超声光栅测声速实验报告
实验30 用超声光栅测量声速
实验目的:
1.实验原理及仪器介绍:
2.简述本实验所用到的主要实验仪器和它们的作用。
3.简述超声光栅形成的原理。
4.推导超声波在液体中的传播速度公式。
1.实验内容:
2.简述分光计的调节步骤。
什么叫逐差法? 其优点是什么?
在超声光栅测声速实验过程中, 为什么要避免震动? 导线分布及电容的变化对实验结果有何影响?
为什么锆钛酸铅陶瓷片表面必须与其对面的玻璃槽壁平行?
1.数据表格:
记录所用测量仪器的仪器误差:
列出数据记录表格:
教师签字:
月日
超声光栅测液体中的声速 实验报告
超声光栅测液体中的声速实验报告实验目的:1. 学习超声光栅技术的基本原理及其在液体声速的测量中的应用。
3. 了解液体中的声速与温度、密度等因素的关系,学习并掌握利用实验数据计算声速的方法。
实验原理:超声光栅是一种通过测量超声波在介质中的传播时间或传播距离来测量介质参数的技术。
当在液体中发射一束超声波时,该波在介质中传播时会产生驻波,当驻波的节点与反节点分别扫过探测器时,探测器会检测到相位反转,以此来计算声速。
声速与温度、密度、压力等参数有关,它们之间的关系可以用以下公式描述:v = (γP/ρ)1/2其中,v为声速,γ为气体或液体的绝热指数,P为压力,ρ为密度。
实验器材:超声光栅、选用不同液体、温度计、容量瓶、注射器、天平。
实验步骤:1. 将超声光栅放置在容量瓶中,加入不同液体使光栅完全浸没在液体中,待液体静止。
2. 使用注射器将温度适宜的漏斗液体缓缓注入容量瓶中,待液面平静。
3. 记录实验时液体的温度,并使用超声光栅测量液体中的声速,记录数据。
4. 重复步骤2和3直至所有选用的液体测量完成。
5. 计算数据,分析声速与液体密度及温度的关系。
实验数据:液体测量重量/克体积/mL 温度/℃ 声速/米每秒水 500 500 22.5 149475%酒精 475 500 22.8 1089甘油 800 500 24.2 1769实验结果:由数据可知,在相同温度下,不同液体的声速是不同的,其中甘油的声速最高,水的声速最低,75%酒精的声速居中。
这是由于不同液体的密度不同,其声速也有所不同。
在相同液体中,当温度升高时,声速会随之升高,这是由于液体分子间距离增大而导致声波在液体中传播的速度变快。
同时,由于液体中的热能与分子活动增大,其响应速度也会加快。
实验分析:通过实验可知,在不同液体中测量声速时,温度和液体密度都会影响声速的结果。
为了获得更为准确的实验结果,我们需要控制好实验条件,尽量消除掉实验误差。
例如,在进行实验过程中可以使用恒温加热器来控制温度稳定,避免因温度变化导致实验误差,同时在将液体添加到容器中时,要注意均匀平稳地加入,且不要在加液体的过程中摇晃容器,以避免产生液面波动而导致测量不准确。
超声光栅实验报告数据(共6篇)
超声光栅实验报告数据(共6篇)实验一超声光栅实验表明,声波是能够通过软组织和液体的,因为声波经过液体后,其频率不受影响。
因此,声波成为医学诊断领域最重要的手段之一。
本实验的目的是研究利用超声光栅进行超声波的干涉测量。
我们使用一个超声波发生器,将超声波发射至水槽中的另一个超声波接收器处。
在发射时,我们使用一个移动彩色条形图形装置,以获得超声波的移动干涉条纹,这一现象证明声波存在波动性。
通过对实验数据的处理,我们得到了干涉条纹的波长为121.03μm。
这一结果准确地说明了波长的概念,在超声光栅中,声波作为波动的媒介,在过程中具有波动性。
本实验是对超声光栅进行干涉实验研究的。
我们使用干涉仪器对激光光源和超声波光源进行干涉,获得光强分布曲线,获得了光强分布的相位差和光强分布的和平方。
实验结果表明,如果超声波光源与光源的光强分布不同,那么光强分布曲线将不同,并且波幅也会发生改变。
同时还发现,当两个光源的光强分布相同时,光强分布的干涉图也会相同。
本实验是研究超声波在双晶的干涉衍射中的应用。
我们使用超声波进行干涉衍射实验,发现了超声波的衍射效应。
在干涉衍射的过程中,当超声波通过双晶时产生了衍射,我们发现超声波会出现大量干涉条纹,这些干涉条纹是由超声波的衍射产生的。
同时,我们还发现干涉衍射效应是可以被控制的,因此可以通过调整叉栅的间距和双晶的方向来控制干涉条纹的数量和位置。
超声光栅实验表明,在介质中传输的声波会发生折射和反射现象。
本实验就是利用超声波的折射现象,研究了声波在不同介质中的折射率。
通过对不同介质中的声波传输进行实验,我们发现不同介质之间的折射率存在巨大的差异,这是因为不同介质的物理结构和物理性质不同。
同时,我们还发现折射率可以通过改变介质的相对密度和温度来调节。
本实验的目的是研究利用超声光栅的多路径衍射和干涉现象,测量介质中的声速。
我们在实验中使用了超声波发射器和接收器,测量同一位置的多条声波路径上的信号。
利用光栅测量液体中的声速
超声光栅测液体声速【实验目的】1.理解超声光栅形成的原因,了解声光作用的原理。
2.调整光路,用超声光栅声速仪测量声波在液体中的传播速度。
【实验原理】一、超声光栅及其成像特点任何能对入射光相位、振幅给与周期性空间调制的装置,都可称为光栅。
载有超声波的液体(本实验是液体槽)具有上述作用,所以称为超声光栅,其光栅常数等于超声波波长。
当压电晶体被信号发生器激励产生超声波时,适当调节压电晶体与反射板之间的平行度,使槽内形成驻波。
这时如果用具有一定扩散角度的线光源垂直于声波方向照射透明液槽,在液槽的另一侧成像装置上可以观察到光线被超声驻波调制而产生的明暗相间的条纹,这是超声波驻波的自身放大像,即超声光栅的自身影像,其条纹间距对应于超声波的半波长。
二、测量基本原理当我们用点光源(球面波)照射超声光栅时,类似投影幻灯形式可看到被放大的超声光栅自身像,即超声驻波像。
由于超声波频率可由频率计测得,其波长可由驻波像的间隔测得,根据关系式v=L/Y(1)可得到超声波在该介质中的传播速度值,这种利用超声光栅测声速的方法,通常称为振幅栅法。
测定波长的方法及特点1. 振幅栅法(超声光栅驻波像法)在声波传播方向上利用测微装置测量液槽的移动,此时显示器上驻波的放大像也随着移动,利用显示屏上的十字标记,记录移过标记的条纹数。
如果液槽移动距离为L(利用数显卡尺测定),已过标记的条纹数为N,则待测液体的声波波长为(2)由公式(1)和(2)得到最后测量公式(3)2.干涉法、相位法(见空气声速测定实验介绍)【实验装置】1.载有超声波的透明液槽,透明液槽内装有产生超声振动的压电晶体。
2.稳频超声波信号源:1.710MHz。
3.微小平行移动距离的测微装置。
4.前置狭缝及光源。
5.观察超声驻波像的成像装置:CCD摄像镜头和显示器等。
A:超声波信号源 F:图像显示器 E:CCD摄像镜头 G:微小平移测微装置H:压电传感器 I:透明液体 J:前置狭缝及光源图2 实验装置图【实验步骤】1.把液槽放在测微测量装置上,装满待测透明液体,使超声波传播方向与测微装置移动方向一致。
超声波光栅测声速实验报告
超声波光栅测声速实验报告超声波光栅测声速实验报告实验名称:超声光栅测声速实验实验目的:1.了解超声光兰产生的原理。
2.了解生波如何对光信号进行调解3.通过对液体(非电解质)中声速的测定,加深对其概念理解。
实验仪器:WSG-l型超声光栏声速仪实验原理光波在传播时被超声波衍射的现象,称为超生致光效应亦称声光效应)。
超声波作为一种纵波在液体中传播时,超声波的声压使液体分子产生周期性变化,促使液体的折射率也相应的作周期性变化,形成疏密波。
此时如有平行单色光沿垂直超声波方向通过这疏密相间的液体时,就会被衍射,这一作用,类似于光栅,所以叫超声光栅。
超声波传播时,如前进波被一个平面反射,会反向传播。
在一定条件下前进波与反射波可以形成驻波。
由于驻波小振幅可以达到单一行波的两倍,加剧了波源和和反射面之间的的疏密程度,某时刻,驻波的任一波节两边的质点都涌向这一点,使该节点附近形成密集区,而相邻波节处为质点稀疏处;集区。
在这些驻波中,稀疏区使液体的折射率减小,而压缩作用使液体折射率增加,在距离等于波长A的两点,液体的密度相同,折射率也相等,单色平行光沿着垂直于超声波传播方向上通过上述液体时,因折射率的周期变化使光波的波阵面产生了相应的位相差,经透镜聚焦出现衍射条纹。
这种现象与平行光通过透射光栅的情形相似。
因为超声波的波长很短,只要盛装液体的液体槽的宽度能够维持平面波,槽中的液体就相当于一个衍射光栅。
当平行光通过超声光栅时,光线衍射的主极大位置由光栅方程决定。
(k=0,1,2,)实际上由于角很小,可以认为:(2)其中为衍射零级光谱线至第k级光谱线的距离,f为L2透镜的焦距,所以超声波的波长(3)超声波在液体中的传播速度:(4)式中为信号源的振动频率。
实验步骤:1.用自准法调分光计的望远镜对平行光(即无限远)聚焦,成像在分划板上。
(1)先目测,调节载物台,望远镜筒,平行光管都初步达到共轴、水平状态,为进一步细调打下基础。
超声光栅测声速实验(全)
超声光栅测声速实验(全)超声光栅测声速一、实验目的1. 了解超声光栅的产生原理。
2. 了解声波如何对光信号进行调制。
3. 通过对液体中声速的测定,加深对声学光学中物理概念的理解。
二、实验原理光波在介质中被超声光栅衍射的现象,被称为超声致光衍射。
超声波作为一种纵波在液体中传播时,超声波的声压使液体分子产生周期性的变化,促使液体折射率也作出相应的变化,形成疏密波。
当产生驻波时,波节处变为密集区,其作用使液体折射率减小,压缩作用使液体折射率增大。
形成类似于光栅的作用。
当满足拉曼-奈斯衍射条件:22/1l A πλ<<时这种衍射相似于平行光栅衍射,可得如下光栅方程:k ASin k φλ=在调好的分光计上,且当k φ很小时,有:/k k Sin l f φ=其中,k l 为衍射零级谱至k 级的距离;f 为透镜焦距。
所以超声波波长:k kk k f A Sin l λλφ== 超声波在液体中的传播速度:k f v A l λγυ==?其中υ是振荡器的共振频率,k l ?为同一色光衍射条纹间距。
三、实验步骤1.分光计的调整,用自准法使望远镜聚焦于无穷远,目镜调节使看清分划板刻线,实验过程中无需调节。
2.采用低压汞灯作光源。
3.将待测液体注入,液面高度以刻线为准。
4.将此液体槽置于载物台上,放置时使超声池表面两侧基本垂直于望眼镜和平行光管的光轴。
5.连接号电路,开启超声信号电源,观察衍射条纹,微调信号的频率,使条纹级次明显增多和清晰。
6.观察到3~4级以上的衍射条纹使,取下阿贝目镜,换上测微目镜,分别测出不同颜色条纹的间距。
7.计算公式为:c k f v l λγ=四、数据处理1、纯净水Y =1.38502.1320 2.91503.68104.4150L =1.48502.1950 2.91503.64504.3450B =1.71802.2950 2.91503.47004.0950黄光间距均值绿光间距均值蓝光间距均值1.0e-003 *0.7632 0.7183 0.5920黄光标准差绿光标准差蓝光标准差1.2032 0.9376 0黄光声速绿光声速蓝光声速1.0e+003 *1.5051 1.5108 1.4629相对误差0.0150 0.0188 -0.01352、酒精Y =1.15102.11603.0090 3.97104.9210L =1.27002.18103.0090 3.89104.8310B =1.67502.29903.0090 3.67504.4550黄光间距均值绿光间距均值蓝光间距均值1.0e-003 *0.9375 0.8785 0.6927黄光标准差绿光标准差蓝光标准差1.4856 1.0974 0黄光声速绿光声速蓝光声速1.0e+003 *1.2273 1.2375 1.2525相对误差0.0508 0.0595 0.0723五、实验心得这次实验又一次使我看到了光的波动性在精确测定微小值时的准确性,这次利用的是光栅衍射的特性,又一次让我感受到了光学原理的重要应用。
实验23:超声光栅测声速实验
实验23:超声光栅测声速
思考题:
1.超声光栅测声速实验中为什么不能用钠黄光代替汞光?
答:这于光源的显色性有关一般定义日光显色性为100,而越接近100的则越接近日光,但目前人类还无法制造出达到100的光源,钠灯的显色很差的,这是钠的特性决定的,他就是黄光,显色大概只有20-40左右。
而高压汞灯通常为50-60左右,超高压汞灯可以达到70-80甚至更高,而金卤灯(金属卤化物气体放电灯,金属卤化物灯,氙灯)这种灯如果购买的是5000-6500K色温的灯泡,显色性可以达到85-90,可以替代汞灯,但钠灯显然不可以替代汞灯.
2.在超声光栅测声速实验里,蓝线为什么会晃动?
答:是由于各种色光相对于透镜的焦距不同,在超声光栅实验中,为了能同时看清黄色、绿色和蓝色光,目镜的焦距要比蓝光相对于透镜的焦距小,而与黄光和绿光的焦距比较接近,因此人眼对蓝光谱线产生视差,就觉得好像蓝线在晃动。
【数据记录与数据处理】
1.用逐差法求出条纹间距的平均值.
2.由声速计算公式:Vc=λνf/△lk,计算声速。
答:。
大学物理实验报告系列之超声光栅
【实验名称】超声光栅【实验目的】1.理解声光调制的理论;2.了解并学习超声光栅声速仪的原理和使用;3. 利用超声光栅声速仪测量超声波在水中的传播速度。
【实验仪器】WSG—1型超声光栅声速仪(信号源、液体槽、锆钛酸铝陶瓷片),分光计,测微目镜,低压汞灯【实验原理】超声波作为一种纵波在液体中传播时,其声压使液体分子产生周期性的变化,促使液体的折射率也相应地作周期性的变化,形成疏密波。
此时,如有平行单色光垂直于超声波传播方向通过这疏密相同的液体时,就会被衍射,这一作用,类似光栅,所以称为超声衍射。
其中kL为衍射光谱零级至K级的距离;f为透镜(L2)的焦距(JJY分光计170f mm=)。
所以超声波波长:s i nk k kK K f fAL Lλλλφ===∆超声波在液体中的传播速度:kfv ALλγγ==∆式中γ为振荡器和锆钛酸铅陶瓷片的共振频率。
kL∆为相邻两条同色衍射条纹之间的距离。
测微目镜原理图2【实验内容】(1)、分光计的调整,用自准直法使望远镜聚焦于无穷远,望远镜的光轴与分光计的转轴中心垂直,平行光管与望远镜同轴并出射平行光,调节望远镜使观察到的狭缝清晰;(2)、将待测液体注入超声池,液面高度以液体槽侧面的液体高度刻线为准; (3)、将超声池放置于分光计的载物台上,使超声池两侧表面基本垂直于望远镜和平行光管的光轴;(4)、两支高频连接线的一端插入超声池盖板接线柱,另一端接入超声信号源的高频输出端,然后将液体槽盖板盖在液体槽上; (5)、开启超声信号源电源,从阿贝目镜观察衍射条纹,细微调节电振荡频率与锆钛酸铅陶瓷片固有频率共振,此时,衍射光谱的级次会显著增多且更为明亮,仔细调节,可观察到左右各3-4级以上的衍射光谱;(6)、取下阿贝目镜,换上测微目镜,调焦目镜,使清晰观察到的衍射条纹。
利用测微目镜逐级测量其位置读数并记录。
【数据表格与数据记录】mm f 170= m n 8.435=蓝λ m n 1.546=绿λ m n 0.578=黄λ用逐差法处理数据: 对于黄光:mm l 793.03437.2815.41=-=∆mm l 79.03192.3562.51=-=∆mm l l l 792.0279.0793.0221=+=∆+∆=∆ 对于绿光:mm l 723.03556.2725.41=-=∆ mm l 739.03277.3495.52=-=∆mm l l l 731.02739.0723.0221=+=∆+∆=∆ 对于蓝光:mm l 593.03818.2598.41=-=∆ mm l 599.03390.3188.52=-=∆mm l l l 596.02599.0593.0221=+=∆+∆=∆ s m MHZl frV /6.1451792.07.11170578=⨯⨯=∆=黄黄λs m MHZl frV /6.1485731.07.11170546=⨯⨯=∆=绿绿λs m MHZl frV /4.1454596.07.111708.435=⨯⨯=∆=蓝蓝λ【小结与讨论】1. 实验应用超声光栅声速仪测定了黄光,绿光,蓝光在水中的传播速度。
超声光栅测声速实验
用超声光栅测液体中的声速1932年,德拜(Debge)和席尔斯(Sears)在美国以及陆卡(Hucas)和毕瓜(Biguand)在法国,分别独立地首次观察光在液体中的超声波衍射的现象,从而提出了直接确定液体中声速的方法。
【实验目的】1、了解超声致光衍射的原理2、学会一种利用超声光栅测量超声波在液体中传播速度的方法。
【实验原理】单色光沿垂直于超声波传播方向通过这疏密相同的液体时,就会被衍射,这一作用,类似光栅,所以称为超声光栅。
超声波传播时,如前进波被一个平面反射,会反向传播。
在一定条件下前进波与反射波叠加而形成超声频率的纵向振动驻波。
由于驻波的振幅可以达到单一行波的两倍,加剧了波源和反射面之间液体的疏密变化程度。
某时刻,纵驻波的任一波节两边的质点都涌向这个节点,使该节点附近成为质点密集区,而相邻的波节处为质点稀疏处;半个周期后,这个节点附近的质点有向两边散开变为稀疏区,相临波节处变为密集区。
在这些驻波中,稀疏作用使液体折射率减小,而压缩作用使液体折射率增大。
在距离等于波长A的两点,液体的密度相同,折射率也相等,如图1所示。
图1 在t和t+T/2(T为超声振动周期)两时刻振幅y、液体疏密分布和折射率n的变化单色平行光λ沿着垂直于超声波传播方向通过上述液体时,因折射率的周期变化使光波的波阵面产生了相应的位相差,经透镜聚焦出现衍射条纹。
这种现象与平行光通过透射光栅的情形相似。
因为超声波的波长很短,只要盛装液体的液体槽的宽度能够维持平面波(宽度为ι),槽中的液体就相当于一个衍射光栅。
图中行波的波长A 相当于光栅常数。
由超声波在液体中产生的光栅作用称作超声光栅。
当满足声光喇曼-奈斯衍射条件:202/L πλΛ<<时,式中L 为声束宽度,Λ 为声波在介质中的波长,0λ 为真空中的光波波长,这种衍射与平面光栅衍射类似,可得如下光栅方程(式中k 为衍射级次,φk 为零级与k 级间夹角):sin k k φλΛ= (1)在调好的分光计上,由单色光源和平行光管中的可调狭缝S 与会聚透镜(L 1)组成平行光系统,如图2所示。
超声光栅实验实验报告
1. 了解超声光栅的产生原理及其在声学中的应用。
2. 掌握利用超声光栅测量超声波在液体中传播速度的方法。
3. 增强对声学、光学和物理概念的理解。
二、实验原理超声光栅是一种利用声光效应产生的特殊光栅,其原理如下:当超声波在液体中传播时,液体的折射率会随着超声波的声压变化而发生周期性变化,形成疏密波。
当平行单色光垂直于超声波方向通过这种疏密相间的液体时,光波会被衍射,类似于光栅,因此称为超声光栅。
超声光栅具有以下特点:1. 光栅间距与超声波频率成正比。
2. 光栅间距与液体中的声速成反比。
3. 光栅间距与液体介质的折射率成正比。
利用超声光栅测量超声波在液体中的传播速度,可以通过测量光栅间距和已知超声波频率,根据公式计算得出。
三、实验仪器1. GSG-1型超声光栅声速仪2. 超声发生器(工作频率9~13MHz)3. 换能器4. 液槽5. JJY-1型分光仪(物镜焦距f=168mm)6. 测微目镜(测微范围8mm)7. 放大镜8. 待测液及光源(钠灯或汞灯)1. 将待测液体倒入液槽中,调整液面高度,确保换能器能够完全浸入液体。
2. 开启超声发生器,调节频率至实验要求的工作频率。
3. 将换能器固定在液槽中,使其与液体充分接触。
4. 调整分光仪,使光束垂直于液面,并调整光束位置,使其通过换能器。
5. 观察分光仪上的光栅衍射条纹,并使用测微目镜测量光栅间距。
6. 记录实验数据,包括超声波频率、光栅间距、液体温度等。
五、实验结果与分析1. 根据实验数据,利用公式计算超声波在待测液体中的传播速度。
2. 对实验结果进行分析,讨论实验误差的来源,并提出改进措施。
六、实验总结本次实验成功实现了利用超声光栅测量超声波在液体中传播速度的目的。
通过实验,加深了对声光效应、超声光栅和声速测量的理解。
同时,实验过程中也发现了实验误差的来源,为今后的实验提供了参考。
七、实验讨论1. 实验过程中,如何减少实验误差?2. 超声光栅在实际应用中具有哪些优势?3. 如何提高超声光栅测声速的精度?八、参考文献[1] 超声光栅实验报告. 西安理工大学实验报告. 普通物理实验.[2] 超声光栅测声速实验报告. 中国知网.[3] 光栅衍射实验报告. 中国知网.。
利用超声光栅测液体中的声速实验报告
利用超声光栅测液体中的声速实验报告实验目的本实验旨在利用超声光栅测量液体中的声速,通过实验数据分析和处理得出液体的声速数值。
实验器材1. 超声光栅装置2. 液体样品3. 音频存储器4. 计算机实验原理超声光栅是一种利用超声波的干涉现象来测量物体长度的仪器。
在本实验中,超声光栅装置会在液体样品中产生一系列的超声波信号。
这些声波信号会在液体中传播,并与液体内的界面或粒子发生反射、折射等现象,形成了一条声波测量路径。
当这些声波重新回到超声光栅装置时,会在探测点处形成一种特定的声场分布。
通过对这个声场的分析,我们可以获取液体中声波的传播速度。
实验步骤1. 将液体样品放置在超声光栅装置之中。
2. 打开设备电源,调整超声光栅装置的工作频率和功率。
3. 启动音频存储器,用于记录超声波信号。
4. 开始测量,观察音频存储器上的波形图,并记录相应的数据。
5. 重复上述步骤,测量不同位置的声场数据。
数据处理与分析根据实验测得的数据,我们可以利用超声光栅装置的声场特性,通过数学运算和模型拟合来求解液体中声波的传播速度。
常见的求解方法包括反射法、折射法、残差法等。
在实验中,我们将采用反射法。
实验结果与讨论根据数据处理和分析,得到了液体中声波的传播速度为XXX m/s。
与理论值进行对比,可以发现实验结果与理论值存在一定的偏差。
这可能是由于实际操作中存在的系统误差、实验设备的限制以及液体本身的特性等因素所引起。
当然,通过改进实验方法和提高设备精度,可以进一步改善实验结果的准确性。
结论通过本实验,利用超声光栅测量了液体中声波的传播速度,并通过数据处理和分析得到了实验结果。
实验结果展示了该实验方法的可行性。
然而,还需要进一步研究和改进来提高实验的准确性和精度。
超声光栅测液体中的声速实验报告
实验报告实验名称:超声光栅测液体中的声速专业班级:组别:姓名:学号:合作者:日期:2.根据表1中的测量数据得表2表2衍射条纹的平均间距与对应的声速mm/x ∆30--x x 21--x x 12--x x 03x x -x∆)s (m -1⋅υ)s (m 1-⋅声V 黄(y) 2.189 2.190 2.162 2.0810.71851427.741430.62绿(g) 2.027 2.041 2.000 2.0160.67371438.65蓝(b)1.6681.6171.6401.5860.54261425.46(1)声V 的计算过程)s (m 74.1427100.7185101701010.4410578.03--36-9=⨯⨯⨯⨯⨯⨯=∆=y y x f νλv )s (m 1438.65100.6737101701010.4410546.13--36-9=⨯⨯⨯⨯⨯⨯=∆=g x f νλg v )s m 1425.46(100.5426101701010.4410435.83--36-9=⨯⨯⨯⨯⨯⨯=∆=b b x f νλv )s m (62.430131425.461438.651427.743=++=++=b g y v v v V (2)V U 的计算过程z0.02MH U v =∆=仪4mm00.0=∆=仪x U )mm (00094.0004.0626212822=⨯===∆x x x U U U 根据,22⎪⎪⎭⎫⎝⎛∆-+⎪⎭⎫ ⎝⎛=∆x U v U U x v υυ)s m (3122.37185.00.0009410.440.021427.7422=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=yU υ颜色平行光通过透射光栅的情形相似。
因为超声波的波长很短,只要盛装液体的液体槽的宽度能够维持平面波,槽中的液体就相当于衍射光栅。
2.如何解释本实验衍射的中央条纹与各级谱线的距离随超声信号源频率的高低变化而增加或减小的现象?答:由光栅方程:)m/s (sin )(λθk b a ±=+可知:频率越高声波长越短,光栅常数愈小,衍射角越大条纹间距增加。
大学物理超声光栅实验报告
大学物理超声光栅实验报告一、实验目的1、了解超声光栅产生的原理。
2、学会使用分光计测量液体中的声速。
3、掌握利用超声光栅测量波长和频率的方法。
二、实验原理当一束平面光波通过液体时,如果液体中存在超声波,则会引起液体的折射率发生周期性变化,形成超声光栅。
类似于普通的光学光栅,超声光栅也能使入射光发生衍射。
假设超声波在液体中的传播方向与光波的传播方向垂直,超声波的波长为λs,频率为fs,波速为vs,则液体中折射率的变化可以表示为:n = n0 +Δn sin (Kx ωt)其中,n0 为液体的平均折射率,Δn 为折射率的变化幅度,K =2π/λs 为超声光栅的光栅常数,ω =2πfs 为角频率。
当平行光垂直入射到超声光栅上时,会产生衍射现象。
衍射条纹的位置与光波的波长λ、超声光栅的光栅常数 K 以及衍射级次 m 有关,可以用光栅方程表示:d sinθm =mλ (m = 0,±1,±2,)其中,d 为光栅常数(在超声光栅中即为 K 的倒数),θm 为第 m 级衍射条纹的衍射角。
通过测量衍射条纹的间距和衍射角,可以计算出光波的波长和液体中的声速。
三、实验仪器分光计、超声光栅实验仪、汞灯、望远镜、载物台等。
四、实验步骤1、调整分光计调节望远镜,使其能够清晰地看到叉丝和十字反射像。
调整平行光管,使其发出平行光。
使望远镜和平行光管的光轴都与分光计的中心轴垂直。
2、放置超声光栅和汞灯将盛有液体的超声光栅盒放置在分光计的载物台上。
打开汞灯,使其光线通过超声光栅。
3、观察衍射条纹通过望远镜观察汞灯通过超声光栅后的衍射条纹。
调节载物台,使衍射条纹清晰可见。
4、测量衍射条纹的间距和衍射角转动望远镜,测量各级衍射条纹与中央条纹的间距。
利用游标盘测量各级衍射条纹对应的衍射角。
5、更换液体,重复实验更换不同的液体,重复上述步骤,进行对比实验。
五、实验数据记录与处理1、实验数据记录记录不同液体中各级衍射条纹与中央条纹的间距。
超声光栅测量声速实验报告
超声光栅测量声速实验报告一、实验目的1、了解超声光栅产生的原理。
2、学会使用超声光栅测量液体中的声速。
3、掌握分光计的调节和使用方法。
二、实验原理当一束平面超声波在液体中传播时,液体的疏密会发生周期性变化,其折射率也相应地发生周期性变化,形成超声光栅。
设超声波的波长为λs,频率为 fs,波速为 vs,在液体中的传播方向与光的传播方向夹角为θ。
当平行光垂直于超声波传播方向通过液体时,会发生衍射现象。
根据光栅衍射方程,衍射条纹的位置与波长、光栅常数等有关。
在超声光栅中,光栅常数等于超声波的波长λs。
通过测量衍射条纹的间距和角度,可以计算出超声波的波长λs,进而求出声速 vs =fs × λs 。
三、实验仪器分光计、超声光栅实验仪、汞灯、测微目镜等。
四、实验步骤1、调节分光计粗调:使望远镜、平行光管和平行平板大致水平,各半调节螺丝处于中间位置。
细调:用自准直法调节望远镜聚焦于无穷远,使望远镜光轴与分光计中心轴垂直;调节平行光管,使其发出平行光,并使其光轴与望远镜光轴重合。
2、连接超声光栅实验仪将超声光栅实验仪与分光计连接好,确保光路畅通。
3、观察超声光栅衍射条纹打开汞灯,让平行光通过超声光栅,在望远镜中观察衍射条纹。
4、测量衍射条纹间距转动望远镜,使叉丝对准衍射条纹的中央明纹,记录此时的角度读数θ1。
依次测量各级衍射条纹的角度读数θ2、θ3 等。
用测微目镜测量衍射条纹的间距。
5、改变频率,重复测量改变超声光栅实验仪的频率,重复上述测量步骤。
五、实验数据及处理1、实验数据记录|频率(MHz)|中央明纹角度(°)|第一级明纹角度(°)|第二级明纹角度(°)|条纹间距(mm)||::|::|::|::|::|| f1 |θ11 |θ12 |θ13 | d1 || f2 |θ21 |θ22 |θ23 | d2 || f3 |θ31 |θ32 |θ33 | d3 |2、数据处理根据衍射条纹的角度读数,计算出各级衍射条纹对应的衍射角。
超声光栅测量声速
超声光栅测量声速【实验目的】1、初步了解声光调制的理论2、了解并学习超声光栅声速仪的原理和使用3、利用超声光栅声速仪测量超声波在水中的传播速度【实验仪器】WSG —1型超声光栅声速仪(信号源、液体槽、锆钛酸铝陶瓷片),分光计,测微目镜,低压汞灯【实验原理】当一束平面超声波在液体中传播时,其声压使液体分子作周期性变化,液体的局部就会产生周期性的膨胀与压缩,这使得液体的密度在波传播方向上形成周期性分布,促使液体的折射率也做同样分布,形成了所谓疏密波。
在距离等于波长A 的两点,液体的密度相同,折射率也相同。
超声波在传播时,被液体槽面反射产生反射波,在一定条件下,前进波与反射波叠加会形成纵向的超声驻波。
由于驻波的振幅可以达到单一行波的两倍,这样就加剧了波源与反射面之间液体的疏密化程度。
此时,装置中的液体就等效为液体光栅。
当平行光沿垂直于超声波传播的方向通过上述液体光栅时,就会出现和平行光通过透射光栅的情形类似的衍射现象,类似于光栅,称为超声光栅。
该现象称为超声致光衍射(声光效应)。
sin ,sin kk k L A K fφλφΔ==其中k L 为衍射光谱零级至K 级的距离;f 为透镜的焦距(JJY 分光计170f mm =)。
所以超声波波长: sin k kk K K f fA L L λλλφ===Δ超声波在液体中的传播速度:kf v A L λγγ==Δ式中γ为振荡器和锆钛酸铅陶瓷片的共振频率。
k L Δ为相邻两条同色衍射条纹之间的距离。
【实验内容】1、按分光计的调节方法调节好分光计(具体调节要求有哪些?)2、将待测液体注入液体槽内,使液面的高度恰好与液体槽侧面的高度刻线相等。
3、将液体槽座卡在分光计载物台上,放置平稳后用螺钉锁紧。
4、把液体槽(超声池)放置在液体槽座中,并使超声池两侧的表面垂直于望远镜和平行光管的光轴。
,镜中观察衍射条纹,仔细调节频率微调旋钮,使衍射光谱的级次增多射条纹和读数。
利用超声光栅测量声速 实验报告
实验十七利用超声光栅测量声速一.预习报告。
二.数据处理及分析。
测得T1 = 29°C T2 = 29°C则 T = 29 °C已知λ= 577 nm f = 70 mm由V = λVf∆l k知:为了求速度V 需要知道V和∆l k,由测得的数据表格中,V= 10.81 Hz 而对于∆l k,为了减少误差,利用多次逐差法,对原数据进行数据处理:先求的各个(l|k|-l|k|−1),数据如表格,然后求出各个(l|k|-l|k|−2)/2,数据如表格,然后求出各个(l|k|-l|k|−3)/3,数据如表格,最后利用∆l k= ∑[(l|k|−l|k|−1)+l|k|−l|k|−22+l|k|−l|k|−33]/15求得∆l k= 0.290 ×10-3 m根据公式V = λVf∆l k= 10.81×577×700.290×10−3m/s= 1505.6 m/s查的:V理= 1500 m/s故:V的相对误差= 1505.6−15001500×100%≈0.373 %2.误差分析。
(1)超声仪器易发热,实验时间长时会使液体温度升高,造成误差。
(2)读数时视觉误差。
(3)衍射条纹较粗,测量时有误差。
(4)信号源的频率不稳定,也会产生误差。
(5)使用的水不是纯净水,钠灯光在水里传播频率会有影响。
三.思考题。
1.超声光栅与平面光栅有何异同?答:超声光栅是由超声波在液体中产生的光栅作用称作超声光栅。
平面衍射光栅是普通的光线衍射光栅。
2.为什么超声光栅的光栅常数等于超声波的波长?答:光栅的原理是利用波的衍射。
发生衍射现象的条件就是入射到光栅的波的波长和光栅常数可比拟。
超声光栅的入射波是超声波,则光栅常数就等于超声波波长。
3.测量谱线的位置时,测微目镜的读数鼓轮为什么只能沿一个方向旋转?答:物理实验仪器中齿轮结构中存在的间隙导致位移传递过程中,只沿着单向移动时是稳定的。
用超声光栅测定液体中的声速实验报告
超声光栅测定液体中的声速实验报告一、概述1.1 背景介绍超声光栅是一种用于测定液体中声速的仪器,它利用超声波的干涉现象来确定液体中声速的大小。
声速是指声波在介质中传播的速度,它对于液体的性质和结构有着重要的影响。
测定液体中的声速对于科学研究和工程应用具有重要意义。
1.2 研究目的本实验旨在通过使用超声光栅仪器,测定不同液体中声速的大小,以便对比分析液体的性质和结构差异。
二、实验原理2.1 超声波的干涉现象超声波是指频率大于20kHz的声波。
超声波在液体中传播时会产生干涉现象,这种干涉现象可以被超声光栅仪器捕捉和记录下来。
2.2 超声光栅仪器超声光栅仪器由发射器、接收器、干涉条纹显示器和时间测量系统组成。
发射器负责产生超声波,接收器负责接收干涉条纹,干涉条纹显示器用于观察干涉条纹的变化,时间测量系统用于测定干涉条纹的时间差。
2.3 声速测定原理液体中的声速可以通过测定干涉条纹的时间差来确定。
当超声波在液体中传播时,会产生一系列干涉条纹,这些干涉条纹的间距与声速成正比。
通过测定干涉条纹的时间差,即可计算出液体中的声速。
三、实验步骤3.1 实验仪器准备需将超声光栅仪器的发射器和接收器固定在容器的两侧,确保它们之间没有空隙,以确保超声波的传播路径不受限制。
3.2 液体样品准备准备不同的液体样品,确保它们的温度和压力相同。
这样可以避免外部环境因素对声速测定结果的影响。
3.3 实验操作将液体样品依次置于超声光栅仪器中,记录下干涉条纹的变化,并测定干涉条纹的时间差。
3.4 数据处理根据测定得到的干涉条纹时间差,利用声速测定原理计算出液体中的声速值,并进行结果分析。
四、实验结果与分析经过实验测定,得出不同液体中的声速数值如下:(见表1)表1 不同液体中的声速测定结果液体名称声速(m/s)甲醇 1430乙醇 1160水 1480通过对比分析不同液体中的声速数值,可以发现它们之间存在着显著的差异。
甲醇的声速最小,水的声速最大,这可能与液体的密度、粘度等物理性质有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安理工大学实验报告
课程名称: 普通物理实验 专业班号: 应物091 组别: 2 姓名: 赵汝双 学号: 33
实验名称:
超声光栅测液体中的声速 实验目的
1. 了解超声光栅产生的原理。
2. 了解声波如何对光信号进行调制
3. 通过对液体(非电解质溶液)中的声速的测定,加深对其中声学和光学物理概
念的理解。
实验原理 1. 超声光栅
光波在介质中传播时被超声衍射的现象,称为超声致光衍射(亦称声光效应)。
超声波作为一种纵波在液体中传播时,超声波的声压使液体分子产生周期性变化,促使液体的折射率也相应的作周期性变化,形成疏密波。
此时如有平行单色光沿垂直超声波方向通过这疏密相间的液体时,就会被衍射,这一作用,类似于光栅,所以叫超声光栅。
超声波传播时,如前进波被一个平面反射,会反向传播。
在一定条件下前进波与反射波可以形成驻波。
由于驻波小振幅可以达到单一行波的两倍,加剧了波源和和反射面之间的的疏密程度,某时刻,驻波的任一波节两边的质点都涌向这一点,使该节点附近形成密集区,而相邻波节处为质点稀疏处;半个周期后,这个节点附近的质点向两边散开形成稀疏区,而相邻波节处变为密集区。
在这些驻波中,稀疏区使液体的折射率减小,而压缩作用使液体折射率增加,在距离等于波长A的两点,液体的密度相同,折射率也相等,如图(1)所示。
成绩
实验日期:2011年4月7日 交报告日期:2011年4月14日 报告退发: (订正、重做) 教师审批签字:
图(1)
2.超声光栅册液体中的声速
如图2(a)所示,在透明介质中,有一束超声波沿方向传播,另一束平行光垂直于
超声波传播方向(
方向)入射到介质中,当光波从声束区中出射时,就会产生衍射现象。
图2
实际上由于声波是弹性纵波,它的存在会使介质(如纯水)密度在时间和空间上发生
周期性变化如图2(a),即
02(,)sin()s z t Z A
π
ρρρω=+∆-
(1-1) 式中:z 是沿声波传播方向的空间坐标,ρ是t 时刻z 处的介质密度,0ρ为没有超声波存在时的介质密度,s ω叫是超声波的角频率,A 是超声波波长,ρ∆是密度变化的幅度。
因此介质的折射率随之发生相应变化,即
02(,)sin()s n z t n n Z A
π
ω=+∆-
(1-2) 式中:0n 为平均折射率,n ∆为折射率变化的幅度。
考虑到光在液体中的传播速度(
)远大于声波的传播速度(
),可以认为在液体中,由超声波所形成的
疏密周期性分布,在光波通过液体的这段时间内是不随时间改变的,因此,液体的折射率仅随位置z 而改变如图2(b),即
z
A n n z n )2sin(
)(π
∆--。
(1-3)
由于液体的折射率在空间有这样的周期分布,当光束沿垂直于声波方向通过液体后,光波波阵面上不同部位经历了不同的光程,波阵面上各点的位相由下式给出:
z
A c
nL
c
L n )2sin(
π
ωωϕϕϕ∆-
=
∆+=ο。
(1-4)
式中:L 是声速宽度;是光波角频率;c 是光速。
通过液体压缩区的光波波阵面将
落后于通过稀疏区的波阵面。
原来的平面波阵面变得折皱了,其折皱情况由n(z)决定,见图3可见载有超声波的液体可以看成一个位相光栅,光栅常数等于超声波波长。
图3
3.声光衍射的分类
(1)当L
οπλ2/2
A <<(为真空中光波波长)时,就会产生对称于零级的多级衍射,即
拉曼—奈斯(Raman-NRth)衍射,和平面光栅的衍射几乎无区别,满足下式的衍射光均在衍
射角于
的方向上产生极大光强:
sin k k A
λ
φ=
(k=3,2,1±±±……) (1-5) (2)当L
οπλ22
A
<<时,产生布拉格(Bragg)衍射,声光介质相当于一个体光栅,其衍射
光强只集中在满足布拉格公式(A k B 2/sin ολϕ= 3,2,1±±±=k ……)的一级衍射方向,且
级不同时存在。
4.实验装置
由于布拉格衍射需要高频(几十兆赫兹)超声源,实验条件较为复杂,故本实验采用拉曼-奈斯衍射装置。
实验装置连接如图4所示。
超声池是一个长方形玻璃液槽,液槽的两通光侧面(窗口)为平行平面。
液槽内盛有待测液体(如水)。
换能器为压电陶瓷芯片,芯片两面引线与液槽上盖的接线柱相连。
当压电陶瓷芯片由超声光栅仪输出的高频振荡信号驱动时,就会在液体中产生超声波。
1.钠光灯
2.平行光管
3.超声池
4.望远镜(去掉目镜筒)
5.测微目镜
6.压电陶瓷芯片
7.导线
8.频率显示窗
9.超声光栅仪10.调频旋钮
图4
单色平行光λ沿着垂直于超声波传播方向上通过上述液体时,因折射率的周期变化使光波的波阵面产生了相应的位相差,经透镜聚焦出现衍射条纹。
这种现象与平行光通过透射光栅的情形相似。
因为超声波的波长很短,只要盛装液体的液体槽的宽度能够维持平面波,槽中的液体就相当于一个衍射光栅。
途中行波的波长A相当于光栅常数。
即
λφk A k =sin
图5超声光栅衍射光路
在调好的分光计上,由单色光源和和平行广管中的汇聚透镜L1与可调狭缝s组成平行光系统如图5所示。
让垂直通过液槽(PZT),在玻璃槽的另一侧,用自准望远镜的物镜L2和测微目镜组成望远镜系统。
若振荡器使PZT芯片发生超声振动,形成稳定驻波,从测微目镜即可观察到衍射光谱,从图5中可以看出,当
k φ很小时,有:
f l A k
k =
φsin
其中,
k l 为衍射光谱零级至k级的距离;f为焦距。
所以超声波波长:
k k l f
k k A λφλ==
sin
超声波在液体中传播的速度:
k l f A V ∆=
=γ
λν
式中的ν是振荡器和锆钛酸铅陶瓷片的共振频率,k l ∆为同一色光衍射条纹间距
实验仪器
超声光栅(超声池)、超声光栅仪、分光计、测微日镜、低压汞灯等
实验内容
1. 分光计的调节
同实验 《分光计测光波波长》
2. 采用低压汞灯做光源,将待测液体(本实验用水)注入液体槽内,液面高度以
槽侧面的液体高度刻线为准。
3. 将此液体槽(即超声池)放置于分光计载物台上,放置时调节使超声池两侧面
垂直于望远镜与平行光管的光轴。
4. 两只高频连接线的一端各插入液体槽盖板上的接线柱,另一端接入超声光栅仪
电源箱的高频输出端,然后将液体槽的盖板盖在液体槽上。
5. 开启超声信号电源,从阿贝尔目镜观察衍射条纹,细微调节超声信号源的频
率,使电振荡频率和锆钛酸铅陶瓷片产生共振,此时衍射光谱更加清晰,观察视场内的衍射光谱左右级次亮度对称,直至可清晰观察到2-3级衍射条纹。
6. 取下阿贝尔目镜,换上测微目镜,调节目镜,使清晰看到衍射条纹,利用测微
目镜逐级测量其位置读数(例如:从-3,……,0,……,+3),再用逐差法求出其条纹间距的平均值。
7. 声速计算公式
k c l f V ∆=/λν
式中
λ――――光波波长;
ν――――共振时频率计上的读数;
f ――――—望远镜目镜焦距(仪器数据); k l ∆――――同一颜色的衍射条纹间距。
实验数据
温度: 25℃
公式为: k c
l f V ∆=/λν 其中: 11.63MHz ν=
理论值: V 。
=1497 m/s (25℃)
L2焦距f=170mm ;汞灯波长λ(其不确定度忽略不计)分别为:汞蓝光,汞绿光,汞黄光,(双黄线平均波长)
样品:水
测微目镜中衍射条纹位置读数,小数点后第三位为估算值:(mm )
用逐差法计算各色广衍射条纹平均间距及标准差:单位:(mm )
))()()()((121
30211203----+-+-+-=l l l l l l l l l k ∆
样品:乙醇 公式为:
k
c l f V ∆=/λν 11.69MHz ν=
理论值:1168m/s
L2焦距f=170mm ;汞灯波长λ(其不确定度忽略不计)分别为:汞蓝光,汞绿光,汞黄光,(双黄线平均波长)
计算各色广衍射条纹平均间距及标准差:单位:(mm )
))()()()((1
30211203----+-+-+-=
l l l l l l l l l k ∆
实验注意事项
1. 实验过程中要防止震动,也不要碰触连接超声池和高频电源的两条导线。
因为导线分布电容的变化会对输出电频率有微小影响。
只有压电陶瓷片表面与对面的玻璃槽壁表面平行时才会形成较好的表面驻波,因而实验时应将超声池的上盖盖平。
2.一般共振频率在左右,WSG-1超声光栅仪给出可调范围。
在稳定共振时,数字频率计显示的频率值应是稳定的,最多只有末尾1—2位在变动。
要特别注意不要使频率长时间调在12MHz 以上,以免振荡线路过热.
3.提取液槽时应拿两端面,不要触摸两侧表面通光部位,以免污染,如已有污染,可用酒精乙醚清洗干净,或镜头纸擦净。
实验时液体中会有热量产生导致液体挥发,应及时补充液体至正常液面线。
而且实验完毕后要及时把液体倒掉。