基因芯片课件
基因芯片技术PPT课件
第三十四页,共55页。
第三十五页,共55页。
第四节 基因芯片的杂交及结果分析
4.1 探针的标记 标记的方法通常是在反转录的底物中加
入带有标记基团的寡核苷酸单体,通过反转 录将标记分子渗入cDNA 分子中。
mRNA反转录标记方法直接影响DNA芯 片分析结果的准确性及重现性。
方便等优点,目前在国际上广泛使用。
第十三页,共55页。
2.2 按点样方式分类 1、原位合成芯片(将半导体中的光蚀刻技术运用
到DNA合成化学中,以单核苷酸或其他分子大分 子为底物,在玻璃晶片上原位合成寡核苷酸)
2、微矩阵芯片(目前应用最广泛的基因芯片之一。
具有高密度、制作简便的特点。其是将用PCR或化 学合成等方法得到的DNA或寡核苷酸片段用针点或 喷点的方法直接排列到玻片等载体上,从而制备成 芯片。)
第十页,共55页。
2、基因芯片的缺点
基因芯片技术体系的建立和使用需要较 大的投入。
(但是,相对于传统的表达分析技术而 言,单个基因分析的成本仍是较低的。)
第十一页,共55页。
第十二页,共55页。
第二节 生物芯片的分类
2.1 按载体材料分类 玻璃芯片 硅芯片 陶瓷芯片 玻璃芯片具有易得、荧光背景低、应用基Leabharlann 芯片技术第一页,共55页。
• 生物芯片是八十年代末在生命科学领 域中迅速发展起来的一项高新技术,它 主要是指通过微加工技术和微电子技术 在固体芯片表面构建的微型生物化学分 析系统,以实现对细胞、蛋白质、 DNA以及其他生物组分的准确、快速、 大信息量的检测。
第二页,共55页。
世界著名商业杂志《财富》对基因 生 物 芯 片 领 域 非 常 看 好 , 它 在 其 1997 年的3月31刊中讲到:“微处理器使我 们的经济发生了根本改变、给人类带来 了巨大的财富、改变了我们的生活方式。 然而,生物芯片给人类带来的影响可能 会更大…...”
基因芯片-新版课件.ppt
cDNA芯片——细胞表达差异分析
精心整理
将cDNA片断用于制作 芯片探针阵列
将待比较的两种核酸 分别以红色荧光素和 绿色荧光素标记
已标记的两种核酸同 时与cDNA芯片杂交
用荧光扫描仪检测每 位点的荧光差异
基因芯片分析的一般流程
待测核酸样品制备(与扩增); 荧光素标记待测核酸样品; 与芯片进行杂交; 洗涤去除未杂交的标记样品; 采集芯片杂交模式(用荧光显微镜或荧
Oligo芯片一般采用以下技术:
合成点样 原位合成(in situ synthesis)
cDNA芯片采用点样技术
精心整理
合成点样技术
在用合成点样法生产基因芯片时,先合成4n 种寡核苷酸探针,n为探针长度;然后,将 每一种探针精确定位点样于选定的载体上。 合成点样法生产基因芯片的工作量非常大, 以合成8聚体寡核苷酸探针为例,就要合成 48=65536种探针!
精心整理
原位合成
是一种在芯片片基上定位合成寡核苷 酸探针阵列的技术。 目前已成功应用于 基因芯片制作的原位合成技术有:
照相平板印刷术(photolithograhpy) 喷墨法(Ink jets)
精心整理
照相平版印刷术
首先在固相载体或称为固相基板 (solid substrate)的表面结合一层带 有保护性感光基团的羟基。
用电场作为一 个独立参量的新型 生物芯片技术。最 早由美国Nanogen 公司发明,目前国 内清华大学和复旦 大学也在开发这一 技术。
精心整理
电子芯片实质上是一种由电场(或电、磁场) 指导杂交反应的芯片技术。 芯片制作:在带有正电荷的硅片上制成1mm2的阵列,每
个阵列含多个微电极,在每个电极上通过氮化硅沉积和蚀刻制 备出样品池;将含有亲和素的琼脂糖覆盖在电极上制成。
第十讲 基因芯片
第10 讲基因芯片Gene chip马永平2010.11内容提要 什么是基因芯片?基因芯片的原理基因芯片的种类基因芯片的应用领域基因表达谱数据分析基因芯片技术的发展与展望其它生物芯片DNATranscriptomicsDNA Microarray(Genechip)GenomicsSequencingSNP(Single nucleotidepolymorphism)Proteomics2DMSProtein ArrayRNAProtein为什么要发展DNA芯片技术?1 HUMAN BODY =100,000,000,000,000 CELLS1 CELL =23 PAIRS OF CHROMOSOMES23 PAIRS OF CHROMOSOMES=~ 3,200,000,000 BASES第一节概述基因芯片(Gene chip)也叫DNA芯片(DNA chip) 是指在固相载体(玻璃、硅等)上有序地、高密度地(点间距<500μm)排列固定了大量的靶基因或寡核苷酸(也叫探针)。
这些被固定的分子探针在基质上形成高密度的DNA微阵列,因此,DNA芯片又叫DNA微矩阵(DNA Microarray)。
第一块基因芯片1992年诞生在美国。
DNA Microarray DNA Chip DNA Microarray DNA MicroarrayGene ChipDNA芯片属于生物芯片(biochip)的范畴,生物芯片包括:1.基因(DNA)芯片2.RNA芯片3.蛋白质芯片4.抗体芯片5.细胞芯片6.组织芯片7.其它芯片(元件型微阵列芯片、通道型微阵列芯片、生物传感芯片、样品制备芯片、核酸扩增芯片、毛细管电泳芯片等)第二节DNA芯片的基本原理1.基因芯片技术是建立在Southern blot基础之上的,可以说它是Southern blot的改进和发展,它的原理是:变性DNA 加入探针后在一定温度下退火,同源片段之间通过碱基互补形成双链杂交分子。
基因芯片技术简介PPT课件
冯永强
.
1
一、基因分析芯片开发的动力
遗传信息迅猛增长
随着人类基因组(测序)计划(Human genome project)的逐步实施以及分子生物学相关 学科的迅猛发展,越来越多的动植物、微生物基 因组序列得以测定,基因序列数据正在以前所未 有的速度迅速增长。然而,怎样去研究如此众多基 因在生命过程中所担负的功能就成了全世界生命 科学工作者共同的课题。为此,建立新型杂交和 测序方法以对大量的遗传信息进行高效、快速的
鉴定及分型,人线粒体16.6kb基因组多态性的研究等4 基因作图 通过确定重叠克隆的次序从而对酵母
基因组进行作图
.
16
5 及杂交测序
6 Etc.
.
17
个人观点供参考,欢迎讨论!
.
12
微板型 这种芯片实质上是一种具有高密度、小容量 测试孔的小型酶联免疫检测板(如PE公司等)。
.
13
集成电路型 将杂交技术与微电子技术结合于 一体有目的地通过电子装置检测或控制DNA等生 物大分子的作用过程(如 Nanogen公司)
.
14
4. 基因芯片研制的总体蓝图
研制方向的确定
检测样品 的制备
.
5
2. 基因芯片技术的主要特点
技术操作简单 自动化程度高 序列数量大 检测效率高 应用范围广 成本相对低
.
6
3 基因芯片的主要类型
鉴于信号的获取与解读具有通用性,所以此处不予特 别介绍。
从点阵的制备方法来分主要有两类:原位合成型与“点膜”
型。
• 原位合成型 指根据预先设计的点阵序列在每个位点通 过有机合成的方式直接聚合得到所要求的探针分子。聚合 之后芯片片基的制作即告结束。该方法有两类:光引导原 位聚合技术与压电打印原位合成技术。
基因芯片技术PPT课件
处理 电信号
生物信息
?
•DNA芯片
基因芯片
荧光标记的样品 共聚焦显微镜
获取荧光图象
杂交
探针设计
杂交结果分析
蛋白芯片(Protein Chips)
抗原——抗体、蛋白相互作用
组织芯片
将数十个甚至数千 个不同个体的组织 标本集成在一张固 相载体上所形成的 组织微阵列。
芯片实验室 (Lab-on-chip)
Detector 2
Scanner
图像处理
Detector 1
Detector 2
False-color differential image
图像分析
(1) find spots (2) quantitate spot intensities
图像分析
(3)calculate ratios
[cy3] [cy5]
杂交结果的聚类分析
表达谱聚类分析软件 Treeview
肿瘤基因表达谱分析与 肿瘤的分子分型
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene
Expression Monitoring
Golub T R, Slonim D K, Tamayo P, et al.
Probes Adhesion layer Substrate
二、样品的准备
• 样品的分离纯化
• 样品的扩增、标记:
反转录标记 随机引物延伸标记 PCR标记
基因表达谱Hale Waihona Puke 色标记Sample cells
1) 2)
Labeled RNA or DNA (Sample )
教学课件第十三章DNA芯片技术
第三节 DNA芯片技术的应用
DNA测序;杂交测序(SBH) 基因表达分析:
基因组研究:作图、测序、和检测与疾病相关的基因 及在RNA水平上检测致病基因的表达
药物研究与开发:
cDNA microarray expression patterns of small (S) and large (L) neurons
2.压电打印法
压电毛细管喷射器 产率较高
喷墨打印技术
Syringe Pump
Reservoir
Switching Valve
Connecting Tubing
High-Speed MicroSolenoid Valve
Removable Tip Orifice
Controller
(三)DNA微集阵列的制备 方式:预先合成DNA或制备基因探针然后
产率较低
原位合成(In Situ Synthesis)
Light directed oligonucleotide synthesis.
A solid support is derivatized with a covalent linker molecule terminated with a photolabile protecting group. Light is directed through a mask to deprotect and activate selected sites, and protected nucleotides couple to the activated sites. The process is repeated, activating different sets of sites and coupling different bases allowing arbitrary DNA probes to be constructed at each site.
第五章基因克隆-基因芯片35页PPT
(三)人类基因组计划的意义 1.基因诊断和基因治疗
2.疾病预防
3 人类学研究
锦绣般的中国云南红河哈 尼梯田,成为2019年4月5日 出版的美国《科学》杂志的 封面。这份世界权威学术期 刊,以封面文章形式和显著 篇幅,登出中国科学家绘出 水稻基因组工作框架图的历 史性论文。
这是由中国科学家独立 完成的一项世界级研究成果。 “毫无疑问,中国基因组学 研究已达到世界水平”, 《科学》杂志总编、美国国 家科学院院士唐纳德·肯尼 迪对新华社记者说。
Pharmacogenomics & Individualized Therapy
• 机体摄入药物后,经过吸收、分布、药 物与靶细胞作用、生物转化或分解及排 出等一系列过程。每一步都受到特定的 酶、受体或蛋白质的作用和影响。
• 一个药物的总的药理作用都是由多基因 控制的。
• 在药物代谢过程中一பைடு நூலகம்列蛋白和酶的基 因都会对药物作用产生影响
细胞色素氧化酶P450(CYP)
• 是存在于肝细胞内质网和线粒体内的氧 化酶。主要对药物及其他代谢物进行氧 化修饰。
• 细胞色素氧化酶P450种类很多,有的底 物可被几种细胞色素氧化酶P450催化, 而有的细胞色素氧化酶P450可催化几种 不同的底物。
• 细胞色素氧化酶P450的基因命名为CYP。
高集成度、高并行处理能力、自动化分析
基因芯片的4个基本要点 DNA方阵构建
样品制备
检测
杂交
(二)基因芯片技术的主要应用 1.在医药领域中的应用
疾病诊断和治疗、疾病分类、药物筛 选、发病机制、愈后判断、药物筛选和寻 找药物靶标等
应用基因芯片研究宫颈癌相关基因表达
2.基因芯片在农业上的应用 基因芯片广泛用于农作物的优育和优选。
聚类分析-基因芯片ppt课件
常用的系统聚类方法
❖ 一、最短距离法 ❖ 二、最长距离法 ❖ 三、中间距离法 ❖ 四、类平均法 ❖ 五、重心法 ❖ 六、离差平方和法(Ward方法)
❖ 最短距离法、最长距离法、可变法、类平均法、可 变类平均法和离差平方和法都具有单调性,但中间 距离法和重心法不具有单调性。
类的个数
❖ 如果能够分成若干个很分开的类,则类的个数就比 较容易确定;反之,如果无论怎样分都很难分成明 显分开的若干类,则类个数的确定就比较困难了。
❖ 确定类个数的常用方法有: 1.给定一个阈值T。 2.观测样品的散点图。 3.使用统计量。包括R:2 统计量,半偏R2 统计量, 伪F 统计量和伪t2 统计量。
一、最短距离法
❖ 定义类与类之间的距离为两类最近样品间的距离, 即
DKL
min
iGK , jGL
dij
最短距离法的聚类步骤
❖ (1) 规定样品之间的距离,计算 n 个样品的距离矩
阵 D0 ,它是一个对称矩阵。
❖ ❖
(合 (23))并选计成择算一新D个类0新中G类的M 与,最任记小一为元类G素MG,,J 设之即为间G距MDK离L ,G的K则递将G推LG公K 和式为GL
❖ (3)重复步骤(2),直至所有的样品都不能再分配为止。
❖ 最终的聚类结果在一定程度上依赖于初始凝聚点或 初始分类的选择。经验表明,聚类过程中的绝大多 数重要变化均发生在第一次再分配中。
例6.4.2
❖ 对例6.3.3使用k均值法进行聚类,聚类前对各变量作 标准化变换,聚类结果如下:
《基因芯片技术》PPT课件
五、基因芯片的应用
基因表达分析:人类基 因组编码大约100,000个 不同的基因,仅掌握基 因序列信息资料,要理 解其基因功能是远远不 够的,因此,具有监测 大量mRNA的实验工具很 重要。基因芯片技术可 清楚地直接快速地检测 出以1:300,000水平出现 的mRNA,且易于同时监 测成千上万的基因。
高密度芯片的分析一般采用荧光素标记探针,通过适当 内参的设置及对荧光信号强度的标化可对细胞内mRNA的 表达进行定量检测。近年来运用的多色荧光标记技术可 更直观地比较不同来源样品的基因表达差异,即把不同 来源的探针用不同激发波长的荧光素标记,并使它们同 时与基因芯片杂交,通过比较芯片上不同波长荧光的分 布图获得不同样品间差异表达基因的图谱,常用的双色 荧光试剂有Cy3-dNTP和Cy5-dNTP。
(二)样品的准备
样品的分离纯化:DNA , mRNA 扩增:PCR, RT—PCR,固相PCR 探针的标记:已克隆的基因片段、PCR,RT-PCR扩增的基 因片段、人工合成的DNA片段,单链、双链、DNA或RNA 均可作为探针。 荧光标记(常用Cy3、Cy5),生物素、放射性标记,通常 是在待测样品的PCR扩增、逆转录或体外转录过程中实现 对探针的标记。对于检测细胞内mRNA表达水平的芯片,一 般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联 有标记物的dNTP,从而完成对探针的标记过程。
十 基因芯片技术
1 生物芯片简介及分类 2 基因芯片制备及应用
第一节 生物芯片简介及分类
一、生物芯片(biochip)的概念 指通过机器人自动印迹或光引导化学合成技术在硅片、 玻璃、凝胶或尼龙膜上制造的生物分子微阵列,根据分 子间的特异性相互作用的原理,将生命科学领域中不连 续的分析过程集成于芯片表面,以实现对细胞、蛋白质 、基因及其他生物组分的准确、快速、大信息量的检测 。 生物芯片主要特点是高通量、微型化和自动化。