大于90%);冲击电压波形参数及其偏差均符合有关国家GB311及GB16927标准的要求。

(整理)冲击电压发生器说明书.

(整理)冲击电压发生器说明书.

HYJD—1200KV型冲击电压发生器使用说明书用户手册上海冠春电气有限公司目录一、概述:二、使用条件:三、主要技术参数:四、设备组成:五、使用方法:六、注意事项:七、日常维护:八、成套设备的主要部件:九、随机文件及附件:HYJD—1200KV系列冲击电压发生器说明书一、概述:用途及性能:系列冲击电压发生器主要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。

1200KV、2400KV和4800KV系列冲击电压发生器可产生标准雷电全波、操作波和雷电截波三种冲击电压波形,1200KV系列冲击电压发生器可产生标准雷电波、操作波、雷电截波、振荡雷电波、振荡操作波、线路绝缘子陡波、合成绝缘子陡波和变压器感应操作波共八种冲击电压波形,技术指标符合国家标准和IEC标准的规定,已通过鉴定,主要技术性能处于国内领先地位,达到国际同类产品的先进水平。

特点:1、成套装置配套完整,电压等级齐全。

2、冲击电压发生器回路电感小,并采取带阻滤波措施,在大电容负载下仍能产生标准冲击波,负载能力大。

3、电压利用系数高,雷电波和操作波分别不低于85%和80%。

4、调波方便,操作简单,同步性能好,动作可靠。

5、采用恒流充电自动控制技术,自动化程度高,抗干扰能力强。

6、成功开发冲击波形数字分析系统和冲击电压试验数据微机在线处理系统,大大提高了冲击电压试验技术水平和试验效率。

冲击电压发生器是产生冲击电压波的装置,用于检验电力设备耐受大气过电压和操作过电压的绝缘性能,冲击电压发生器能产生标准雷电冲击电压波形、雷电冲击电压截波,标准生操作冲击电压波形等及用户指定非标冲击电压波包括陡波。

本系列冲击电压发生器可对绝缘子串、长空气间隙、套管、互感器、变压器等试品进行冲击电压试验和其它科学研究。

HYJD系列冲击电压发生器主回路电路如下:HYJD-Ⅰ型图中:T:充电变压器D1 D2:高压硅整流器K1 K2:自动接地开关R01 R02 R03:充电保护电阻R1、R2:直流电阻分压器C P:耦合电容器R0:触发电阻C:主电容器R:充电电阻R´:充电箝位电阻R t R,t:波尾电阻R f R,f:波头电阻C´:充电兼操作波尾电阻R´f:操作波外波头电阻C1´C1´´:截波触发电容分压器C´s0:点火电容C0:串联放电球隙R0´:触发球箝位电阻G´0 :隔离球R0:分压器阻尼电阻C0 C0´:弱阻尼电容分压器C0´´:电容分压器低压臂C3:陡化电容r1:截波均压电容器的阻尼电阻C´1截波均压电容器R2 R´2:截波触发分压电阻G0´´:截波球隙G:试品Z0:截波延时器HYJD-Ⅱ型1B:充电变压器D:高压整流硅堆R0:充电保护电阻R1.R2:直流电阻分压器C:主电容器R:充电电阻Rf:波头电阻Rt:波尾电阻r1:阻尼电阻C1.C2:电容分压器二、使用条件:2.1安装、使用处海拔高度不超过1000米2.2周围空气温度:-20℃~+40℃,空气相对湿度不大于85%(20℃) 2.3无导电尘埃存在2.4无火灾及爆炸危险品2.5不含有腐蚀金属和绝缘的气体和蒸汽2.6无剧烈振动、碰撞和强烈颠簸2.7地平水平面不超过3度,移动式装置地面不平度±1mm/m22.8电源电压的波形为正弦波,波形畸变率小于3%,频率50Hz,电源侧应不遭受来自外部的过电压。

400kv雷电冲击电压发生器 (自动保存的)

400kv雷电冲击电压发生器 (自动保存的)

电气与电子工程学院《高电压》课程设计(400kv冲击电压发生器的设计)姓名:学号:U*********专业班号:电气1303班评阅人:****:**日期:2016.08.15目录一、设计背景和意义 (3)二、冲击电压发生器基本原理 (4)1、雷电冲击电压波形 (4)2、多级充电电压发生器 (4)三、设计目标 (6)四、设计步骤 (7)1)确定冲击电压发生器级数n (7)2)负荷电容C2选择 (7)3)冲击电容C1选择 (8)4)冲击电压发生器的效率 (8)5)波头电阻R f、波尾电阻R t选择 (8)6)充电电阻R、保护电阻r选择 (10)7)充电时间 (10)8)变压器选择 (11)9)硅堆选择 (11)10)球隙直径选择 (11)五、设计总结与感想 (12)六、附录 (13)七、参考文献 (17)一、设计背景和意义电力系统中的高压电气设备在运行过程中可能会承受短时间的雷电冲击电压和操作过电压的作用。

冲击电压实验就是用来检测各种高压电气设备在雷电压和操作过电压作用下的绝缘性能或保护性能。

雷电冲击电压实验采用全波冲击电压波形或者截波冲击电压波形,其持续时间较短,约数微秒至数十微秒。

其中雷电冲击电压波形由冲击电压发生器产生,而操作冲击电压波可以利用冲击电压发生器产生,也可以利用变压器产生。

因此,很多高压实验室的冲击电压发生器既可以用来产生雷电冲击电压波,也可以用来产生操作冲击电压波。

在此重点讨论雷电冲击电压发生器的设计。

随着超高压输电工程的发展,冲击电压发生器已成为各高压实验室的重要实验设备之一。

其电压和容量不断提高。

可以相信,在超高压输电的工程的发展过程中,必将对冲击电压实验技术提出更高的要求。

二、冲击电压发生器基本原理1、雷电冲击电压波形多级冲击电压发生器的作用原理可以简单地概括为多级电容器并联充电,然后自动串联放电,形成幅值很高的冲击电压波。

雷电冲击电压波形分为全波和截波两种。

全波是具有一定极性的非周期性脉冲电压波,这种非周期性的冲击电压波可以用双指数函数表示:u(t)=A(e−tT1−e−tT2)式中:T1——波尾时间常数,T2——波头时间常数,通常T1≫T2。

冲击电压发生器说明书

冲击电压发生器说明书

冲击电压发生器说明书江苏新亚高电压测试设备有限公司目录一、概述二、产品型号编制说明三、使用条件四、主要技术参数五、设备组成六、使用方法七、注意事项八、日常维护九、成套设备的主要部件十、随机文件及附件一、概述冲击电压发生器是产生冲击电压波的装置,用于试验电力耐受大气过电压和操作过电压时的绝缘性能,所以冲击电压发生器不仅能产生雷电冲击电压波形、雷电冲击电压截波,雷电冲击电压陡波,还能产生操作冲击电压波形等。

本系列冲击电压发生器可对绝缘子串、长空气间隙、套管、互感器、变压器等试品进行冲击电压试验和其它科学研究。

二、产品型号编制说明C JD Y -----设备标称电压(kV)设备标称能量(kJ)“电压”型发生器“冲击”波CJDY系列冲击电压发生器主回路电路如下:图中:T:充电变压器(220V/80KV)D1 D2:高压硅整流器(200KV/200mA)K1 K2:自动接地开关(电磁铁220V/5Kg)R01 R02 R03:充电保护电阻(100KV/15K)R1、R2:直流电阻分压器(100KV/300MΩ)C P:耦合电容器(100KV/1000PF)R0:触发电阻(2W/1.2MΩ)C:主电容器(50KV/2×1.0UF)R:充电电阻(100KV/30KΩ)R´:充电箝位电阻(100KV/12-30KΩ)R t R,t:波尾电阻R f R,f:波头电阻C´:充电兼操作波尾电阻R´f:操作波外波头电阻C´s0:点火电容C0:串联放电球隙R0´:触发球箝位电阻R0:分压器阻尼电阻C0 C0´:弱阻尼电容分压器(400KV/300PF)C0´´:电容分压器低压臂0.4UFC3:截波装置(400KV/300PF)三、使用条件安装、使用处海拔高度不超过1000米周围空气温度:-20℃~+40℃,空气相对湿度不大于90%(20℃),最大温差:25℃无导电尘埃存在无火灾及爆炸危险品不含有腐蚀金属和绝缘的气体和蒸汽无剧烈振动、碰撞和强烈颠簸地平水平面不超过3度,移动式装置地面不平度±1mm/m2电源电压的波形为正弦波,波形畸变率小于3%,频率50Hz,电源侧应不受来自外部的过电压。

冲击电压发生器

冲击电压发生器

1000kV冲击电压发生器及测量系统的设计摘要:本文介绍了1000kV冲击电压发生器及测量系统的基本工作原理,分析了设计过程中的主要问题,结合冲击电压发生器的主要技术指标,对设计过程进行了详细讨论,给出了电路原理图及实物结构图,并对主要元器件进行了选择,最后利用仿真软件ATP对输出波形进行了仿真,以验证选择参数的正确性,同时对某些电路参数对冲击电压波形的影响作出了分析。

关键词:冲击电压发生器;电路设计;结构图;ATP仿真电力系统的高压电气设备在运行时不仅要经常承受正常的工作电压作用,而且还有可能遭受短时雷电过电压和内部过电压的侵袭,所以高压电气设备在安装前要进行必要的过电压的绝缘耐受试验,比如模拟雷电过电压和操作过电压作用。

冲击高压实验是耐压实验的一种,进行冲击高压实验是为了研究电气设备在运行中遭受雷电过电压和操作过电压作用时的绝缘性能[1]。

冲击电压发生器是高压实验室的基本设备之一,它是一种产生脉冲波的高电压发生装置。

由于绝缘耐受冲击电压的能力与施加电压的波形有关,而实际冲击电压波形具有分散性,因此必须对于冲击电压波形参数做统一规定,以保证多次试验的重复性和不同试验条件下的结果的可比较性。

我国采用国际电工委员会(IEC)标准规定标准冲击电压波形。

即规定冲击电压波形为双指数型,波头时间为1.2uS,波尾时间为50us,冲击电压峰值一般为几十千伏到几兆伏。

1设计要求1.1设计指标设计一台1000kV的冲击电压发生器及测量系统,可以对2000pF的试品电容做冲击试验。

1.2基本要求冲击电压发生器应该满足以下几个要求:1) 能产生1.2/50μs 的标准雷电波。

2) 能给2000pF 以内的试品作冲击电压试验。

3) 要求画出结构简图。

4) 要求设计出各种元器件的参数(如电容、电阻器参数和型号等,球隙间 距等)。

5) 给出仿真波形并进行分析。

2冲击电压发生器的设计原理如图1所示,为标准冲击电压波形。

在经过时间T1时,电压从零上升到最大值,然后经过时间T2-T1,电压下降到最大值的一半。

高电压课设设计 冲击电压发生器

高电压课设设计 冲击电压发生器

目录课程设计要求 (3)设计原理 (4)冲击电压发生器本体输出波形与高效回路输出电压与级数充电放电回路冲击电容器充电电阻保护电阻球间隙放电回路数学分析充电回路数学分析点火装置整流充电电源系统原理整流回路变压器容量高压硅整流器冲击电压测量系统原理冲击分压器与引线高压臂低压臂同轴电缆的接入及对分压比的影响电缆损耗的影响与末端的匹配衰减波阻的变化对分压比和匹配的影响高压引线的影响示波器抗干扰措施参数计算 (11)参考资料 (15)一、课程设计要求:画出冲击电压发生器的总体结构布置图(含接地系统设计),各主要部件或器件的型号、参数,绝缘距离与净空(空间布置),各参数之间的匹配关系,波形测量系统等。

对冲击电压发生器设计的要求为:(1)高效回路(2)最大输出电压300~800kV(3)级数3级以上(4)电阻(含线径和材料)(5)球隙大小和距离(6)输出波形 1.2/50波形(7)测量装置(充电、放电)(8)测量装置抗干扰措施(9)充电电源(各器件参数)(10)本体、分压器、电源、测量系统(11)绝缘材料、绝缘距离选取(12)触发器(13)容性试品二、设计原理:一、冲击电压发生器本体冲击电压发生器是产生冲击电压和操作冲击电压的一种发生装置。

产生的冲击电压可供绝缘的冲击耐压或放电试验用。

1)输出波形与高效回路:首先从单极冲击电压发生器的具体性质来分析:为了产生1.2/50标准雷电冲击波形可用的电路有如下的选择:(c)可产生雷电波形的电路由电路理论的基础知识可以推导出三个电路的电源的电压在输出端的利用率,他们分别为: a) 低效回路b) 效率介于(a)和(c)之间c)高效回路由于该设计要求电路为高效回路,所以选择电路(C )。

即简化后的电路为:单击高效回路电路图而对于多级冲击电压发生器一般的设计如下:简单的多级冲击电压发生器电路图图中R o 保护电阻;R 充电电阻;R 1波头电阻;R 2波尾电阻;C 主电容;C 2波头电容;G 1~G 4球间隙这种多级冲击电压发生器采用的是波前电阻和放点电阻集中放置的方式。

冲击电压发生器学习资料

冲击电压发生器学习资料

冲击电压发生器1000kV 冲击电压发生器及测量系统的设计摘要:本文介绍了1000kV 冲击电压发生器及测量系统的基本工作原理,分析了设计过程中的主要问题,结合冲击电压发生器的主要技术指标,对设计过程进行了详细讨论,给出了电路原理图及实物结构图,并对主要元器件进行了选择,最后利用仿真软件ATP 对输出波形进行了仿真,以验证选择参数的正确性,同时对某些电路参数对冲击电压波形的影响作出了分析。

关键词:冲击电压发生器;电路设计;结构图;ATP 仿真电力系统的高压电气设备在运行时不仅要经常承受正常的工作电压作用, 而且还有可能遭受短时雷电过电压和内部过电压的侵袭, 所以高压电气设备在安装前要进行必要的过电压的绝缘耐受试验, 比如模拟雷电过电压和操作过电压作用。

冲击高压实验是耐压实验的一种,进行冲击高压实验是为了研究电气设备在运行中遭受雷电过电压和操作过电压作用时的绝缘性能[1]。

冲击电压发生器是高压实验室的基本设备之一,它是一种产生脉冲波的高电压发生装置。

由于绝缘耐受冲击电压的能力与施加电压的波形有关,而实际冲击电压波形具有分散性,因此必须对于冲击电压波形参数做统一规定,以保证多次试验的重复性和不同试验条件下的结果的可比较性。

我国采用国际电工委员会(IEC)标准规定标准冲击电压波形。

即规定冲击电压波形为双指数型,波头时间为1.2uS,波尾时间为50us,冲击电压峰值一般为几十千伏到几兆1 设计要求1.1 设计指标设计一台1000kV 的冲击电压发生器及测量系统,可以对2000pF 的试品电容做冲击试验。

1.2 基本要求冲击电压发生器应该满足以下几个要求:1)能产生1.2/50 Q的标准雷电波。

2)能给2000pF以内的试品作冲击电压试验。

3)要求画出结构简图。

4)要求设计出各种元器件的参数(如电容、电阻器参数和型号等,球隙间距等)。

5)给出仿真波形并进行分析。

2 冲击电压发生器的设计原理如图1 所示,为标准冲击电压波形。

第5章冲击电压发生器第5章冲击电压发生器主要内容

第5章冲击电压发生器第5章冲击电压发生器主要内容

雷电冲击电压全波参数定义(波前时间,半峰值时间):1.2 冲击电压的波形波峰附近振荡的全波全波波形雷电冲击电压截波参数定义(波前时间,半峰值时间,截断时间,电压跌落持续时间,电压跌落陡度):1.2 冲击电压的波形波尾截断雷电波形波头截断雷电波形操作冲击电压参数定义(波前时间,半峰值时间,90%峰值时间):1.2 冲击电压的波形操作冲击电压波形试品额定电压(kV)35110220330500750冲击发生器0.4~0.60.8~1.5 1.5~2.7 2.4~3.6 2.7~4.2 3.6~6.0 2.1 基本Marx冲击回路原理r—硅堆保护电阻,r>>R,r=(10~20)R;R—充电电阻;C1~C4主电容;r d—阻尼电阻(阻尼波形振荡)几~几十Ω;g1:点火球隙,g2~g4中间球隙;g0隔离球隙;C’:对地杂散电容;R f:波头电阻;R t:波尾电阻;C0:被试及测量设备的电容2.1.4 串联放电时的等效电路原理可概述为:电容并联充电,而后串联放电,而串联放电的实现是靠一组球隙来达到的。

2.1.5 输出波形2.2 双边充电的冲击电压发生器双边充电回路在不增加级数,相同充电电压下,输出电压增加一倍。

对于充电用的试验变压器,正负半波在充电时都发挥了作用。

但所用的电容器台数增加一倍。

2.3 冲击电压发生器的高效回路只有一边有R,另一边由rf、rt兼作充电电阻,rf、rt分散在各级内,无专门的rd,也无g(隔离球隙),其充电原理与前述相同,串联放电后的回路不同。

2.3 冲击电压发生器的高效回路高效回路串联放电的等效回路没有了专门阻尼电阻r d ,C 1上电压全部加到r t 上(不象前述有分压),所以输出电压较高,为高效率回路(r f 也同样阻尼了振荡)。

3 冲击电压发生器放电回路的数学分析3.1 基本分析基本Marx 回路和高效回路均有相同的等值回路,只是各自的R d 、R f 、R t 取值不同而已,对高效回路R d =0 。

RDCJ-300KV雷电冲击

RDCJ-300KV雷电冲击

RDCJ-300KV雷电冲击电压发生器技术条件一、使用条件海拔高度:<1000米相对湿度:<90%环境温度:-10℃~+40℃无灰尘、无毒、无腐蚀气体。

当湿度>90%凝露时,表面揩干,自然风干后,可继续使用。

相对湿度大于90%时,输出不降低。

二、额定参数值1、额定标称电压:±300千伏2、额定级电压:±150千伏3、额定能量:11.25千焦耳4、冲击总电容:0.25微法(脉冲电容器1微法/2×75千伏,共3台)5、负载能力:0~5000微微法。

6、输出冲击电压波形(1)1.2/50微秒雷电冲击电压全波,电压(空载)不小于95%;(2)截断时间2~5微秒雷电冲击电压截波,电压效率大于85%;冲击电压波形参数及其偏差均符合有关国家标准的要求。

7、使用持续时间:在80%额定电压以上,每90秒充放电一次可连续运行;在80%额定电压以下,每45秒充放电一次可连续运行。

三、主要部件1.充电部分(1)、采用恒流充电装置(2)、采用绝缘筒油浸式充电变压器,原边电压220伏,付边电压85千伏,额定容量5千伏安,变压器密封良好,无渗漏油;(3)、采用2DL-200千伏/100毫安的高压整流硅堆;(4)、高压整流硅堆保护电阻采用漆包电阻丝有感密绕在绝缘管上;(5)、采用不对称倍压充电方式;(6)、恒流充电装置在20%~100%额定充电电压范围内,实际充电电压与整定电压偏差不大于±1%,充电电压的不稳定性不大于±1%,充电电压的可调精度为1%.(7)、直流电阻分压器采用150千伏,300兆欧油浸式金属膜电阻,低压臂电阻装在分压器底法兰内,低压臂上的电压信号用屏蔽电缆引入控制台内。

(8)、自动接地开关采用电磁铁分合接地机构,试验停止时可自动将主电容器经保护电阻接地。

(9)、恒流充电的电感、电容装在控制台内,充电变压器、高压整流硅堆、保护电阻、自动接地开关和绝缘支柱等安装在一个移动式底盘上。

4冲击电压发生器详解

4冲击电压发生器详解

3 冲击电压发生器放电回路的数学分析
3.2 简化回路的近似分析
U 2 U 1(es1 t es2 t)
| s2 |》| s1| e s1t 在峰值处几乎不变
U 2 U 1( 1 e s 2 t) U 2 m ( 1 e s 2 t)
0.3U2mU2m[1exsp2t1()] 0.9U2mU2m[1exsp2t2()]
为获得非振荡波
1/2
,取临界值,得 RdRf
2L
CC 11CC 22
T f 2 . 3 T 2 2 . 3 T 2 7 2 . 3 3 ( R d R 3 f ) C 1 C 2 / C 1 ( C 2 )
临界阻尼波头时间: Tf 4.6(6L)C 1/2
4 冲击电压发生器的充电回路
4.1 几种充电回路介绍
2 冲击电压发生器的基本原理
2.2 双边充电的冲击电压发生器
要提高冲击电压发生器的输出电压有两种途径: 1、提高充电电压,但受电容器额定电压的限制; 2、增加级数,但级数多了会给同步带来困难。
双边充电回路在不增加级数,在相同充电电压下, 输出电压增加一倍。
2 冲击电压发生器的基本原理
2.3 冲击电压发生器的高效回路
对雷电冲击Tf 较短,一般R在104级时,就能满足要求;但操作 冲击,Tf 较长,为满足这种需求,势必R↑,充电时间很长,充
电很不均匀,效率很低。要求内部放电时间常数为外部放电时 间常数的10~20倍。
从上述几个回路分析看,充电时间是比较重要的,下面对其 进行简要分析。
4 冲击电压发生器的充电回路
回路系数ξ与电路的形式和参数有关。
3 冲击电压发生器放电回路的数学分析
3.1 基本分析

HDCJ雷击冲击电压发生器技术参数

HDCJ雷击冲击电压发生器技术参数

HDCJ雷击冲击电压发生器技术参数
冲击电压发生器主要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。

 100~10000kV系列各种容量成套冲击电压(电流)试验装置。

并可提供多种波形系列成套冲击电压(电流)发生器。

冲击试验装置主要由:发生器本体、截波、分压器、四组件控制台(控制台分为微机型和普通型)、数字化波形记录系统等组成。

 工作原理编辑
 冲击电压发生器
 冲击电压发生器通常都采用Marx回路,如图1所示。

图中C为级电容,它们由充电电阻R 并联起来,通过整流回路T-D-r充电到V。

此时,因保护电阻r 一般比R 约大10倍,它不仅保护了整流设备,而且还能保证各级电容充电比较均匀。

在第1级中g0为点火球隙,由点火脉冲起动;其他各级中g为中间球隙,它们调整在g0起动后逐个动作。

这些球隙在回路中起控制开关的作用,当它们都动作后,所有级电容C 就通过各级的波头电阻Rf串联起来,并向负荷电容C0充电。

此时,串联后的总电容为C/n,总电压为nV。

n为发生器回路的级数。

由于C0较小,很快就充满电,随后它将与级电容C一起通过各级的波尾电阻Rt
放电。

这样,在负荷电容C0上就形成一很高电压的短暂脉冲波形的冲击电压。

在此短暂的期间内,因充电电阻R 远大于Rf和Rt,因
 冲击电压发生器
 而它们起着各级之间隔离电阻的作用。

冲击电压发生器利用多级电容器并联充电、串联放电来产生所需的电压,其波形可由改变Rf和Rt的阻值进行调整, 幅值由充电电压V 来调节,极性可通过倒换硅堆D两极来改变。

冲击电压发生器设计说明书

冲击电压发生器设计说明书

8.调波装置
标称电压
2800kV
电容量
4500pF
波形参数
标准雷电波
三. 结构要求 1.冲击电压发生器本体采用塔式组合结构。具有封闭式点火系统、登高扶梯、安全操
作平台、自动接地和安全接地系统及气垫移动系统。 2.发生器可并、串联使用。 3.弱阻尼电容分压器为可移式。
四. 设备参数 1.冲击电压发生器本体 1-1 发生器本体结构(参看图 1-1) 1-1-1 本体结构为四柱方形结构,每级两只电容器分别挂在钢支架外侧,钢架之间用
nRt: Rt: Tt:
62.88
144//144=72
57.25
发生器放电回路半峰值电阻值。 发生器每级半峰值电阻值。 半峰值时间。
由表 1、2、3、的计算结果确定雷电波波前电阻为:60Ω、40Ω、5Ω三组。半 峰值电阻为 144Ω两组并联使用。使用调波装置调波时:
1、C2=3+1.2=4.2nF,本体全级使用,波前电阻配置为(40//5)×21=93.3Ω。 2、C2=8+1.2=9.2nF,本体 16 级使用,波前电阻全部短接。
(pF) 2000 3000 4000 5000
Rf (Ω) 26.0 17.42 13.13 10.6
Rd (Ω) 19.6 16.1 13.93 12.49
每级选配电阻值 (Ω)
60//60=30 40//40=20 60//40//40=15 1/10[(60//40//40)×8+5×2]=13.0
当发生器一并二十一串时,主电容C1=0.0476μF,级电容 1.0μF, 杂散电感 90μH。雷电波波前电阻和最小阻尼电阻计算结果见表 1:
表1
总负荷电容
Rf

冲击电压发生器的原理、试验及设计

冲击电压发生器的原理、试验及设计

冲击电压发生器的原理、试验及设计黄增利(浙江九天科技有限公司浙江衢州324000)摘要:电力系统内的发,供,用电设备除了长期在额定电压下运行之外,还必须具备在过电压下的绝缘强度。

过电压是指超过正常运行电压,它是电器设备或保护设备损坏的电压升高。

在电力系统各种事故中,很大一部分是由于过电压造成设备的绝缘损坏引起的。

当绝缘油缺陷时,若不及时排除,最终将导致设备损坏,而高电压试验的目的就是通过一定的手段,依靠仪器设备,采用模拟的方法检验电气设备绝缘性能的可靠程度。

而冲击电压试验是针对电力系统外部过电压而对绝缘材料进行的一项电气试验,所进行的雷电试验及操作波试验能有效的模拟电力系统的外部过电压,对电气绝缘设备在电力运行中的过压能力能够有效的得到预防和检验。

关键词:高电压试验冲击电压发生器【ABSTRACT】:The electricity generation equipment, power supply equipment and consuming equipment of electrical system must base on the over-voltage insulating strength, as well as under long-time routine voltage service. Over-voltage is more than the normal operating voltage, which is damage to electrical equipment or protective equipment during increases the voltage. A variety of accidents in the power system, a large part was caused by the over-voltage insulation damage. If not immediately removed, the equipment will be damaged at last when the insulating oil appears defects. And that the purpose of high voltage testing will be using the simulation method to check the insulation reliability of electrical equipment.The impulse voltage test is for external over-voltage power system while an electrical insulating material testing, which is for the service pressure of electric power equipment can be effectively prevented and testing【KEY WORDS】High voltage test Impulse voltage generator目录1 绪论 (3)1.1冲击电压发生器的发展历史和现状 (3)1.2冲击电压发生器在电力系统中的应用 (3)2 冲击电压发生器的原理及结构 (4)2.1冲击电压波形 (4)2.2冲击电压发生器的原理 (5)2.3冲击电压发生器的结构 (6)2.4冲击电压发生器的接线方式 (8)2.5冲击电压试验系统的接线联线方式 (10)3 冲击电压发生器的设计 (14)3.1冲击电压发生器的标称电压的选择 (14)3.2冲击电压发生器的脉冲电容的选择 (14)3.3冲击电压发生器的容量的确定 (15)3.4回路选择 (15)4 冲击电压发生器在高电压试验中的应用 (16)4.1绝缘材料的雷电过电压耐受性能试验 (16)4.2绝缘材料的操作过电压耐受性能试验 (17)4.3 绝缘材料的陡波冲击电压试验 (17)参考文献 (17)一绪论1.1冲击电压发生器的发展历史和现状冲击电压发生器通常都采用Marx充放电回路,马克思发生器(Marx Generator)是一种利用电容并联充电再串联放电的高压装置,该结构由E.Marx于1924年提出。

RDCJ-300KV雷电冲击

RDCJ-300KV雷电冲击

RDCJ-300KV雷电冲击电压发生器技术条件一、使用条件海拔高度:<1000米相对湿度:<90%环境温度:-10℃~+40℃无灰尘、无毒、无腐蚀气体。

当湿度>90%凝露时,表面揩干,自然风干后,可继续使用。

相对湿度大于90%时,输出不降低。

二、额定参数值1、额定标称电压:±300千伏2、额定级电压:±150千伏3、额定能量:11.25千焦耳4、冲击总电容:0.25微法(脉冲电容器1微法/2×75千伏,共3台)5、负载能力:0~5000微微法。

6、输出冲击电压波形(1)1.2/50微秒雷电冲击电压全波,电压(空载)不小于95%;(2)截断时间2~5微秒雷电冲击电压截波,电压效率大于85%;冲击电压波形参数及其偏差均符合有关国家标准的要求。

7、使用持续时间:在80%额定电压以上,每90秒充放电一次可连续运行;在80%额定电压以下,每45秒充放电一次可连续运行。

三、主要部件1.充电部分(1)、采用恒流充电装置(2)、采用绝缘筒油浸式充电变压器,原边电压220伏,付边电压85千伏,额定容量5千伏安,变压器密封良好,无渗漏油;(3)、采用2DL-200千伏/100毫安的高压整流硅堆;(4)、高压整流硅堆保护电阻采用漆包电阻丝有感密绕在绝缘管上;(5)、采用不对称倍压充电方式;(6)、恒流充电装置在20%~100%额定充电电压范围内,实际充电电压与整定电压偏差不大于±1%,充电电压的不稳定性不大于±1%,充电电压的可调精度为1%.(7)、直流电阻分压器采用150千伏,300兆欧油浸式金属膜电阻,低压臂电阻装在分压器底法兰内,低压臂上的电压信号用屏蔽电缆引入控制台内。

(8)、自动接地开关采用电磁铁分合接地机构,试验停止时可自动将主电容器经保护电阻接地。

(9)、恒流充电的电感、电容装在控制台内,充电变压器、高压整流硅堆、保护电阻、自动接地开关和绝缘支柱等安装在一个移动式底盘上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
由此可知, d (2 / )[W /(R0Cm )]4 。
令 =2 =Ω,W=565J,

1
1
d (2 / )[W /(R0Cm )]4 (2 / )[565 0.48/(8.9 47.8 0.417150)]4 0.358mm
实际选φ的电阻丝两根,并按相反方向无感结构并绕,可得其一根丝长度为
1)确定冲击电压发生器级数 n
要求冲击电压发生器的标称电压为 400kv,可选取 4 级电容结构,则输出电 压的标称值为:
2)负荷电容 C2 选择
常见试品电容量如表 2 所示。
表 2、常见试品电容量 试品名称 线路绝缘子 高压断路器、电流互感器、电磁式电压 互感器
电容值/pF <50 50~600
电容式电压互感器
雷电冲击电压波形分为全波和截波两种。 全波是具有一定极性的非周期性脉冲电压波,这种非周期性的冲击电压波可 以用双指数函数表示:
式中: ——波尾时间常数,
——波头时间常数,通常

2、多级充电电压发生器
多级冲击电压发生器的作用原理可以简单地概括为多级电容器并联充电,然 后自动串联放电,形成幅值很高的冲击电压波。
由此可得, =Ω,每级 =Ω。
波头电阻和波尾电阻丝的选择: 冲击电压发生器中的阻尼电阻,波头电阻和波尾电阻都与波形有关,要求电 感小、热容量大、稳定性高。现在都用电阻丝按无感绕法做成。要求电阻材料的 电阻系数比较大,温度系数比较小。 由于冲击电压发生器放电时间很短,故冲击放电时电阻上的温升按绝热过程 来考虑。当进行全波冲击电压实验时,试品不放电时,冲击电压发生器的全部能 量都消耗在波尾电阻中(阻尼电阻阻值很小可以略去不计时),使之发热而不考 虑散热。一般从绝缘材料考虑取电阻的允许温升为 150℃,再结合所需阻值一起 来决定电阻丝的长度和直径。当试品放电在波头期间时,冲击电压发生器的全部 能量消耗在波尾电阻和波前电阻中,此时波头电阻和波尾电阻是并联关系,在计 算波头电阻的温升时,应去除波尾电阻中消耗的能量。
冲击放电过程很快,电阻丝消耗的能量可按绝热过程考虑,所消耗的能量全 部转变为电阻丝的温度升高。如所采用的电阻丝为康铜丝,康铜丝密度ν为 cm3, 电阻率ρ为×10-6Ω·m,比热容 Cm 为(g·℃),电阻允许最高温升θ为 150℃, 另电阻丝长度为 l/m,直径为 d/mm,则可得:
电阻 R0 4l /(d 2 ) ,消耗能量W l d 2 Cm / 4 ,
C1
(C1
C2
)
Rt
(Rt
Rd
)
由于高效回路,Rd≈0,因此冲击电压发生器高效回路的效率为:
为使回路效率足够高,一般取 至少比 大 5—10 倍,现取

由上述可知,从脉冲电容器技术参数表中找到瓷壳高脉冲电容器比较适合, 用此种电容器四个串联可以达到 440kv 标称电压,满足要求。这种电容器的规格 如表 3 所示。
表 3、瓷高压脉冲电容器的规格
型号
额定电压/kV 标称电容/μF 外形尺寸/mm
重量/kg 适用范围
110
φ635×845 瓷壳 345
冲击电压
发生器
用此种电容器 4 级串联,标称电压可达 440kV,每级电容器为μF,使冲击
电容
C=4= >10
这样可使冲击电压发生器的效率较高。 依据整定的标称电压和冲击电容,计算可得标称能量为:
波头时间:
Tf
1.2S
3.24Rf C1C2
/ (C1 C2 ) 3.24Rf
0.025 0.025
0.0021 0.0021
6.277
103
R
f
S
由此可得, =Ω,每级 = /8≈Ω。
Байду номын сангаас
波尾时间: Tt 50S 0.693Rt (C1 C2 ) 0.693Rt (0.025 0.0021) 0.019Rt S
实际温升为
4W / (l d 2Cm ) 4 605 / (8.9 43.6 0.22 0.417) 119.01 C 150 C 所选用的康铜丝两根并联,并按相反方向绕在绝缘棒上,要求匝间距离尽可 能小,电阻棒的长度应使两端间能耐受 110kV 电压。
6)充电电阻 R、保护电阻 r 选择
4)冲击电压发生器的效率
由上述负荷电容 和冲击电容 ,计算可得冲击电压发生器的效率为:% 满足设计要求。
5)波头电阻 Rf、波尾电阻 Rt 选择
高效回路的充电回路利用波头电阻 和波尾电阻 构成充放电回路。
设计要求产生 50μS 标准雷电波,已知冲击电容 ,负荷电容 ,可由波头
时间和波尾时间,计算波头电阻 和波尾电阻 。
有上述可知, =Ω, =Ω。
每级电容器储能为:1/2×× ×
=
假定试品不放电,则能量全部消耗在 中;若试品短路放电,则[+]×=的能
量消耗在 中。
如采用双股相反绕的无感电阻结构,则波头电阻的每股阻值为 2×=Ω,每 股电阻丝消耗的能量为 2=。
同样情况,波尾电阻的每股丝的阻值为 2×=Ω,每股电阻丝消耗的能量为 2=。
一、 设计背景和意义
电力系统中的高压电气设备在运行过程中可能会承受短时间的雷电冲击电 压和操作过电压的作用。冲击电压实验就是用来检测各种高压电气设备在雷电压 和操作过电压作用下的绝缘性能或保护性能。
雷电冲击电压实验采用全波冲击电压波形或者截波冲击电压波形,其持续时 间较短,约数微秒至数十微秒。
其中雷电冲击电压波形由冲击电压发生器产生,而操作冲击电压波可以利用 冲击电压发生器产生,也可以利用变压器产生。因此,很多高压实验室的冲击电 压发生器既可以用来产生雷电冲击电压波,也可以用来产生操作冲击电压波。在 此重点讨论雷电冲击电压发生器的设计。
随着超高压输电工程的发展,冲击电压发生器已成为各高压实验室的重要实 验设备之一。其电压和容量不断提高。可以相信,在超高压输电的工程的发展过 程中,必将对冲击电压实验技术提出更高的要求。
二、 冲击电压发生器基本原理
1、雷电冲击电压波形
多级冲击电压发生器的作用原理可以简单地概括为多级电容器并联充电,然 后自动串联放电,形成幅值很高的冲击电压波。
如图为一种简单的多级冲击电压发生器的电路图:
其工作原理为:C10-C20 为各级对地的杂散电容。在充电过程结束时,上面一 排杂散电容 C10、C30、 C50 和 C70 充电到+U0 电压,1、3、5、7 各点对地电位皆 为+U0,而下面一排杂散电容 C20、C40、 C60 和 C80 未充电,2、4、6、8 各点电 位为零。当各级电容器 C 充电到 U0 电压时,第一级间隙 G1 首先击穿,1 点电位瞬 时从+U0 下降到零,2 点电位瞬时从零下降到-U0。由于 1、3 点之间和 2、4 点之 间存在着充电电阻 R 杂散电容 C30 来不及放电,在 G1 击穿瞬间仍使 3 点维持原来 的+U0 电位。于是,在 G1 击穿瞬间,球隙 G2 承受的电压由原来的 U0 突然上升到 2U0,从而导致 G2 击穿。G2 击穿后,3 点电位瞬时从+U0 下降到-U0,4 点电位瞬时 下降到-2U0,而 5 点和 6 点仍然维持原来的电位+U0 和零电位。于是在 G1 和 G2 击穿瞬间,球隙 3 承受的电压由原来的 U0 突然上升到 3U0,从而导致 G3 击穿。依 此类推,球隙 G1—Gn 依次在 U0—nU0 电压作用下击穿 将全部电容器串联起来。
实际的冲击电压发生器,波头电阻和波尾电阻常分散到各级中去,这样,既 可以起到阻尼电阻的作用,又可以起到充电电阻的作用。
三、设计目标
设计一个 400kv 雷电冲击电压发生器,输出波形为 50 标准雷电波,要求进 行电阻设计(线径,材料等),充电回路设计(升压变压器,硅堆,电阻等)。
四、设计步骤
如图,为冲击电压发生器的等效电路图,依此电路图进行设计:
l R0 d 2 / (4) 47.8 (0.36)2 / (4 0.48) 10.14m 10.2m
实际温升为
4W / (l d 2Cm ) 4 565 / (8.9 10.2 0.362 0.417) 146.63 C 150 C
再次令 =2 =Ω,W=605J,

1
1
d (2 / )[W /(R0Cm )]4 (2 / )[605 0.48/(8.9 665.6 0.417150)]4 0.189mm
实际选φ的电阻丝两根,并按相反方向无感结构并绕,可得其一根丝长度为
l R0 d 2 / (4) 665.6 (0.2)2 / (4 0.48) 43.56m 43.6m
电气与电子工程学院
《高电压》
课程设计 (400kv 冲击电压发生器的设计)
姓 名:
学 号 : U8 专业班号 : 电气 1303 班
评阅人: 指导教师 : 日 期:
刘毅
目录
一、设计背景和意义 ....................................... 错误!未定义书签。 二、冲击电压发生器基本原理 ............................... 错误!未定义书签。
1、雷电冲击电压波形 .................................. 错误!未定义书签。 2、多级充电电压发生器 ................................ 错误!未定义书签。 三、设计目标 ............................................. 错误!未定义书签。 四、设计步骤 ............................................. 错误!未定义书签。 1)确定冲击电压发生器级数 n ........................... 错误!未定义书签。 2)负荷电容 C2 选择 .................................... 错误!未定义书签。 3)冲击电容 C1 选择 .................................... 错误!未定义书签。 4)冲击电压发生器的效率 .............................. 错误!未定义书签。 5)波头电阻 Rf、波尾电阻 Rt 选择 ........................ 错误!未定义书签。 6)充电电阻 R、保护电阻 r 选择 ......................... 错误!未定义书签。 7)充电时间 .......................................... 错误!未定义书签。 8)变压器选择 ........................................ 错误!未定义书签。 9)硅堆选择 .......................................... 错误!未定义书签。 10)球隙直径选择 ..................................... 错误!未定义书签。 五、设计总结与感想 ....................................... 错误!未定义书签。 六、附录 ................................................. 错误!未定义书签。 七、参考文献 ............................................. 错误!未定义书签。
相关文档
最新文档