完整word职高高二期末数学试题-

合集下载

职高高二数学试题(含答案)

职高高二数学试题(含答案)

2014-2015年度第二学期 高二(数学)期末试题总分100分 考试时间90分钟 命题人:XXX第I 卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1、下列命题中正确命题的个数是 ( )①两条直线分别与一个平面平行,则这两条直线平行; ②两个平面分别与一个平面平行,则这两个平面平行; ③一条直线分别与两个平面平行,则这两个平面互相平行;④一条直线与平面平行,平面与平面平行,则这条直线与平面平行。

A .1 B .2 C .3 D .42、若直线L 上有两点到平面α的距离相等且L ⊄α,则直线L 与α的位置关系为 ( )A 、平行B 、相交C 、平行与相交D 、不能确定 3、空间四面体A-BCD, AC=BD,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,则四边形EFGH 是 ( )A 、平行四边形B 、矩形C 、菱形D 、正方形4、已知1sin()63πα+=,则cos()3πα-的值为( )A 、 12B 、12-C 、 13D 、 13-5、sin163sin 223sin 253sin313+=( )A .12-B .12 C. D.6、已知3sin(),45x π-=则sin 2x 的值为( ) A. 1925 B.1625 C.1425 D.725班级 考号 姓名 . …………………………………….装…………订…………线……………………………………………………….7、椭圆1162522=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( )A .2B .3C .5D .78、椭圆2255x ky -=的一个焦点是(0,2),那么k 等于 ( )A. 1-B. 1C.5D. 9、方程11122=-++k y k x 表示双曲线,则k 的取值范围是( ) A .11<<-kB .0>kC .0≥kD .1>k 或1-<k10、抛物线的顶点在原点,对称轴为坐标轴,焦点在直线01243=--y x 上,则抛物线的方程为 ( ) A .x y 162=B.y x 122-=C .y x x y 121622-==或 D .以上均不对第Ⅱ卷(非选择题 共60分)二、填空题(本大题共5小题, 每小题4分,共20分,把答案填在题中横线上)。

职高班高二期末考试试题(120份)

职高班高二期末考试试题(120份)

仁化一中2016-2017学年度第二学期高二年级期末考试一、选择题(每小题5分,共75分)(请把答案写在下面的表格中,否则不给分) A .2 B . 8 C . -2 D . -82.设函数f (x)=lo g a x (a>0且a ≠1),f (4)=2,则f (8)=A 2 B12C 3D 133.在平行四边形ABCD 中,b a ==,,则=A、b a + B、b a - C、a b - D、b a + 4.下列函数中,在其定义域内为增函数的是 A、12)(+-=x x f B、1)(2+=x x fC、1)21()(+=x x f D、1log )(2+=x x f 5.设向量a =(2,-1), b =(x,3)且a⊥b 则x=A. 21B.3C. 23D.-26.|a |=|b |是a 2=b 2的A 、充分条件而悲必要条件,B 、必要条件而非充分条件,C 、充要条件,D 、非充分条件也非必要条件 7.解不等式|2x -3|≤3的解集是 A . [-3,0] B . [-6,0] C . [0,3] D . (0,3) 8.已知圆01222=--++ay x y x 的圆心坐标为(-1,2)则=a A . -2 B . 2 C . -4 D . 4 9.已知点()()4,1,2,5-B A ,则线段AB 的中点坐标为 A .(3,-1) B .(4,6) C .(-3,1) D . (2,3) 10.两直线3430x y --=和68190x y -+=之间的距离为A 2B 32C 52D 311.已知抛物线y=mx 2的准线方程为y=-1,则m =A. -4B. 4C. 41D. -4112、双曲线8222=-y x 的两条渐近线方程是( )A、y x 2±= B、x y 2±= C、y x 2±= D、x y 2±= 13.△ABC 中,已知3=a ,5=b ,7=c ,则∠C 的度数是( ) (A ) 30 (B ) 60 (C ) 120 (D) 15014. 等差数列{}a n 中,39741=++aa a , 27963=++a a a ,则数列{}a n的前 9项和S 9等于( )A 、66B 、99C 、144D 、29715. 某学校二年级有8个班,甲,乙两人从外地转到该年级插班,学校让他们各自随机选择班级,他们刚好选在同一个班的概率是( ).A .14B . 18C . 116D . 164二、填空题:(每小题5分,共25分)16、已知一组数据1,3,4,x ,y 的平均数为5,则=+y x __ ___。

职高高二数学试题(含答案)(精选.)

职高高二数学试题(含答案)(精选.)

2014-2015年度第二学期 高二(数学)期末试题总分100分 考试时间90分钟 命题人:XXX第I 卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1、下列命题中正确命题的个数是 ( )①两条直线分别与一个平面平行,则这两条直线平行; ②两个平面分别与一个平面平行,则这两个平面平行; ③一条直线分别与两个平面平行,则这两个平面互相平行;④一条直线与平面平行,平面与平面平行,则这条直线与平面平行。

A .1 B .2 C .3 D .4 2、若直线L 上有两点到平面的距离相等且L,则直线L 与的位置关系为 ( )A 、平行B 、相交C 、平行与相交D 、不能确定 3、空间四面体A-BCD, AC=BD,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,则四边形EFGH 是 ( )A 、平行四边形B 、矩形C 、菱形D 、正方形4、已知1sin()63πα+=,则cos()3πα-的值为( )A 、 12B 、12-C 、 13D 、 13-5、sin163sin 223sin 253sin313+=( )A .12-B .12C .32-D .326、已知3sin(),45x π-=则sin 2x 的值为( ) A. 1925 B.1625 C.1425 D.7257、椭圆1162522=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距班级 考号 姓名 . …………………………………….装…………订…………线……………………………………………………….离为 ( )A .2B .3C .5D .78、椭圆2255x ky -=的一个焦点是(0,2),那么k 等于 ( )A. 1-B. 1C.5D. 5-9、方程11122=-++k y k x 表示双曲线,则k 的取值范围是( ) A .11<<-kB .0>kC .0≥kD .1>k 或1-<k10、抛物线的顶点在原点,对称轴为坐标轴,焦点在直线01243=--y x 上,则抛物线的方程为 ( ) A .x y 162=B.y x 122-=C .y x x y 121622-==或 D .以上均不对 题 号 1 2 3 4 5 6 7 8 9 10 得分 答 案第Ⅱ卷(非选择题 共60分)二、填空题(本大题共5小题, 每小题4分,共20分,把答案填在题中横线上)。

中职高二数学期末试卷

中职高二数学期末试卷

中职高二数学期末试卷职中高二级下学期数学期末模拟试卷一、选择题(将唯一正确答案代号填入表格对应题号内,每题3分,共计36分)1.点A (-3,-4)到x 轴的距离是:A.3B.4C.5D.7 2.点A (0,4),B (-2,0)的中点是:A.(-2,4)B.(-1,2)C.(-2,2)D.(0,2)3.已知直线l 的斜率是3,则直线l 的倾斜角是:A.060B.045C.030D.02404.已知直线l 的倾斜角β=090,则直线l 的斜率是:A.1B.-1C.不能确定D.不存在 5.直线1=x 与y 轴:A.平行B.相交C.重合D.不能确定 6.圆16)7()2(22=-+-y x 的圆心坐标是:A.(2,7)B.(-2,-7)C.(-2,7)D.(2,-7) 7.圆25)6()3(22=-+-y x 的半径长为:A.10B.25C.5D.58.一个棱锥的底面积是402cm ,高是12cm ,则它的体积是 3cm π。

A.130B.140C.150D.1609.一个球的半径增大一倍,那么它的体积增大了几倍。

A.1B.2C.7D.810.一个圆锥的母线是10cm ,侧面展开图是半圆,则圆锥的底面半径是:A.10 cmB.8cmC.6 cmD.5cm11.直线06=+-y x 与直线0=+y x 的交点坐标为A .(-3,3)B .(3,-3)C .(4,2)D .(3,3) 12.某中职学校二年级有12名女排运动员,要从中选出3人调查学习负担情况,调查应采用的抽样方法是:A.随机抽样法B.分层抽样法C.系统抽样法D.无法确定 二、填空题(将最合适的答案填写在对应的位置,每题3分,共15分)。

1.过点A (1,-1)且与x 轴平行的直线方程为 2.一个正方体的体积是83cm ,则它的表面积为 2cm 3.抛一枚硬币,出现一枚正面在上的概率是4.已知一直线的倾斜角是 45,则该直线的斜率是 5.过直线外一点作直线的垂线有 条三、判断(正确的记“√”,错误的记“╳”,每题2分,共10分)。

高二中职期末考试数学试题

高二中职期末考试数学试题

松滋市言程中学2016——2017学年度第二学期期末考试高二中职数学试卷本试卷共3大题,23小题,考试时长120分钟,满分150分。

一、选择题(本大题共12小题,每小题5分共60分)在每小题给出的4个备选项中,只有一项是符合题目要求的,将其选出来,不选错选多选均不得分。

1、数列22221111,31415161----,,,的一个通项公式为( ) A ()2111n a n =+- B 1(2)n a n n =+ C 21(2)1n a n =+- D 211n a n =- 2、等差数列753222----,,,,的第1n +项为( ) A ()172n - B ()142n - C 42n - D 72n - 3、在等差数列{}n a 中,若254785,9,a a a a S +=+==则( )A 12B 28C 24D 304、等比数列{}n a 中,若135528,q a a a a ===且则( )A 2B 4C 8D 165、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 06、下列说法中不正确的是( )A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC +=C 若()AB mCD m R =∈,则//AB CDD 若1122,a x e b x e ==,当12x x =时a b =7、若4,2,22a b a b =-==,则,a b =( ) A 00 B 090 C 0120 D 01808、设()5,5,,62a m b ⎛⎫==-- ⎪⎝⎭且13,a a b =⊥,则m =( )A 12B 12-C 12±D 89、直线过两点((,A B -,则该直线的倾斜角是( ) A 060 B 090 C 00 D 018010、直线230ax y +-=与直线10x y ++=互相垂直,则a 等于( ) A 1 B 2- C 23- D 13-11、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( )A 380x y -+=B 260x y --=C 340x y ++=D 1220x y ++=12、半径为3,且与y 轴相切于原点的圆的方程为( ) A ()2239x y -+= B ()2239x y ++= C ()2239x y ++= D ()()22223939x y x y -+=++=或二、填空题(本大题共6小题,每小题5分共30分) 将答案填在相应题号的答题卡上。

职业高中高二上学期期末数学试题卷(含答案)

职业高中高二上学期期末数学试题卷(含答案)

职业高中高二上学期期末考试数学试题卷一、选择题(每小题3分,共30分。

每小题中只有一个选项是正确的)1.已知B(-2,5),且()3,3=,则点A 的坐标为 ( ) A.(-5,2) B.(5,2-) C.(1,8) D.(1,2)2.已知||=5,()3,-=k ,则k 的值是 ( ) A.4- B.4 C. 4± D.2-3.已知BC AD 31=,则四边形是 ( )A.平行四边形B.矩形C.梯形D.对边不平行的四边形4.在边长为2的等边△ABC 中,∙= ( ) A.4 B.-4 C.2 D.2-5.已知+=0的 ( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分又不必要条件6.直线0133=-+y x 的倾斜角是 ( )A.030B.0150C.060D.01207.直线0643=+-y x 与圆()()43222=-+-y x 的位置关系是 ( )A.过圆心 B.相切 C.相离 D.相交且不过圆心8.正方体棱长为a ,则其对角线长为 ( ) A.a 3 B.a 3 C.a 2 D.2a9.空间中垂直于同一直线的两条直线的位置关系是 ( ) A.平行 B.相交 C.异面 D.以上均有可能10. 如果二面角的一个面上的点到棱的距离是它到另一个面的距离的3倍,那么这个二面角的平面角θ应该满足 ( )A .030=θB . 060=θ C . 33sin =θ D . 33cos =θ 二、填空题(每小题3分,共24分)1.已知向量与反向==6,则= 2.在菱形ABCD 中,()()=-∙+ 3.已知=(2,1),=(3,m ),且∥,则实数m =4.若直线的斜率为2,且过点()2,1-,则直线的方程为5.已知点A ()5,2-和B ()5,6-,以AB 为直径的圆的标准方程为6. 直线4=+y ax 与014=-+ay x 互相垂直,则=a7.如果直线m ⊥n ,且m ⊥平面α,则n 与平面α的关系为 8.将正方形ABCD 沿AC 折成直二面角后=∠DAB 三、计算题(每小题6分,共24分)1.已知()m ,5=,()1,3-=,且-3与+互相垂直,求m 的值。

职业高中高二下学期期末数学试题卷5(含答案)

职业高中高二下学期期末数学试题卷5(含答案)

职业高中下学期期末考试 高二《数学》试题5一 选择题(3*10=30)1.某班有男生23人,女生26人,从中选一人担任班长,共有( )种选法。

A. 23 B.26 C.49 D.162.有5件产品,其中A 型产品3件,B 型产品2件,从中抽两件,他们都是A 型的概率是( )A.35 B.25 C. 310 D.320 3.sin 15°-cos 15°=( )A.√62 B.- √62 C.- √22 D.√22 4.如果cos α=12,则(sin α2)2=( )A.34 B.14 C.12 D.2−√345.在∆ABC 中,已知AB=2,AC=√7,BC=3,则 B =( ) A.π6 B. π4 C.π3 D.2π3 6.函数y=sin 2x +√3cos 2x 的最大值为( )A. -2B.√3C.2D.1 7.椭圆x 23+y 24=1的焦距为( )A.4B.3C. 1D.28. 已知P n 2=56,则n=( )A. 6B. 7C.8D.99.双曲线x 27−y 29=1的离心率是( )A.√74 B.74 C.4√77 D.4310.设方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 二 .填空题(3*8=24)11.用1,2,3,4,5,6这六个数字组成无重复数字的四位数,共有 个。

12.cos π12sin 5π12+sin π12cos 5π12=13.正弦型曲线y =2sin (3x −π6)是 由正弦型曲线y =2sin 3x 向右平移 个单位得到的。

14.若sin α+cos α=√2,则sin 2α= 15.(x −2x 2)8展开式的第四项为16.在(a +b )11的展开式中,与第三项二项式系数相等的项是第 项。

17.顶点在原点,关于x 轴对称,顶点与焦点的距离为3的抛物线的标准方程 是18.已知定点Q (5,2),动点P 为抛物线y 2=4x 上的点,F 为该抛物线的焦点,则使得︱︱PQ ︱+︱PF ︱︱取得最小值的点P 的坐标为 三.解答题(7*5=32)19.抛掷一颗骰子,观察掷出的点数,求C={点数是奇数或4}的概率专业 班级 姓名 学籍号 考场 座号20.抛掷两次骰子,求①两次都出现1点的概率②恰有一次出现1点的概率③没有出现1点的概率21.用1,2,3,4,5这五个数,组成无重复数字的三位数,求在下列情况,各有多少个?①奇数②能被5整除22.已知sinα=13,α∈(π2,π),cosβ=−35,β∈(π,3π2),求sin(α+β)和cos(α−β)的值。

职高高二数学试题(含答案)

职高高二数学试题(含答案)

2014-2015年度第二学期 高二(数学)期末试题总分100分 考试时间90分钟 命题人:XXX第I 卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1、下列命题中正确命题的个数是 ( )①两条直线分别与一个平面平行,则这两条直线平行; ②两个平面分别与一个平面平行,则这两个平面平行; ③一条直线分别与两个平面平行,则这两个平面互相平行; ④一条直线与平面平行,平面与平面平行,则这条直线与平面平行。

A .1 B .2 C .3 D .42、若直线L 上有两点到平面α的距离相等且L ⊄α,则直线L 与α的位置关系为 ( )A 、平行B 、相交C 、平行与相交D 、不能确定3、空间四面体A-BCD, AC=BD, E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,则四边形EFGH 是 ( )A 、平行四边形B 、矩形C 、菱形D 、正方形4、已知1sin()63πα+=,则cos()3πα-的值为( )A 、 12B 、12-C 、 13D 、 13-5、sin163sin 223sin 253sin313+=( )A .12-B .12 C. D.6、已知3sin(),45x π-=则sin 2x 的值为( ) A. 1925 B.1625 C.1425 D.725班级 考号 姓名 . …………………………………….装…………订…………线……………………………………………………….7、椭圆1162522=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .78、椭圆2255x ky -=的一个焦点是(0,2),那么k 等于 ( )A. 1-B. 1C.5D.9、方程11122=-++k y k x 表示双曲线,则k 的取值范围是( ) A .11<<-kB .0>kC .0≥kD .1>k 或1-<k10、抛物线的顶点在原点,对称轴为坐标轴,焦点在直线01243=--y x 上,则抛物线的方程为 ( ) A .x y 162=B.y x 122-=C .y x x y 121622-==或 D .以上均不对第Ⅱ卷(非选择题 共60分)二、填空题(本大题共5小题, 每小题4分,共20分,把答案填在题中横线上)。

中职高二数学期末考试卷

中职高二数学期末考试卷

巫山县职教中心2014—2015学年度第二学期汽修16届2、3班数学期末考试 (总分100分,时间90分钟)班级 姓名 学号一、选择题(4分ⅹ12=48分)1.如果圆x 2+y 2=b 与直线x+y=b 相切,则b 的值为( )A. B.1 C.2 D.2.设圆x 2+y 2 +4x-2y+1=0上的点到直线3x-4y-15=0的距离为d,那么d 的最小值是( ) A.1 B.3 C.7 D.93.抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x+y+2=0上,则此抛物线方程是( ) A.x y 42=或y x 42-= B.x y 42-=或y x 42= C.x y 82-=或y x 82-= D.x y 82=或y x 82=4.椭圆的两个焦点分别为F 1 (-4,0), F 2 (4,0),且椭圆上一点到两焦点的距离之和为12,则椭圆的方程为( )A.1362022=+y x B.112814422=+y x C.1203622=+y x D.181222=+y x 5.设F 1、F 2为椭圆192522=+y x 的焦点,P 为椭圆上一点,则△P F 1F 2的周长为( ) A.16 B.18 C.20 D.不能确定6.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A.-16<m<25 B.29<m<25 C.-16<m<29 D.m>29 7.抛物线)0(82>=p px y ,F 是焦点,则p 表示( ) A.F 到准线的距离 B.F 到准线的距离的41C.F 到准线的距离的81D.F 到y 轴的距离8.已知点F 1 (-4,0)、F 2 (4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.17922=-y x B.)0(17922>=-y x y C.17922=-y x 或17922=-x y D.)0(17922>=-x y x 9.若方程15222=-+-k y k x 表示双曲线,则实数k 的取值范围是( )A.(-∞,-2)∪(2,5)B.(-2,5)C.(-∞,-2)∪(5,+∞)D. (-2,2)∪(5,+∞)10.双曲线12222=-by a x 的两条渐近线互相垂直,那么双曲线的离心率是( )A.2B.3C.2D.2311.设F 1、F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90º,则△F 1PF 2的面积是( )A.1B.25C.2D.5 12.方程(4-k)x 2+(9-k)y 2=k 2-13k+36(k≠0)所表示的曲线是( )A.圆或椭圆B.椭圆或双曲线C.双曲线或抛物线D.抛物线或圆二、填空题(4分ⅹ4=16分)13.与两坐标轴相切,且过点(2,1)的圆的方是 . 14.已知点(-2,3)与抛物线)0(22>=p px y 的焦点的距离是5,则p= . 9.椭圆13422=+y x 上有一点A(m,n)到左焦点的距离为25,则m= . 16.下列命题中:①椭圆192522=+y x 与椭圆)90(125922<<=-+-k k y k x 有相等的焦距; ②椭圆12222=+b y a x 与椭圆)(1222222b k a k b y k a x <<-=-++有共同的焦点; ③双曲线12222=-b y a x 与双曲线)(1222222b k a k b y k a x <<-=--+有共同的焦点; ④双曲线)0(2222≠∈=-λλλ且R b y a x 与双曲线12222=-by a x 有相同的渐近线.正确的命题有 (只写序号) .三、解答题(36分)17.以点A(3,-5)为圆心,且与直线x+7y+2=0相切的圆.(8分)18.求中心在原点,焦点在坐标轴上,长轴为6,离心率为31的椭圆的方程.(8分)19.与椭圆12520x 22=+y 有公共焦点,离心率为35的双曲线方程.(8分)20.已知抛物线x y 42=,直线λ的斜率为1,且过抛物线的焦点.(1)求直线λ的方程;(3分)(2)求直线λ与抛物线的两交点A 与B 之间的距离;(4分)(3)当点P 沿抛物线从点A 运动到点B 时,求△PAB 面积的最大值.(5分)。

中等职业学校高二上学期期末数学测试卷及答案

中等职业学校高二上学期期末数学测试卷及答案

中等职业学校公共基础课水平测试数学测试试卷(满分:100分;时间:90分钟)1.用列举法表示不等式+27x≤的所有正奇数的解集是{1,3}. ()2.设全集U={2,1,16,1,0}-,A={1,2,16}-,则={1,0}UAð. ()3.不等式||x≤1的解集为(1,1)-. ()4.区间(5,0]-可用集合表示为{|50}x x-<<. ()5.若53,x+<-则8x>-. ()6.已知()f x=(4)3f=. ()7.3()1f x x=-在R上是减函数. ()8.函数21()+1f xx=的定义域为R. ()9.2logy x=的图像过点(1,0). ( )10.把对数式ln3x=写成指数式是3x e=. ()11.22231log+log384=. ()12.函数xy=是指数函数. ()13.指数函数都是非奇非偶函数. ()14.=303π︒. ()15.30060︒︒与是终边相同的角. ()16.96-︒是第二象限角. ()17.角α的终边与单位圆的交点坐标为34(,)55-,则角α的余弦值为35-. ()18.已知1cos2α=-,且α是第二象限角,则tanα的值是. ()19.cos1080︒>. ()20.sin0︒的值等于1. ()21.当sinα时,=45α︒. ()22.sin360︒的值等于1. ()23.1是等比数列{3}n的项. ()24.数列1,2,3,4----与数列4,3,2,1----是相同的数列. ()25.数列1,1,1,1,1,,---的通项公式为1(1)nna+=-. ()26.等差数列1,2,3,4,的前7项和为28. ()27.等比数列1,3,9,27--,的前5项和为60. ()28.(0,2),(0,3)a b==-,a与b是共线向量. ()29.+0AB BD DA+=. ()30.直线3y x=+与直线23y x=+的交点坐标为(0,3). ()31.直线5y x=-+与直线+3=0x y-的位置关系为平行. ()32.直线30x y--=的斜截式方程是+3y x=-. ()一、判断题(每题1分,共40 分)学校______________________姓名:______________学籍号:_________________年级:______________专业:_____________…….…………………………….密…………………………………封…………………………………线……………………………………第1 页共8页第2 页共8页第4 页共8页33.斜率不存在为的直线的倾斜角为90︒. ()34.平行于同一条直线的两直线互相平行. ()35.垂直于同一个平面的两直线平行. ()36.圆柱的母线平行且相等,且等于圆柱的高. ()37.底面是正方形的四棱锥一定是正四棱锥. ()38.从1,2,3,45,这五个数中任取一个,得到奇数的概率是35. ()39.由12,3,4,可组成24个可以重复数字的四位数. ()40.抛掷两次骰子,则两次都出现偶数点的概率是14. ()1.设{}{}2,1,1,1,1,2A B=-=-,则A B=()A. {}1,1,2- B. {}1- C. {}1 D. {}22.指出条件p是结论q的什么条件?条件:20p x+=,结论:(2)(5)0q x x++=.()A. 必要条件B. 充分条件C. 充分且必要条件D. 不确定3.不等式10x->的解集为()A. []1,1- B. (1,1)- C. (,1)(1,)-∞-+∞ D. (,1][1,)-∞-+∞4.不等式(2)(3)0x x--<的解集为()A. (,2)(3,)-∞-+∞ B. (,2)(3,)-∞+∞ C. (2,3)- D. (2,3)5.已知()tanf x x=,则()4fπ的值为()A.3B.2C. 1D.6.函数()f x=的定义域为()A. (,1]-∞ B. (,0]-∞ C. (,0)(0,)-∞+∞ D. R7.函数()f x x=是().A.奇函数B. 偶函数C. 非奇非偶函数D. 既奇又偶函数8.函数()43f x x=+在R上是(.)A. 减函数B. 增函数C. 先增后减D. 先减后增9.函数1yx=的图像不过()A. 原点B. (1,1)C. (1,1)-- D. 无法确定10.如果21log log32a a>,则a的取值范围是()A. )1,0(B. )0,(-∞ C. ),0(+∞ D. ),1(+∞11.把指数式124x⎛⎫=⎪⎝⎭化为对数式为()A.1log24x= B.21log4x= C.14log2x= D.14log2x=12.函数3y x=的图像关于()对称. ()A. x轴B. y轴C. (0,0)D. 直线y x=13.把指数幂23a化成根式的形式是()A. aB.C.D.14.计算63a a÷=()A. 9aB. 6aC. 3aD. 2a二、单选题:(每题1分,共40分)专业:_____________………………………第3 页共8页第5 页 共8页 第6 页 共8页15.下列函数属于指数函数的是 ( )A. 0.3xy =- B. 0.3xy = C. 0.3y x = D. 22y x -=16.53π是 ( ) A. 第一象限角 B.第二象限角 C.第三象限角 D. 第四象限角17. 在0~360之间,与60-终边相同的角是 ( ) A. 660 B.320 C.390 D. 30018. 1的弧度数是 ( ) A. 1 B.2π C. 3πD. 180π19.函数2cos21y x =-+的最小值是 ( ) A. 2 B. 2- C. 1- D. 320. 已知角α的终边经过点(3,0),则角α的正弦值为 ( ) A.31B. 0C. 3D. 1 21. tan(315)-= ( )A. 3B. 1C. 1-D. 2122. 108的各三角函数值的符号为 ( ) A. sin 0α> B. 0cos >α C. 0tan <α D. 以上都不对23. sin 270等于 ( ) A. 0 B. 1- C. 1 D.1224. 数列 ,8,6,4,2的第8项是 ( ) A. 16 B. 17 C. 18 D. 1925. 24是数列 ,15,12,9,6,3的第几项? ( )A. 8B. 9C. 10D. 11 26. 等差数列2,6,10,14,的通项公式是 ( )A. 42n a n =+B. 46n a n =-C. 42n a n =-D. 24n a n =- 27. 等比数列1111,,,,392781的通项公式是 ( )A. n n a 31=B. n n a 31-=C. 21+-=n a nD. na n +-=3128. (1,2),(3,1),a b =-=-则a b ⋅= ( )A. 5B. 5-C. 1-D. 129. 下列等式错误的是 ( ) A. a b b a +=+ B. 00a a +=+ C. ()0a a +-= D. ()=0+-a a 30. 点(2,1)P -到直线230x y -=的距离为 ( )A.B.C.D. 31. 关于直线1x =与直线7y =说法正确的是 ( ) A. 垂直 B. 平行 C. 重合 D. 无法确定32. 直线1y =与直线1=x 的交点坐标为 ( ) A. )1,1(- B. )1,2( C. )2,1( D. (1,1)33. 若点(1,2)A 与点B 关于点(2,5)P 对称,则点B 的坐标为 ( ) A. (3,8) B. (1,8)- C. (1,1)- D. (0,1)-34. 圆224x y +=的圆心为 ( ) A. (1,0) B. (0,0) C. (0,1) D. (0,2)35. 方程2226100x y x y ++-+=表示 ( )第7 页 共8页 第8 页 共8页A.圆B. 不表示任何图形C. 点D. 无法确定 36. 平面的斜线与平面所成角的范围是( )A. (0,90)B. (0,90]C. (0,180)D. ]90,0[37.过两条平行直线中的一条,可做多少个平面平行于另一条直线? ( ) A. 一个 B. 两个 C. 三个 D. 无数个38. 某学校高一年级共有7个班,高二年级6个班,从中选一个班级担任学校星期一早晨升旗任务,共有( )种安排方法.A. 14B. 13C. 12D. 4239. 在随机试验中,对于不可能事件φ,则()P φ= ( ) A. 等于1 B. 等于0 C. 大于0 D. 大于等于0且小于等于1 40. 抛掷一颗骰子,“出现偶数点”的事件是 ( ) A. 必然事件 B. 不可能事件 C. 基本事件 D. 随机事件1.表示所有大于7的整数组成的集合是 ( ) A.{}Z x x x ∈>,7 B.{} ,10,9,8 C.{}Q x x x ∈>,7 D.{}7>x 2.已知集合{}{}60,52≤≤=<<-=x x B x x A ,则=⋂B A ( ) A.[0,5) B.(2,6]- C. {}05x x ≤< D. {}26x x -<≤ 3. 下列函数定义域为(),0-∞的是 ( ) A.y =B.2log ()y x =-C. y =D. y =4.下列对数值大于零的是 ( ) A.ln e B. ln 5 C. 1ln 2D .ln 0.6 5. 已知4sin 5∂=,则∂tan 的值可能是 ( ) A .35- B. 35 C.34 D.34-6.以下哪些数是数列{(1)n +- 的项 ( )A.1B.2C.3D.47.5a →=,且(,4)a k →=- ,则=k ( ) A.3 B. -3 C.4 D.-48.圆心在原点,的圆的标准方程错误的是 ( ) A .224x y += B.224x y -= C. 222x y += D. 222x y -= 9.两个平面可以把空间分成 ( )A.两部分B.三部分C.四部分D.五部分10.从甲、乙、丙、丁四人中挑选1人去参加职业技能大赛。

中职高二数学期末考试卷

中职高二数学期末考试卷

巫山县职教中心2014—2015学年度第二学期汽修16届2、3班数学期末考试 (总分100分,时间90分钟)班级 姓名 学号一、选择题(4分ⅹ12=48分)1.如果圆x 2+y 2=b 与直线x+y=b 相切,则b 的值为( )A. B.1 C.2 D.2.设圆x 2+y 2 +4x-2y+1=0上的点到直线3x-4y-15=0的距离为d,那么d 的最小值是( ) A.1 B.3 C.7 D.93.抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x+y+2=0上,则此抛物线方程是( ) A.x y 42=或y x 42-= B.x y 42-=或y x 42= C.x y 82-=或y x 82-= D.x y 82=或y x 82=4.椭圆的两个焦点分别为F 1 (-4,0), F 2 (4,0),且椭圆上一点到两焦点的距离之和为12,则椭圆的方程为( )A.1362022=+y x B.112814422=+y x C.1203622=+y x D.181222=+y x 5.设F 1、F 2为椭圆192522=+y x 的焦点,P 为椭圆上一点,则△P F 1F 2的周长为( ) A.16 B.18 C.20 D.不能确定6.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A.-16<m<25 B.29<m<25 C.-16<m<29 D.m>297.抛物线)0(82>=p px y ,F 是焦点,则p 表示( ) A.F 到准线的距离 B.F 到准线的距离的41C.F 到准线的距离的81D.F 到y 轴的距离8.已知点F 1 (-4,0)、F 2 (4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.17922=-y x B.)0(17922>=-y x y C.17922=-y x 或17922=-x y D.)0(17922>=-x y x 9.若方程15222=-+-k y k x 表示双曲线,则实数k 的取值范围是( )A.(-∞,-2)∪(2,5)B.(-2,5)C.(-∞,-2)∪(5,+∞)D. (-2,2)∪(5,+∞)10.双曲线12222=-by a x 的两条渐近线互相垂直,那么双曲线的离心率是( )A.2B.3C.2D.2311.设F 1、F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90º,则△F 1PF 2的面积是( )A.1B.25C.2D.5 12.方程(4-k)x 2+(9-k)y 2=k 2-13k+36(k≠0)所表示的曲线是( )A.圆或椭圆B.椭圆或双曲线C.双曲线或抛物线D.抛物线或圆二、填空题(4分ⅹ4=16分)13.与两坐标轴相切,且过点(2,1)的圆的方是 . 14.已知点(-2,3)与抛物线)0(22>=p px y 的焦点的距离是5,则p= . 9.椭圆13422=+y x 上有一点A(m,n)到左焦点的距离为25,则m= . 16.下列命题中:①椭圆192522=+y x 与椭圆)90(125922<<=-+-k k y k x 有相等的焦距; ②椭圆12222=+b y a x 与椭圆)(1222222b k a k b y k a x <<-=-++有共同的焦点; ③双曲线12222=-b y a x 与双曲线)(1222222b k a k b y k a x <<-=--+有共同的焦点; ④双曲线)0(2222≠∈=-λλλ且R b y a x 与双曲线12222=-by a x 有相同的渐近线.正确的命题有 (只写序号) .三、解答题(36分)17.以点A(3,-5)为圆心,且与直线x+7y+2=0相切的圆.(8分)18.求中心在原点,焦点在坐标轴上,长轴为6,离心率为31的椭圆的方程.(8分)19.与椭圆12520x 22=+y 有公共焦点,离心率为35的双曲线方程.(8分)20.已知抛物线x y 42=,直线 的斜率为1,且过抛物线的焦点.(1)求直线 的方程;(3分)(2)求直线 与抛物线的两交点A 与B 之间的距离;(4分)(3)当点P 沿抛物线从点A 运动到点B 时,求△PAB 面积的最大值.(5分)。

2024年浙江省中职数学高二期末测试卷(模拟卷)测试

2024年浙江省中职数学高二期末测试卷(模拟卷)测试

浙江省中职数学高二期末测试卷(模拟测试)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.1. 已知集合{1,0,1}A =-,{|3,N}B x x x =<∈,则A B = ( )A. {1,0,1,2}-B.{1,1,2}- C. {0,1,2} D. {0,1} 2. 设命题甲:240x -=,命题乙:20x +=,则命题甲是命题乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. a b >,则下列不等式成立的是( ) A. 11a b< B. ||||a b > C. c a c b -<- D. 22ac bc >4. 不等式20m m +>的解集是( )A. (,0)-∞B. ()(),10,-∞-⋃+∞C. (,1)-∞D.(0,1)- 5. 函数1y x =-+,[2,0)x ∈-的值域是( )A. (1,3]B.[3,1] C. (3,1) D. (1,3) 6. 函数22y x x =+(22x -≤≤)的值域是( )A. (,8]-∞B.[]1,8- C. [0,8] D. (,1]-∞- 7. 如果[]22log log (2)1x =,那么12x =( )A. 2B. 4C.D. 1 8. 在等差数列{}n a 中,24a =,48a =,则该数列前10项之和等于( )A. 120B. 121C. 101D. 1109. 已知角α终边上一点(0,)M a ,0a <,则sin α=( )A. 0B. 1C. 1-D. 不确定 10. 求值:()cos 120︒-=( ) A. 12- B. 12 C. 2 D. 2 11. 若cos 1x a =-,则a 取值范围为( )A. []0,2B.[1,3] C. [1,2] D. [0,3] 12. 在x 轴上的截距为5-,倾斜角为3π4的直线方程为( ) A. 50x y --= B.50x y -+= C. 50x y +-= D.50x y ++= 13. 已知圆的方程式2225x y +=,则过点(3,4)P 的圆的切线方程为( )A. 34250x y ++=B.34250x y +-= C. 43250x y ++= D.43250x y +-= 14. 已知椭圆2218x y +=的左、右焦点分别是1F ,2F ,点P 在椭圆上,则12PF PF ⋅的最大值是( )A. 8B. C. 1015. 根据曲线方程22cos 1x y β+=,3π,π2β⎛⎫∈ ⎪⎝⎭,可确定该曲线是( ) A. 焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线16. 由1,2,3,4四个数字构成没有重复数字的自然数个数为( )A 12个 B. 24个 C. 48个 D. 64个17. 在空间中,α,β表示平面,m ,n 表示直线,则下列说法正确的是( )A. 若//m n ,n α⊥,则m α⊥B. 若αβ⊥,m α⊂,则m β⊥的.C. 若m 上有无数个点不α内,则//m αD. 若//m α,则m 与α平面内的任何直线平行18. 4()a x +展开式中不含x 的项为1,则=a ( )A. 1B. 1-C.1-或1 D. 0 19. 已知函数()()22(0)10x x f x x x -<⎧=⎨+≥⎩,若()3f a =,则=a ( ) A. 32-,2- B. 32-,2C. 32-, D. 2,2- 20. 矩形ABCD 中,1AB =,2AD =,M 是CD 中点,点P 在矩形边上沿A →B →C →M 作匀速运动,APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是( )A. B.C. D.二、填空题(本大题共7小题,每小题4分,共28分)21. 不等式2213x ≤-<的解集为____________.22. 已知lg(2)lg(1)x x +<-,则x 的取值范围是____________.23. 已知10cos(π)5α+=-,π,02α⎛⎫∈- ⎪⎝⎭,则tan(π)α-=____________. 24. 已知函数()3sin 3f x x x =,则π12f ⎛⎫= ⎪⎝⎭____________. 在25. 若圆柱轴截面是边长为4cm 的正方形,则圆柱的表面积是_________.26. 抛物线216y x =上一点M 到焦点的距离为10,则点M 的坐标为____________.27. 把一枚骰子连续抛两次,那么两次的点数之和大于8的概率为____________.三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.28. 已知集合{|13,}A x x x =-≤<∈N .(1)用列举法表示集合A ;(2)写出集合A 的所有真子集.29. 已知角α的终边在直线2y x =(0x ≥)上.求:(1)sin α,tan α的值;(2)sin 2α,cos 2α的值.30. 如图所示,在棱长为a 的正方体1111ABCD A B C D -中,点M 是棱11A B 的中点.(1)求直线MC 与侧面11BCC B 所成角的正切值.(2)连接1MC ,1CB 得到一个三棱锥11C MC B -,求此三棱锥的体积.31.已知二项式n x ⎛ ⎝的展开式中只有第七项的二项式系数最大,求展开式的常数项.32.已知2()2sin cos 2cos 1f x x x x =-++.(1)求π4f ⎛⎫ ⎪⎝⎭的值; (2)当x 为何值时,()f x 有最大值,这个最大值多少?并求其最小正周期.33. 已知双曲线22145x y -=,右焦点为F . (1)求以F 为焦点,以双曲线中心为顶点的抛物线方程;(2)若直线2y x m =+被抛物线所截得的弦长||AB =m 的值.34. 在ABC中,已知a =,2b =,60A =︒.求:(1)边c 的长.(2)ABC 的面积.是35. 某林场有荒山3250亩,从1996年开始,每年春季在荒山上植树造林,第一年植100亩,计划以后每一年比上一年多植树50亩.(1)需几年可将此荒山全部绿化;(2)已知新植树苗每亩木材量为2立方米,树木每年的自然增长率为10%,设荒山全部绿化后的年底木材总量为T ,求T 约为多少万立方米?(精确到0.1)(可能用到的数据:21.1 1.21=,31.1 1.331=,41.1 1.461=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.1 2.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=)浙江省中职数学高二期末测试卷本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.DBCBABCDCAADBADDACBB二、填空题(本大题共7小题,每小题4分,共28分) 【答案】131,,222⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭ 【答案】122x x ⎧⎫-<<-⎨⎬⎩⎭【答案】2【答案】224πcm【答案】(6,或(6,- 【答案】518三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.【28题答案】【答案】(1){0,1,2}(2)∅,{0},{1},{2},{0,1},{0,2},{1,2}【29题答案】【答案】(1)sin 5α=,tan 2α= (2)4sin 25α=,3cos25α=- 【30题答案】【答案】(1)4.(2)312a . 【31题答案】【答案】126720.【32题答案】【答案】(1)π14f ⎛⎫=+⎪⎝⎭; (2)3ππ8x k =+(Z k ∈)时,()f x,πT =. 【33题答案】【答案】(1)212y x =;(2)43m =-. 【34题答案】【答案】(1)3c =(2)2. 【35题答案】【答案】(1)10年 (2)1.0万立方米.。

职高高二数学试题(含答案)

职高高二数学试题(含答案)

2014-2015年度第二学期 高二(数学)期末试题总分100分 考试时间90分钟 命题人:XXX第I 卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1、下列命题中正确命题的个数是 ( )①两条直线分别与一个平面平行,则这两条直线平行; ②两个平面分别与一个平面平行,则这两个平面平行; ③一条直线分别与两个平面平行,则这两个平面互相平行; ④一条直线与平面平行,平面与平面平行,则这条直线与平面平行。

A .1 B .2 C .3 D .42、若直线L 上有两点到平面α的距离相等且L ⊄α,则直线L 与α的位置关系为 ( )A 、平行B 、相交C 、平行与相交D 、不能确定3、空间四面体A-BCD, AC=BD, E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,则四边形EFGH 是 ( )A 、平行四边形B 、矩形C 、菱形D 、正方形4、已知1sin()63πα+=,则cos()3πα-的值为( )A 、 12B 、12-C 、 13D 、 13-5、sin163sin 223sin 253sin313+=( )A .12-B .12 C. D.6、已知3sin(),45x π-=则sin 2x 的值为( ) A. 1925 B.1625 C.1425 D.725班级 考号 姓名 . …………………………………….装…………订…………线……………………………………………………….7、椭圆1162522=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .78、椭圆2255x ky -=的一个焦点是(0,2),那么k 等于 ( )A. 1-B. 1C.5D.9、方程11122=-++k y k x 表示双曲线,则k 的取值范围是( ) A .11<<-kB .0>kC .0≥kD .1>k 或1-<k10、抛物线的顶点在原点,对称轴为坐标轴,焦点在直线01243=--y x 上,则抛物线的方程为 ( ) A .x y 162=B.y x 122-=C .y x x y 121622-==或 D .以上均不对第Ⅱ卷(非选择题 共60分)二、填空题(本大题共5小题, 每小题4分,共20分,把答案填在题中横线上)。

职业高中高二期末考试数学试卷

职业高中高二期末考试数学试卷

高二数学期末考试试卷出题人:冯亚如一.选择题( 分)由数列 ,……猜测该数列的第⏹项是(∙∙) ✌⏹∙∙∙∙⏹∙ ∙⏹∙∙∙ ∙⏹空间中垂直于同一条直线的两条直线( )✌互相平行 互相垂直异面或相交 平行或相交或异面在正方体1111D C B A ABCD 中与直线1AC 异面的棱有( )✌条 条 条条某中职学校一年级二年级各有 名女排运动员,要从中选出 人调查学习负担情况,调查应采取的抽样方法是( )✌随机抽样 分层抽样 系统抽样 无法确定已知点✌☎, ✆, ☎, ✆则直线✌的倾斜角为( )✌   已知 件同类产品中,有 件是正品, 件是次品,从中任意抽取 件的必然事件是 ☎ ✆✌. 件都是正品 至少有一件是正品 件都是次品 至少有一件是次品 判断直线☹ ⌧⍓与☹ ⌧⍓的位置关系( )✌平行 相交但不垂直 重合垂直在 张奖券中,有 张中奖卷,从中任取 张,中奖的概率是( ) ✌201  101  251  301 侧棱长时 的正三棱锥,其底面边长是 ,则棱锥的高是 ( ) ✌ 311  313  339  333直线 ⌧⍓与圆(⌧) (⍓) 的位置关系是( )✌相离 相交 相切 直线过圆心二.填空题( 分)直线⌧⍓在✠、✡轴截距分别为♉♉♉♉♉♉♉、♉♉♉♉♉♉♉♉;圆⌧ ⍓ ⌧⍓的圆心为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉;一条直线l与平面α平行,直线❍在面α内,则l与❍的位置关系是♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉;3♍❍,则此棱锥的体 正三棱锥的底面边长是 ♍❍,高是3积为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉;已知球的半径❒,则球的表面积和体积分别为♉♉♉♉♉♉♉♉♉、♉♉♉ ♉♉。

高二中职期末考试数学试题

高二中职期末考试数学试题

松滋市言程中学2016--2017学年度第二学期期末考试高二中职数学试卷本试卷共3大题,23小题,考试时长120分钟,满分150分。

一、选择题(本大题共12小题,每小题5分共60分)在每小题给出的4个备选项中,只有一项是符合题目要求的,将其选出来,不选错选多选均不得分。

1、数列22221111,31415161----,,,的一个通项公式为( ) A ()2111n a n =+- B 1(2)n a n n =+ C 21(2)1n a n =+- D 211n a n =- 2、等差数列753222----,,,,的第1n +项为( ) A()172n - B ()142n - C 42n - D 72n- 3、在等差数列{}n a 中,若254785,9,a a a a S +=+==则( ) A 12 B 28 C 24 D 30 4、等比数列{}n a 中,若135528,q a a a a ===且则( ) A 2 B 4 C 8 D 16 5、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 0 6、下列说法中不正确的是( )A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC += C 若()AB mCD m R =∈,则//AB CDD 若1122,a x e b x e ==,当12x x =时a b =7、若4,2,22a b a b =-==,则,a b =( ) A 00 B 090 C 0120 D 01808、设()5,5,,62a mb ⎛⎫==-- ⎪⎝⎭且13,a a b =⊥,则m =( )A 12B 12-C 12±D 89、直线过两点((,A B -,则该直线的倾斜角是( ) A 060 B 090 C 00 D 0180 10、直线230ax y +-=与直线10x y ++=互相垂直,则a 等于( ) A 1 B 2- C 23- D 13-11、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --= C 340x y ++= D 1220x y ++=12、半径为3,且与y 轴相切于原点的圆的方程为( ) A ()2239x y -+= B ()2239x y ++=C ()2239x y ++=D ()()22223939x y x y -+=++=或 二、填空题(本大题共6小题,每小题5分共30分)将答案填在相应题号的答题卡上。

高二中职期末考试数学试题

高二中职期末考试数学试题

松滋市言程中学2016--2017学年度第二学期期末考试高二中职数学试卷本试卷共3大题,23小题,考试时长120分钟,满分150分。

一、选择题(本大题共12小题,每小题5分共60分)在每小题给出的4个备选项中,只有一项是符合题目要求的,将其选出来,不选错选多选均不得分。

1、数列22221111,31415161----L ,,,的一个通项公式为( ) A ()2111n a n =+- B 1(2)n a n n =+ C 21(2)1n a n =+- D 211n a n =- 2、等差数列753222----L ,,,,的第1n +项为( ) A ()172n - B ()142n - C 42n - D 72n - 3、在等差数列{}n a 中,若254785,9,a a a a S +=+==则( )A 12B 28C 24D 304、等比数列{}n a 中,若135528,q a a a a ===且则( )A 2B 4C 8D 165、化简AB AC BD CD -+-=u u u r u u u r u u u r u u u r ( )A 2AD u u u rB 2CB u u u rC 0rD 06、下列说法中不正确的是( )A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC +=u u u r u u u r u u u rC 若()AB mCD m R =∈u u u r u u u r ,则//AB CD u u u r u u u rD 若1122,a x e b x e ==r u r r u u r ,当12x x =时a b =r r7、若4,a b a b =-==r r r r g ,a b =r r ( )A 00B 090C 0120D 01808、设()5,5,,62a m b ⎛⎫==-- ⎪⎝⎭r r 且13,a a b =⊥r r r ,则m =( ) A 12 B 12- C 12± D 89、直线过两点((,A B -,则该直线的倾斜角是( ) A 060 B 090 C 00 D 018010、直线230ax y +-=与直线10x y ++=互相垂直,则a 等于( ) A 1 B 2- C 23- D 13-11、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --=C 340x y ++=D 1220x y ++=12、半径为3,且与y 轴相切于原点的圆的方程为( ) A ()2239x y -+= B ()2239x y ++= C ()2239x y ++= D ()()22223939x y x y -+=++=或二、填空题(本大题共6小题,每小题5分共30分) 将答案填在相应题号的答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档