2018年福州初三质检学试题及答案
2018年福州市初中质检化学试题及答案
2018年福州市初中毕业班质量检测(考试时间:45分钟满分:75分)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。
可能用到的相对原子质量:H-1 C-12 O-16第I卷选择题(共30 分)第I卷包含10题,每题3分,共30分。
每题只有一个选项符合题目要求。
请在答题卡选择题栏内用2B铅笔将正确选项涂黑。
1. 下列福州传统工艺制作步骤中,主要发生化学变化的是A. 糊纸伞B.酿米酒C.刻石雕D.磨牛角梳2. 钨酸(H2WO4)中钨元素的化合价为A. + 2B.+ 3C.+ 4D.+ 63. 下列化学用语与其含义不相符的是A. C60 —60个碳原子B. BaSQ —硫酸钡C. 2CH4 —2个甲烷分子+2D. FeCb —氯化亚铁中铁元素为+2价图15. 下列关于水和冰的说法,正确的是A. 分子质量相同B.分子间隔相同C.分子大小不同D.组成元素不同6. 下列物质的用途主要利用其化学性质的是A .稀释 B.取样 C.倾倒D.加热A. 稀有气体用于霓虹灯C.熟石灰改良酸性土壤B. 干冰用于人工降雨D.石墨用作电池电极7. 2017年5月9日,中科院发布了四种新元素的中文名称 (如表1)。
下列说法正确的是A •四种元素都属于金属元素 B. “ Nh ”表示|胃匸单质 C. Og 是地壳中含量最多元素 D •镆原子的相对原子质量是 1158. 鉴别下列各组物质所用的试剂或方法,错误的是 A •硝酸铵和氯化钠 ——水B. ------------------------- 硬水和软水 肥皂水C. 纯铝和硬铝一一互相刻划D. 氢氧化钠和碳酸钠一一酚酞溶液 9. 下列归纳正确的是A •蚕丝和涤纶一一都属于天然纤维 B. KNQ 和CO(NH2)2——都属于复合肥 C.自行车车架喷漆和链条涂油 一一防锈原理相同D. 洗洁精除油污和汽油除油污 一一去污原理相同10. 图2为采用“数字化”实验,由传感器采集实验相关信息描绘出曲线,其中物质 X 表示能与二氧化碳反应的某液体,纵坐标 Y 表示烧杯中的某个量。
完整2018年福州初三质检学试题及答案推荐文档
2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分)(1)3的绝对值是().1 1 cA . - B. - C. 3 D. 33 3(2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是().从正面看(3)中国倡导的一带一路”建设将促进我国与世界各国的互利合作,根据规划,一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是().A . 44 X108B .■4.4X09C. 4.4 X08 D . 4.4 X010(4)如图,数轴上M, N,P,Q四点中,能表示、3的点是().A . M B. N C .P D . QM N P ,Q0 12(5)下列计算正确的是()A. 8a a 8B.( 4 4a) a C . a3 2 6 2 2,2 a a D . (a b) a b⑹下列几何图形不是中心对称图形的是().则图中阴影部分的面积是().(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度,A、B在格点上,现将线段AB向下平移m个单位长度,再向左平移n个单位长度,得到线段A''连接AA ' BB '若四福州质检数学试题1页共4页(泉州彭雪林制作)A .平行四边B.正方形 C .正五边形 D .正六边形(7)如图,AD是半圆O的直径, AD=12 , B、C是半圆O上两点,若, AB=BC=CDA. 6B. 12C. 18D. 24边形AA 'B'B是正方形,则m+n的值是( ).A . 3 B. 4 C. 5 D. 6(9)若数据X仁X2,…,x n的众数为a,方差为b,则数据X1+2 , X2+2,…,X n+2的众数,方差分别是( ).A . a、b B. a、b +2 C. a+2、b D. a+2、b+2(10)在平面直角坐标系xOy 中,A(0,2),B(m,m-2),贝U AB+OB 的最小值是().A . 2 . 5 B. 4 C. 2 3二、填空题:(每小题4分,共24分)1(11) 2 = ________ .(12) _____________________________ 若(13) 不等式2x+1》3勺解集是 ________ .(14) 一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同从袋子中随机摸出1个球,这个球是白球的概率是 ____________ .(15) 如图,矩形ABCD中,E是BC上一点,将△ ABE沿AE折叠,得到△ AFE中点,贝U巴的值是__________ .AB4 k(16) 如图,直线y1= x与双曲线y2= 交于A、B两点,点C在x轴上,连3 x接AC、BC .若/ ACB=90 , △ ABC的面积为10,则k的值是_______________ .、解答题:(共86 分)(17)( 8分)先化简,再求值(1X22x 1x 1,其中x= 2 +1(18)( 8分)C, E在一条直线上, AB // DE, AC // DF,且AC=DF 若F恰好是CD的.y求证:AB=DE .(19)(8 分)如图,在Rt△KBC 中,/C=90°,/B=54°, AD 是△ABC 的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)(20)( 8分)我国古代数学著作《九章算术》的“方程” 一章里,一次方程是由算筹布置而成的. 如图1 ,图中各行从左到右列出的算筹数分别表示未知数x、y的系数与应的常数项,把图1所示的算筹x 4y 10图用我们现在所熟悉的方程组的形式表述出来,就是' ,请你根据图2所示的算6x 11y 34筹图,列出方程组,并求解.I 1111 -TH^III图1(21)( 8分)如图,AB是O O的直径,点C在O O上,过点C若/ COB=2 / PCB,求证:PC是O O的切线.(22) ( 10分)已知y是x的函数,自变量x的取值范围是-3.5 < X手下表是y与x的几组对应值:x-3.5-3-2-101234y4210.670.5 2.03 3.13 3.784请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1) 如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2) 根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号函数图象特征函数变化规律示例1在y轴右侧,函数图象呈上升状态当0<x W 4, y随x的增大而增大示例2函数图象经过点(-2 , 1)当时x=-2时,y=1(i)函数图象的最低点是(0, 0.5)(ii)在y轴左侧,函数图象呈下降状态⑶当a<xW4时,y的取值范围为0.5 < y齐a的取值范围为 _______________(23) ( 10分)李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题: (1)完成右表中(i)、( ii )的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等)•该 公司规定每天 8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由. (ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按 22天计)(24) ( 12分)已知菱形 ABCD , E 是BC 边上一点,连接 AE 交BD 于点F .(1)如图1,当E 是BC 中点时,求证: AF=2EF ;⑵如图2,连接CF ,若AB=5 , BD=8,当△ CEF 为直角三角形时,求 BE 的长;⑶如图3,当/ ABC=90°时,过点 C 作CG 丄AE 交AE 的延长线于点 G ,连接DG ,若BE=BF , 求tan / BDG 的值.bx(a 0, b 0)交x 轴于0、A 两点,顶点为B .(1)直接写出A , B 两点的坐标(用含ab 的代数式表示);公交线路线20路 66路 乘车时间统计量平均数 34(i ) 中位数(ii)302(25)( 14分)如图,抛物线 y axD E图1D E图2DC⑵直线y=kx+m(k>0)过点B ,且与抛物线交于另一点D(点DCE2018年福州市初中毕业班质屍枪测数学试题答案及评分标准•汪分性明iK 礙歸左黯出了 •冲曲几IHR 注從书冒.卿封J 驚注勾義薛着不PC 证VUK 風盟芸主莽 尊点內牌迂吧呻曲爷岳峠甕和应宙澤知泊则・2.刃于计IT ■+自审里的解聲在慕一步H 迟it 剜・师果感堆工为的燃誓梅吏嗣前向客 ««.«.可規彩4的血徒定£醴摊舟的绘养,电苹紳用垃该魅务正■斡并宜抽弧玫4 不;E 果姑遇湍舟制转芒乳竝严匱的汕侥・戟叫再拾血一九 耶許tr 卡断扎井& 瀧貞纠.正故 W.寸 —1耿一1钩辻 4 §显整裁滞- imig 空£」"中拘叽KSJKi 毎小S4#.需分腑井.D <2; D □ m *4) C 小H⑹C 5 AW A (?> C5〕A二.M 空池:是小联」井,@曹上」分一cu t 4W Hi 皿 门讥的< M>i 157 車r!■&)一乐iii 町1)・牌耳带手度盹审酹的微 気,乂・如* * 1!|> ¥ '殊.去埔罟孙卓趙g 小d 無劝弘・酋应号岀:fc 字盘闲 迢期爼罐时如曲律fE WI it ■氏亠[兴|珀”僅十i ....... .......................... …"1 fh二岸”i J 厂1— I <x-iy——* “ ―i —I —-—■ ■ ■p>A Si"h2(X lY分彷 甘t f 7 8I-注士孚=工窪- f■ y生A 迥/和二DET* ff ft* -JC5 …£>AT -AC 网「mcsaF ■. AAS i, 上朋上屮.tenth A 仞做总阳求ft 更苗》B 拙的豪直年专用虹 AritjtHfne^SiAi 红胃时F 號他冲嘗戊遥列覺幷. ...................「■…■ ii ・x - " - ui ^rj-疋明’在凶「・*曲申* /r- .-mi - 5J\AZCJA^^r 1- /CtfA - W-wV.w A.4flt 射苣迟分i 命r \^a.u>\^\ -■ ■ *- fa - —tll,JJ丄由令丫戊息直冶乳』卜丘号仃罐L ・:z “■-+*-£Jf ; 「血曙卅 r・「加* WE 旧 扔叫 ZDAF zTiKr/砂 3d*.,"・/ - ■.-、W .......... ■'f ■ ■ ■ ■ 7 汕 »*r J-Xfl' - ..... .............. ■ ■ --• .. .............. .. ....... .. ■ . ..... * 号zi:样阳A 分.5>・连豪砒书1 W 矗总不叠雨 齐#fr#〕・3帕3宜■祠• “廿”儿殳 ..................,T - II.幡令fQr 殍F ? X I 关 忙卫代人曲.萍“讨 M -1L 埔溝小方腔.褂k 人 杷.代人;u ・Uy <心迪片力色m 的解* J*> >吐 方柑留对LhffH 》.卓4<1坤对一吞律】鞘.119)•KCWu ------ " ------ -- ---------- ------ ------------------ ----- --- 3 ftV ^WliilZPCB ・:.'t:"P ”■' ' 'IF-\"JJ-w XA r「ocjZG< M -■ 'PfRr" ■'■…4 4im圮讯訂奁ih:* 上QCJ *■疋<7TB-W・丄二&冷-亠XUFtz ucP~yo1^ ,11-' .............. .. 1 J I I-^' '■j'飞曲;-tx/丄L屮. ■^ ■ ■■ ,T,7 *:or« ®门的平目.-\Ft* 足/VO:intU就- ■■»■■ it "ji 3进二* 0^-07) LBf7 ? fJ・F F^ODC W・ .................................................... I S 二DCD + 丄T^DfD1—90" ■- ■ I - ■・・占・ ,f =V Oil kItM ^i>ZLWt;f zrafl- izrwx i 今-V-cfCOTr ZJVJJ. …£ 紡;..:V .'I . Cl jRrjmp* 艸r ….…........... ....... ........ 。
2018年福建省福州市初中毕业班质量检测数学试题及答案
(1) 抽样调查的人数共有
人;
(2) 就福州地铁建设情况随机采访该校一名学生,哪部分学生最可能 被采访到,为什么?
22. ( 9 分)某班去看演出,甲种票每张 24 元,乙种票每张 18 元,如 果 35 名学生购票恰好用去 750 元,甲乙两种票各买了多少张? 23. (10 分 ) 如图, AB 为⊙ O的直径,弦 AC=2,∠ B= 30 °,∠ ACB的 平分线交⊙ O于 点 D,求: (1) BC , AD的长。 (2) 图中两阴影部分面积的和.
∴∠ BDE= ∠BAC= ,
∵ BD= 2BC=2sin , ∴ BE=BD· sin =2sin .sin ∴ AE=AB-BE=l-2sin 2 ,
=2sin 2 ,
∴ cos2
AE 1 2sin 2
cos DAE
AD
1
2
1 2sin
阅读以上内容,回答下列问题: (1) 如图 l ,若 BC=1 ,则 cos =
)
>2 .
3.下列图形中,是轴对称图形的是(
)
4. 福州近期空气质量指数 (AQI) 分别为: 78,80, 79, 79, 81, 78,
80, 80,这组数
据的中位数是(
)
A .79
B
.79.5
C
.80
D
.80.5
5.如图, ⊙ O中,半径 OC=4,弦 AB垂直平分 OC,则 AB的长是 ( )
3
(2) 求出 sin 2 的表达式(用含 sin
, cos2 =
;
或 cos 的式子表示) .
25. ( 13 分)如图,△ AABC 中, AC=8, BC=6, AB =10.点 P 在 AC 边
2018年福建九地市数学质检试卷及答案9份
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A. x =-1aB. x =-2aC. x =1a D . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A. ∠A B. ∠B C. ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查图1ED C BAC.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A. p -1B. p -85C. p -967D. 8584 p6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A. 2.4 B. 3.0 C. 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A. B 是线段AC 的中点 B. B 是线段AD 的中点 C. C 是线段BD 的中点 D. C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学,可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A. 因为a >b +c ,所以a >b ,c <0B. 因为a >b +c ,c <0,所以a >bC. 因为a >b ,a >b +c ,所以c <0 D . 因为a >b ,c <0,所以a >b +c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):图2ABC(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·l a 2-a 1+l .则上述公式中,d 表示的是A.QA 的长B. AC 的长C.MN 的长D.QC 的长二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D处,图4B图3泊水平线设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l 经过第一、二、四象限, 点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点, 且DE =AB ,连接AE ,BD ,证明AE =BD .l图6图7EABCD图5FEA BC D21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;图8OAB CDE(2)∠DBC =30°,CE =CD ,∠DCE <90°,若OE =22BD , 求∠DCE 的度数.23.(本题满分11分)已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。
2018届福建省福州市九年级上学期期末质检数学试题及答案
福州市2018学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 214(正确一个得2分)三、解答题:(满分90分) 16.(每小题7分,共14分)解:(1) 8×12×18÷27 =22×23×32÷3 3 ……………………………………………………………4分=8. ……………………………………………………………………………………7分(2) 9x +6 x4-2x 1x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分 17.解:(1)△A 1B 1C 1如右下图; ………………………………………………………………3分(2)A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎨⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分解得:⎩⎨⎧a =1b =-4c =3, …………………………………10分∴抛物线的解析式为:y =x 2-4x +3. ……………11分[来源:Z 。
xx 。
](答案用一般式或顶点式表示,否则扣2分) (4) 表格填写合理正确得2分,图像正确得2分.x … 0 1 23[来源:学§科§网]4 …y =x 2-… 3 0 -0 3 …A B C O xy A 1B 1C 1y =x 2-4x +34x +3 1二次函数y =x 2-4x +3的图像如右图.18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种. …………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=612 =12. ………………………………6分 (2) 列树状图如下:……………9分由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现1 2 3 5 1235 1235 1235 小明 小强小明 小强1 2 3 5 12 35 12 35 12 35 12 35的可能性相等.其中x与y的积为偶数有7种.……………………………………………………………………………10分∴小明获胜的概率P(x与y的积为偶数)=716<12,……………………………11分(或证明716≠916也可)∴游戏规则不公平. (12)分19.解:(1) 设这两年该县旅游纯收入的年平均增长率为x.根据题意得:………………1分2000(1+x)2=2880.…………………………………………………………4分解得:x1=0.2=20%,x2=-2.2 (不合题意,舍去).………………………6分答:这两年该县旅游纯收入的年平均增长率为20%.………………………7分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该县旅游纯收入为2880(1+0.2)2=4147.2(万元).………………………9分答:预测2015年该县旅游纯收入约4147.2万元. ………………………10分20.解:(1) 连接OC . …………………………………………1分∵AB 是⊙O 的直径,∴∠ACB =90°,即∠ACO +∠OCB =90°. ………2分 ∵OA =OC ,∴∠A =∠ACO , ………………………………3分 ∵∠A =∠PCB ,∴∠ACO =∠PCB . ………………………………4分∴∠PCB +∠OCB =∠ACO +∠OCB =90°,即∠PCO =90°. ∴PC ⊥OC . ………………………………5分 又∵OC 为⊙O 的半径,∴PC 是⊙O 的切线. ………………………………6分(2) ∵AC =PC ,∴∠A =∠P , ………………………………………7分 ∴∠PCB =∠A =∠P .∴BC =BP =1. ………………………………………8分 ∴∠CBO =∠P +∠PCB =2∠PCB . 又∵∠COB =2∠A =2∠PCB ,∴∠COB =∠CBO , …………………………………9分 ∴BC =OC . 又∵OB =OC ,∴OB =OC =BC =1,即△OBC 为等边三角形. ……10分A BCOP∴∠COB =60°. ………………………………11分 ∴l ⌒BC = 1×60π 180= 13π. ……………………………12分21.解:(1) DC +CE =2; …………………………………3分(2) 结论成立.连接PC ,如图. …………………………4分[来源:学,科,网Z,X,X,K]∵△ABC 是等腰直角三角形,P 是AB 的中点, ∴CP =PB ,CP ⊥AB ,∠ACP = 12∠ACB =45°.∴∠ACP =∠B =45°,∠CPB =90°. …………………5分 ∴∠BPE =90°-∠CPE . 又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分 ∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分 ∴DC +CE =EB +CE =BC =2. ……………………8分 (3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分 由(2)可知:PD =PE ,∠PDC =∠PEB ,∴△PDM ≌△PEF , ………………………………11分 ∴∠DPM =∠EPF ,PM =PF .∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM=∠DPE -∠MPNA BCD EPA BCD E MPNF=45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分 ∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM =DC +CE =2.∴△CMN 的周长是2. …………………………………13分 22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分 ∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分 ∴AB 的长为23. ………………………………5分(由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1), 由y =x 2-4x +1=(x ―2)2―3,可知抛物线的对称轴为直线x =2, ……………………6分 设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD , ∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分 解得:n =1, …………………………………………9分 ∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分 (3) 解法一:由(2)知,C 是弧MN 的中点.A BCO xyD在半径DN 上截取EN = MG , ……………………11分 又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) ∴S △CEP =2S △CDP =2× 1 2·CD ·n -1=4,∴n 1=3,n 2=-1. ……………………………………13分[来源:]由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去). ∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b,解得:⎩⎨⎧k = n -1 m b =1,∴直线PC 的解析式为y = n -1mx +1. …………………11分ABC O xyDE MPNGABC O xyDMPNG当x=2时,c= 2(n-1)m+1.由(2)知,C是弧MN的中点,连接CD,图形PCN的面积与图形PMC的面积差为:=S扇形DCN+S△GCD+S△PGN-(S扇形MCD-S△GCD+S△PMG)=2S△GCD+S△PGN-S△PMG=2×12×2(c-1)+12(1+c)(m―2)―12(3―c)(m―2)=2(c-1)+12(2c―2)(m―2)=(c-1)(2+m―2)=[ 2(c-1)m+1―1]m=2(n-1)=4.[来源:]∴n1=3,n2=-1.……………………………………13分由点P在抛物线y=x2-4x+1上,得:x2-4x+1=3,解得:x1=2+6,x2=2-6(舍去);或x2-4x+1=-1,解得:x3=2+2,x4=2-2(舍去).∴点P的坐标为(2+2,-1)或(2+6,3). (14)分。
2018年福州质检数学试题及答案
2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108B .×109C .×108D .×1010(4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=-(6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形 (7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四 边形AA ’B ’B 是正方形,则m+n 的值是( ).A .3B .4C .5D .6C DB AADC BOAB(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分) (11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 若F 恰好是CD 的中点,则ABAD 的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=xk交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB∥DE,AC∥DF,且AC=DF 求证:AB=DE .(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)A BCEABCDEFABCD(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的 点,画出该函数的图象;图1图2Axy(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a <x≤4时,y 的取值范围为≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题: (1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE⊥x 轴于点E ,连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3求CEAB 的取值范国.ABCDEF图1ABCDEF图2 ABCDEFG图3。
2018-2019福州市质检试卷及答案
准考证号:姓名:1(在此卷上答题无效)2018—2019学年度福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束后,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列天气预报的图标中既是轴对称图形又是中心对称图形的是A B C D2.地球绕太阳公转的速度约为110000千米/时,将110000用科学记数法表示,其结果是A .61.110⨯B .51.110⨯C .41110⨯D .61110⨯3.已知△ABC ∽△DEF ,若面积比为4∶9,则它们对应高的比是A .4∶9B .16∶81C .3∶5D .2∶34.若正数x 的平方等于7,则下列对x 的估算正确的是A .1<x <2B .2<x <3C .3<x <4D .4<x <55.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是A .15°B .22.5°C .30°D .45°6.下列各式的运算或变形中,用到分配律的是A.=B .222()ab a b =C .由25x +=得52x =-D .325a a a+=7.不透明的袋子中装有除颜色外完全相同的a 个白球、b 个红球、c 个黄球,则任意摸出一个球,是红球的概率是A .b a c +B .a c a b c +++C .b a b c ++D .a c b+8.如图,等边三角形ABC 边长为5,D ,E 分别是边AB ,AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD的长是A .247B .218C .3D .29.已知Rt △ABC ,∠ACB =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到射线AD 的距离是A .2B.CD .310.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是A .容易题和中档题共60道B .难题比容易题多20道C .难题比中档题多10道D .中档题比容易题多15道AE D B CF A21C B a bA xy B CO 1098760成绩/环次数12345678910乙甲第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.分解因式:34m m -=.12.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.13.如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是.14.若分式65m m -+-的值是负整数,则整数m 的值是.15.在平面直角坐标系中,以原点为圆心,5为半径的⊙O 与直线23y kx k =++(0k ≠)交于A ,B 两点,则弦AB 长的最小值是.16.如图,在平面直角坐标系中,O 为原点,点A 在第一象限,点B 是x 轴正半轴上一点,∠OAB =45°,双曲线k y x =过点A ,交AB 于点C ,连接OC ,若OC ⊥AB ,则tan ∠ABO的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)计算:3tan 30-+︒-(3.14π-)0.18.(本小题满分8分)如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .19.(本小题满分8分)先化简,再求值:(11x -)2221x x x -+÷,其中1x +.20.(本小题满分8分)如图,在Rt △ABC 中,∠ACB =90°,BD 平分∠ABC .求作⊙O ,使得点O 在边AB 上,且⊙O 经过B ,D 两点;并证明AC 与⊙O 相切.(要求尺规作图,保留作图痕迹,不写作法)B C AD 21CA BD如图,将△ABC 沿射线BC 平移得到△A ′B ′C ′,使得点A ′落在∠ABC 的平分线BD 上,连接AA ′,AC ′.(1)判断四边形ABB ′A ′的形状,并证明;(2)在△ABC 中,AB =6,BC =4,若AC ′⊥A′B′,求四边形ABB ′A ′的面积.22.(本小题满分10分)为了解某校九年级学生体能训练情况,该年级在3月份进行了一次体育测试,决定对本次测试的成绩进行抽样分析.已知九年级共有学生480人.请按要求回答下列问题:(1)把全年级同学的测试成绩分别写在没有明显差别的小纸片上,揉成小球,放到一个不透明的袋子中,充分搅拌后,随意抽取30个,展开小球,记录这30张纸片中所写的成绩,得到一个样本.你觉得上面的抽取过程是简单随机抽样吗?答:.(填“是”或“不是”)(2)下表是用简单随机抽样方法抽取的30名同学的体育测试成绩(单位:分):596977737262797866818584838486878885868990979198909596939299若成绩为x 分,当x ≥90时记为A 等级,80≤x <90时记为B 等级,70≤x <80时记为C 等级,x <70时记为D 等级,根据表格信息,解答下列问题:①本次抽样调查获取的样本数据的中位数是;估计全年级本次体育测试成绩在A ,B 两个等级的人数是;②经过一个多月的强化训练发现D 等级的同学平均成绩提高15分,C 等级的同学平均成绩提高10分,B 等级的同学平均成绩提高5分,A 等级的同学平均成绩没有变化,请估计强化训练后全年级学生的平均成绩提高多少分?23.(本小题满分10分)某汽车销售公司销售某厂家的某款汽车,该款汽车现在的售价为每辆27万元,每月可售出两辆.市场调查反映:在一定范围内调整价格,每辆降低0.1万元,每月能多卖一辆.已知该款汽车的进价为每辆25万元.另外,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,超过的部分每辆返利1万元.设该公司当月售出x 辆该款汽车.(总利润=销售利润+返利)(1)设每辆汽车的销售利润为y 万元,求y 与x 之间的函数关系式;(2)当x >10时,该公司当月销售这款汽车所获得的总利润为20.6万元,求x 的值.B AC A'B'C'D在正方形ABCD 中,E 是对角线AC 上一点(不与点A ,C 重合),以AD ,AE 为邻边作平行四边形AEGD ,GE 交CD 于点M ,连接CG .(1)如图1,当AE <12AC 时,过点E 作EF ⊥BE 交CD 于点F ,连接GF 并延长交AC 于点H .①求证:EB =EF ;②判断GH 与AC 的位置关系,并证明;(2)过点A 作AP ⊥直线CG 于点P ,连接BP ,若BP =10,当点E 不与AC 中点重合时,求PA 与PC 的数量关系.B C D A E GM FH B CD A 图1备用图25.(本小题满分13分)已知抛物线1(5)()2y x x m =-+-(m >0)与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .(1)直接写出点B ,C 的坐标;(用含m 的式子表示)(2)若抛物线与直线12y x =交于点E ,F ,且点E ,F 关于原点对称,求抛物线的解析式;(3)若点P 是线段AB 上一点,过点P 作x 轴的垂线交抛物线于点M ,交直线AC 于点N ,当线段MN 长的最大值为258时,求m 的取值范围.答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:每小题4分,满分40分.1.A 2.B 3.D 4.B 5.C 6.D 7.C 8.B9.C 10.B 二、填空题:每小题4分,满分24分.11.(2)(2)m m m +-12.正方体13.甲14.415.16注:12题答案不唯一,能够正确给出一种符合题意的几何体即可给分,如:某个面是正方形的长方体,底面直径和高相等的圆柱,等.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程和演算步骤.17.解:原式31=+-·····································································6分311=+-··············································································7分3=.···················································································8分18.证明:∵∠1=∠2,∴∠ACB =∠ACD .·····································3分在△ABC 和△ADC 中,B D ACB ACD AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABC ≌△ADC (AAS ),··························································6分∴CB =CD .·············································································8分注:在全等的获得过程中,∠B =∠D ,AC =AC ,△ABC ≌△ADC ,各有1分.19.解:原式22121x x x x x--+=÷··································································1分21C A BD221(1)x x x x -=⋅-·······································································3分1x x =-,··············································································5分当1x 时,原式=·····················································6分==.······················································8分20.解:BC AD O·············································3分如图,⊙O 就是所求作的圆.·························································4分证明:连接OD .∵BD 平分∠ABC ,∴∠CBD =∠ABD .·····························································5分∵OB =OD ,∴∠OBD =∠ODB ,∴∠CBD =∠ODB ,·····························································6分∴OD ∥BC ,∴∠ODA =∠ACB又∠ACB =90°,∴∠ODA =90°,即OD ⊥A C .······································································7分∵点D 是半径OD 的外端点,∴AC 与⊙O 相切.······························································8分注:垂直平分线画对得1分,标注点O 得1分,画出⊙O 得1分;结论1分.21.(1)四边形ABB ′A ′是菱形.··································································1分证明如下:由平移得AA ′∥BB ′,AA ′=BB ′,∴四边形ABB ′A ′是平行四边形,∠AA ′B =∠A ′B C .··············2分∵BA ′平分∠ABC ,∴∠ABA ′=∠A ′BC ,∴∠AA ′B =∠A ′BA ,······················································3分∴AB =AA ′,∴□ABB ′A ′是菱形.·······················································4分(2)解:过点A 作AF ⊥BC 于点F .由(1)得BB ′=BA =6.D由平移得△A ′B ′C ′≌△ABC ,∴B ′C ′=BC =4,∴BC ′=10.·····························5分∵AC ′⊥A ′B ′,∴∠B ′EC ′=90°,∵AB ∥A ′B ′,∴∠BAC ′=∠B ′EC ′=90°.在Rt △ABC ′中,AC′8==.····································6分∵S △ABC ′1122AB AC BC AF ''=⋅=⋅,∴AF 245AB AC BC '⋅==',····························································7分∴S 菱形ABB ′A ′1445BB AF '=⋅=,∴菱形ABB ′A ′的面积是1445.···················································8分22.(1)是;···························································································2分(2)①85.5;336;··············································································6分②由表中数据可知,30名同学中,A 等级的有10人,B 等级的有11人,C 等级的有5人,D 等级的有4人.依题意得,15410551101030⨯+⨯+⨯+⨯··········································8分5.5=.·······································································9分∴根据算得的样本数据提高的平均成绩,可以估计,强化训练后,全年级学生的平均成绩约提高5.5分.············································10分23.解:(1)27250.1(2)0.1 2.2y x x =---=-+;··········································4分(2)依题意,得(0.1 2.2)0.5101(10)20.6x x x -++⨯+⨯-=,··················7分解得1216x x ==.···································································9分答:x 的值是16.·································································10分注:(1)中的解析式未整理成一般式的扣1分.24.(1)①证明:∵四边形ABCD 是正方形,∴∠ADC =∠BCD =90°,CA 平分∠BCD .∵EF ⊥EB ,∴∠BEF =90°.证法一:过点E 作EN ⊥BC 于点N ,···········1分∴∠ENB =∠ENC =90°.∵四边形AEGD 是平行四边形,∴AD ∥GE ,∴∠EMF =∠ADC =90°,∴EM ⊥CD ,∠MEN =90°,∴EM =EN ,·······················································2分∵∠BEF =90°,∴∠MEF =∠BEN ,∴△EFM ≌△EBN ,∴EB =EF .························································3分B C D A E GM F N H证明二:过点E 作EK ⊥AC 交CD 延长线于点K ,··················1分∴∠KEC =∠BEF =90°,∴∠BEC =∠KEF ,∵∠BEF +∠BCD =180°,∴∠CBE +∠CFE =180°.∵∠EFK +∠CFE =180°,∴∠CBE =∠KFE .又∠ECK =12∠BCD =45°,∴∠K =45°,∴∠K =∠ECK ,∴EC =EK ,························································2分∴△EBC ≌△EFK ,∴EB =EF .························································3分证明三:连接BF ,取BF 中点O ,连接OE ,OC .·················1分∵∠BEF =∠BCF =90°,∴OE =12BF =OC ,∴点B ,C ,E ,F 都在以O 为圆心,OB 为半径的⊙O 上.∵ BEBE =,∴∠BFE =∠BCA =45°,·········2分∴∠EBF =45°=∠BFE ,∴EB =EF .························································3分②GH ⊥AC .···············································································4分证明如下:∵四边形ABCD 是正方形,四边形AEGD 是平行四边形,∴AE =DG ,EG =AD =AB ,AE ∥DG ,∠DGE =∠DAC =∠DCA =45°,∴∠GDC =∠ACD =45°.············································5分由(1)可知,∠GEF =∠BEN ,EF =EB .∵EN ∥AB ,∴∠ABE =∠BEN =∠GEF ,∴△EFG ≌△BEA ,·····················6分∴GF =AE =DG ,∴∠GFD =∠GDF =45°,∴∠CFH =∠GFD =45°,∴∠FHC =90°,∴GF ⊥AC .······························································7分(2)解:过点B 作BQ ⊥BP ,交直线AP 于点Q ,取AC 中点O ,∴∠PBQ =∠ABC =90°.∵AP ⊥CG ,∴∠APC =90°.C D G M F A E N B H B C D A E GM F O H G B C D A E M F K H①当点E 在线段AO 上时,(或“当102AE AC <<时”)∠PBQ -∠ABP =∠ABC -∠ABP ,即∠QBA =∠PBC .································8分∵∠ABC =90°,∴∠BCP +∠BAP =180°.∵∠BAP +∠BAQ =180°,∴∠BAQ =∠BCP .································9分∵BA =BC ,∴△BAQ ≌△BCP ,······························10分∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴PA +PC =PA +AQ =PQ=········································11分②当点E 在线段OC 上时,(或“当12AC AE AC <<时”)∠PBQ -∠QBC =∠ABC -∠QBC ,即∠QBA =∠PBC .∵∠ABC =∠APC =90°,∠AKB =∠CKP ,∴∠BAQ =∠BCP .·······························12分∵BA =BC ,∴△BAQ ≌△BCP ,∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴PA -PC =PA -AQ =PQ=············13分综上所述,当点E 在线段AO 上时,PA +PC=当点E 在线段OC 上时,PA -PC=25.(1)B (m ,0),C (0,52m );·····························································2分解:(2)设点E ,F 的坐标分别为(a ,2a ),(a -,2a -),························3分代入25111(5)()(5)2222y x x m x m x m =-+-=-+-+,得22511(5)2222511(5)2222a a m a m a a m a m ⎧-+-+=⎪⎨⎪---+=-⎩①,②·········································4分由①-②,得(5)m a a -=.∵0a ≠,∴6m =,·············································································5分∴抛物线的解析式为2111522y x x =-++.··································6分(3)依题意得A (5-,0),C (0,52m ),由0m >,设过A ,C 两点的一次函数解析式是y kx b =+,九年级数学—11—(共5页)将A ,C 代入,得5052k b b m -+=⎧⎪⎨=⎪⎩.,解得1252k m b m ⎧=⎪⎨⎪=⎩,,∴过A ,C 两点的一次函数解析式是5122y mx m =+.····················7分设点P (t ,0),则5t m - (0m >),∴M (t ,2511(5)222t m t m -+-+),N (t ,5122mt m +).①当50t - 时,∴MN 255111(5)()22222t m t m mt m =-+-+-+25122t t =--.·····························································8分∵102-<,∴该二次函数图象开口向下,又对称轴是直线52t =-,∴当52t =-时,MN 的长最大,此时MN 2555251()(22228=-⨯--⨯-=.·································9分②当0t m < 时,∴MN 255111[(5)]22222mt m t m t m =+--+-+25122t t =+.············10分∵102>,∴该二次函数图象开口向上,又对称轴是直线52t =-,∴当0t m < 时,MN 的长随t 的增大而增大,∴当t m =时,MN 的长最大,此时MN 25122m m =+.···············11分∵线段MN 长的最大值为258,∴25251228m m + ,·······························································12分整理得2550(24m + ,m ∵0m >,∴m 的取值范围是0m < .········································13分。
【数学答案】2018福州5月初三质检考试
E A
N
如图,MN 就是所求作的线段 AB 的垂直平分线,点 E 就是所求作的点,线段 BE 就 是所要连接的线段. ·········································································· 4 分 证明:在 Rt△ABC 中,∠C = 90°,∠CBA = 54°, ∴∠CAB = 90° − ∠CBA = 36°. ···················································· 5 分 ∵AD 是△ABC 的角平分线, ∴∠BAD = 1 ∠CAB = 18°. ······················································· 6 分 2 ∵点 E 在 AB 的垂直平分线上, ∴EA = EB, ∴∠EBA = ∠EAB = 18°, ∴∠DEB = ∠EBA + ∠EAB = 36°,∠DBE = ∠CBA − ∠EBA = 36°, ∴∠DEB = ∠DBE, ································································· 7 分 ∴DE = DB. ··········································································· 8 分 注:作图 3 分,垂直平分线画对得 2 分,连接 BE 得 1 分;结论 1 分(结论不全面 不给分) .
注:方程写对一个得 2 分,未知数解对一个得 2 分.
数学试题答案及评分参考 第 2 页(共 7 页)
(21)证法一:连接 AC. ··········································································· 1 分 = CB , ∵ CB ∴∠COB = 2∠CAB. ····························································· 2 分 ∵∠COB = 2∠PCB, ∴∠CAB = ∠PCB. ······························································· 3 分 ∵OA = OC, C ∴∠OAC = ∠OCA, ∴∠OCA = ∠PCB. ································ 4 分 A B P O ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ····································· 5 分 ∴∠OCA + ∠OCB = 90°, ∴∠PCB + ∠OCB = 90°, 即∠OCP = 90°, ··································································· 6 分 ∴OC⊥CP. ········································································ 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分 证法二:过点 O 作 OD⊥BC 于 D,则∠ODC = 90°, ································ 1 分 ∴∠OCD + ∠COD = 90°. ······················································ 2 分 ∵OB = OC, C ∴OD 平分∠COB, D ∴∠COB = 2∠COD. ······························ 3 分 A B P O ∵∠COB = 2∠PCB, ∴∠COD = ∠PCB, ································ 4 分 ∴∠PCB + ∠OCD = 90°, 即∠OCP = 90°, ··································································· 6 分 ∴OC⊥CP. ········································································ 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分 证法三:设∠PCB = x°, ····································································· 1 分 则∠COB = 2x°. ··································································· 2 分 ∵OB = OC, C ∴∠OCB = 180° − 2 x° = 90° − x°,··············· 4 分 2 A B P O ∴∠OCP = ∠OCB + ∠PCB = 90° − x° + x° = 90°, ··················· 6 分 ∴OC⊥PC. ·········································· 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分
〖中考零距离-新课标〗2018年福建省初中毕业生学业质量测查数学试题及答案解析
2018年福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±22.下列计算错误..的是( ) A .6a + 2a =8a B .a – (a – 3) =3 C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 则该班学生捐款金额的中位数是( )A .13B .12C .10D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136E B D O CA (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是 度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22= . 11.分解因式:xy 2 – 9x = .12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 .13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE = . 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+-(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式y x yyx xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标; (2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2= ;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG 与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C 二、填空题(每小题4分,共40分)8. 20; 9. 46.810⨯; 10. 1; 11. (3)(y 3)x y +-; 12. 54°; 13. 1:3;14. 2; 15. 3π; 16. 12; 17.(1)(3,0); (2)303k -≤<. 三、解答题(共89分) 18.(本小题9分)解:原式23431=--+- ……………………(8分) 3=- ……………………(9分)19.(本小题9分)解:原式=2x 2+2x +x 2﹣2x +1,……………………(6分)=3x 2+1……………………(7分)当x =2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD 是菱形, ∴AD =CD ;∠A =∠C ,……………………(6分) 又∵DE ⊥AB 于E ,DF ⊥BC 于F,∴∠AED =∠CFD =90°; ……………………(8分) 在△ADE 和△CDF 中,∠A =∠C ,∠AED =∠CFD , AD =CD ; ∴△ADE ≌△CDF .……………………(9分) 21.(本小题9分) 解:(1)200,36.……………………(4分) 画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元)答:开展本次活动共需9608元经费. ……………………(9分)22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分) ∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵ -2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分)(2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分) 连结AB ,则∠ABC =∠BCD =135 º,且AB =2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BCAB CD =∙;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1), 在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD =2HD =21(m )-∴22=2×21(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)(解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,(图2)可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BFAC AG = ∴2213BD +=21 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4, 解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) =-11120x 2+75x +240……………………8分 (图3)∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分) 25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==- 在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分)∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠ ∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得: AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD += ; 在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分)整理得:32216320,a a a ---= ∴ (2)(4)(4)0a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.……………………(1分)∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.……………………(2分)∴四边形EFCG是矩形.……………………(3分)(2)由(1)知四边形EFCG是矩形.∴CF∥EG,∴∠CEG=∠ECF,∵∠ECF=∠EDF,∴∠CEG=∠EDF,……………………(4分)在Rt△ABD中,AB=3,AD=4,∴tan34ABBDAAD∠==,……………………(5分)∴tan∠CEG= 34;……………………(6分)(3)∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∴tan∠FCE=tan∠CEG=3 4∵∠CFE=90°,∴EF=34CF, ……………………(7分)∴S矩形EFCG=234CF;……………………(8分)连结OD,如图2①,∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°……………………(9分)(Ⅰ)当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′)处,如图2①所示.此时,CF=CB=4.……………(10分)(Ⅱ)当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.……………(11分)(Ⅲ)当CF⊥BD时,CF最小,如图2③所示.S△BCD=12BC×CD=12BD×CF,∴4×3=5×CF∴CF=125.……………(12分)∴125≤CF≤4.……………(13分)∵S矩形EFCG=234CF,∴34×(125)2≤S矩形EFCG≤34×42.∴10825≤S矩形EFCG≤12.……………(14分)。
2018-年-福-州-市-初-中-毕-业-班-质-量-检-测试卷及答案
A .糊纸伞B .酿米酒C .刻石雕D .磨牛角梳 A .+ 2 B .+ 3C.+ 4 D .+ 61所示,其中正确的是 ()D .加热A. 分子质量相同B. 分子间隔相同 C. 分子大小不同D. 组成元素2018年福州市初中毕业班质量检测(考试时间:45分钟 满分:75分) 可能用到的相对原子质量:H-1C-12O-16第I 卷 选择题第I 卷包含10题,每题3分,共30分。
每题只有一个选项符合题目要求1.下列福州传统工艺制作步骤中,主要发生化学变化的是()2.钨酸(H 2WO 4)中钨元素的化合价为 ()3. 下列化学用语与其含义不相符的是()A . C 60 — 60个碳原子B . BaSC 4 —硫酸钡 C. 2CH 4 —2个甲烷分子D . +2FeCb —氯化亚铁中铁元素为+2价4.实验室配制稀硫酸并用其与氧化铜反应,部分操作如图5. 下列关于水和冰的说法,正确的是( )6.下列物质的用途主要利用其化学性质的是( )A .稀释B.取样C.倾倒7. 2017年5月9日,中科院发布了四种新元素的中文名称(如表1)。
下列说法正确的是A .四种元素都属于金属元素()B. “ Nh”表示单质C . Og是地壳中含量最多元素D .镆原子的相对原子质量是115 丰,表18. 鉴别下列各组物质所用的试剂或方法,错误的是()A .硝酸铵和氯化钠——水B. -------------------------- 硬水和软水肥皂水C. 纯铝和硬铝一一互相刻划D. 氢氧化钠和碳酸钠一一酚酞溶液9. 下列归纳正确的是()A .蚕丝和涤纶一一都属于天然纤维B. KNQ和CO(NH2)2——都属于复合肥C. 自行车车架喷漆和链条涂油一一防锈原理相同D. 洗洁精除油污和汽油除油污一一去污原理相同10. 图2为采用“数字化”实验,由传感器采集实验相关信息描绘出曲线,其中物质X表示能与二氧化碳反应的某液体,纵坐标Y表示烧杯中的某个量。
2018年度福建九地市数学质检试卷及答案解析9份
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A. x =-1aB. x =-2aC. x =1a D . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A. ∠A B. ∠B C. ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查图1ED CBA方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查C.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A. p -1B. p -85C. p -967D. 8584p6. 如图2,在Rt △ACB 中,∠C =90°,∠A =37°,AC =4, 则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A. 2.4 B. 3.0 C. 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A. B 是线段AC 的中点 B. B 是线段AD 的中点 C. C 是线段BD 的中点 D. C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本图2ABC9. 已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是A. 因为a>b+c,所以a>b,c<0B. 因为a>b+c,c<0,所以a>bC. 因为a>b,a>b+c,所以c<0 D . 因为a>b,c<0,所以a>b+c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ(如图3):(1)测量者在水平线上的A处竖立一根竹竿,沿射线QA方向走到M处,测得山顶P、竹竿顶点B及M在一条直线上;(2)将该竹竿竖立在射线QA上的C处,沿原方向继续走到N处,测得山顶P,竹竿顶点D及N(3)设竹竿与AM,CN的长分别为l,a1,a2,可得公式:PQ=d·la2-a1+l.则上述公式中,d表示的是A.QA的长B. AC的长C.MN的长D.QC的长二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:m2-2m= .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是 .图4OA BCD图3湖泊CDNPM ABQ水平线13.如图4,已知AB是⊙O的直径,C,D是圆上两点,∠CDB=45°,AC=1,则AB的长为 .14.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等.设B型机器人每小时搬运x kg化工原料,根据题意,可列方程__________________________.15.已知a+1=20002+20012,计算:2a+1= .16.在△ABC中,AB=AC.将△ABC沿∠B的平分线折叠,使点A落在BC边上的点D处,设折痕交AC边于点E,继续沿直线DE折叠,若折叠后,BE与线段DC相交,且交点不与点C重合,则∠BAC的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x-1)+1=x.18.(本题满分8分)如图5,直线EF分别与AB,CD交于点A,C,若AB∥CD,CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)l图5FEA B C D如图6,平面直角坐标系中,直线l 经过第一、二、四象限, 点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点,且DE =AB ,连接AE ,BD ,证明AE =BD .21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.项目交通工具交通工具使用燃料交通工具维修 市内公共交通城市间交通 占交通消费的22%13%5%p26%图7EABCD比例相对上一年的价格的涨幅1.5% m% 2% 0.5% 1%(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22 BD,求∠DCE的度数.23.(本题满分11分)图8OAB CDE已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。
2018年福州市初中毕业班质量检测语文试卷.doc
2018年福州市初中毕业班质量检测语文试题(全卷共6页,23小题;完卷时间120分钟;满分150分)一、积累与运用(20分)1.古诗文默写。
(12分)(1)日月之行,若出其中,星汉灿烂,若出其里。
(曹操《观沧海》)(2)子夏曰:“博学而笃志,切问而近思,仁在其中矣。
”(《论语》)(3)会当凌绝顶,一览众山小。
(杜甫《望岳》)(4)困于心衡于虑而后作,征于色发于声而后喻。
(《孟子》)(5)衔远山,吞长江,浩浩汤汤,横无际涯。
(范仲淹《岳阳楼记》)(6)岑参在《白雪歌送武判官归京》中以奇特的想象,用春景写冬景,写出边塞瑰丽风光的诗句是:“忽如一夜春风来,千树万树梨花开。
”(7)李白在《闻王昌龄左迁龙标遥有此寄》中以富于创造力的诗句“我寄愁心与明月,随风直到夜郎西。
”表达了对友人的关切和思念之情。
(8)人要站得高,看得远,才不会被眼前的事物所蒙蔽。
正如王安石在《登飞来峰》中说的:“不畏浮云遮望眼,自缘身在最高层。
”2.下列文学常识的表述错误的一项是( C )(2分)A.《论语》是记录孔子及其弟子言行的一部书,是儒家经典著作之一,与《大学》《中庸》《孟子》并称为“四书”。
B.鲁迅先生的《孔乙己》一文塑造了一位处在社会底层,生活穷困潦倒,最终被强大黑暗势力所吞没的读书人形象。
C.莎士比亚是欧洲文艺复兴时期法国杰出的戏剧家和诗人,他的四大悲剧是《李尔王》《哈姆莱特》《威尼斯商人》《麦克白》D.奥楚蔑洛夫是俄国作家契诃夫所著《变色龙》中的主人公,这篇小说紧扣“变”字刻画了沙皇忠实走狗的丑恶嘴脸,揭露了沙皇统治时期的黑暗腐朽。
3.阅读下面的文字,按要求作答。
(6分)走过2017年,我学会了脚踏实地,与人为善;懂得了见素抱朴,少私寡欲; 甲 (A领教 B领悟)了一分耕耘,一分收获。
得意时直挂云帆济沧海,失意时面对现实一声笑。
自信而不自负,迷恋而不迷wǎng( );坦率而不任性。
在这样的人生理念中,我们以乙 (A坚强 B坚实)的步履( )和担当的勇气,向时代诠释着一种新精神:不必是“高富帅”“白富美”,自己一样可以通过不懈的奋斗,拥有一份简单而充实。
2018年初三数学质检卷精选题PDF版
2018年福州市初中毕业班质量检查•精选一、选择题(每小题4分)(4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ).A .MB .NC .PD .Q(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度,A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向左平移n 个单位长度,得到线段A’B’,连接AA’,BB’,若四边形AA’B’B 是正方形,则m+n 的值是( ).A .3B .4C .5D .6(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ).A .25B .4C .23D .2二、填空题,每小题4分(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 若F 恰好是CD 的中点,则AB AD 的值是________.(16)如图,直线y 1=x 34−与双曲线y 2=x k 交于A 、B 两点,点C 在x 轴上,连 接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________.三、解答题(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是-3.5≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的 点,画出该函数的图象;(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题:(1)完成右表中(i)、(ⅱ)的数据:(2)李先生从家到公司,除乘车时间外另需10分钟(含等车、步行等).该公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)参考答案:一、选择题(4)C (8)A (9)C (10)A二、填空题:每小题 4 分,满分 24 分.(15) (16)−6三、解答题公交线路线 20路 66路 乘车时间统计量 平均数 34 (i ) 中位数 (ii) 302018年厦门市初中总复习教学质量检测•精选一、选择题(每小题4分,每小题都有四个选项,其中有且只有一个选项正确)5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D . 8584 p6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A . 2.4B . 3.0C . 3.2D . 5.09. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式:PQ =d ·l a 2-a 1+l . 则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长二、填空题(每小题4分) 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D处,设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.图3 湖泊 C D NP M A B Q水平线(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.参考答案二、填空题(本大题共6小题,每题4分,共24分)15. 4001. 16.100°<∠BAC<180°.三、解答题21.(本题满分8分)(1)(本小题满分3分)解:p=1-(22%+13%+5%+26%)…………………………2分=34%.…………………………3分(2)(本小题满分5分)解:由题意得22%×1.5%+13%×m%+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%.…………………7分解得m=3.…………………………8分2018年泉州市初中学业质量检查•精选一、 选择题:每小题4分.(7)去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( ).(A)最低温度是32℃ (B)众数是35℃(C)中位数是34℃ (D)平均数是33℃(8)在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x ,则下列关于x 的方程符合题意的是( ).(A)8x -3=7x +4 (B)8(x -3)=7(x +4)(C)8x +4=7x -3 (D)81371=−x x +4 (9)如图,在3×3的网格中,A ,B 均为格点,以点A 为圆心,以AB 的长为 半径作弧,图中的点C 是该弧与格线的交点,则sin ∠BAC 的值是( ). (A) 21 (B) 32 (C) 35 (D) 552 (10)如图,反比例函数y=xk 的图象经过正方形ABCD 的顶点A 和中心E , 若点D 的坐标为(-1,0),则k 的值为( ).(A)2 (B) 2− (C) 21 (D) 21−二、填空题,每小题4分。
2018-2019学年第一学期福州市九年级期末质量检测
2018-2019学年第一学期福州市九年级期末质量检测化学(试卷满分:100分考试时间:60分钟)注意事项:1.试卷分为Ⅰ、Ⅰ两卷,共6页,另有答题卡。
2.答案一律写在答题卡上,否则不能得分。
3.可能用到的相对原子质量:H-1 C-12 O-16 Mg-24第Ⅰ 卷选择题(共30分)第Ⅰ卷包含10题,每题3分,共30分。
每题只有一个选项符合题意,在答题卡选择题栏内用2B铅笔将该选项涂黑。
1.下列知识的归纳正确的是A.煤、石油、天然气均属于化石燃料B.过滤和煮沸均可使硬水转化为软水C.农业上使用滴灌和漫灌均可节约用水D.二氧化碳、二氧化硫和二氧化氮均属于空气污染物2.下图所示实验操作中正确的是A.取用少量稀硫酸B.将铁钉放入试管内C.连接仪器D.处理废弃固体药品3.冬季是森林火警高发期。
下列说法错误的是A.大风能降低可燃物着火点,加大火势B.消防员用水灭火,降低可燃物的温度C.森林中的枯枝、干草为燃烧提供了可燃物D.砍伐树木形成隔离带,是使可燃物与火源隔离4.某同学利用蒸馏的原理设计野外饮用水简易净化装置(如右图),对非饮用水经阳光曝晒后进行净化。
下列说法正确的是A. 净水过程中水蒸发发生化学变化B. 水蒸气在上层的塑料膜冷凝成液态水C. 一次性水杯中收集到的液态水是混合物D. 该净化过程与自来水生产过程原理相同5.下图是钠元素与氯元素在元素周期表中的信息和与其相关的粒子结构示意图,下列说法正确的是A . 钠、氯都属于金属元素B .a 和c 粒子均表示阴离子C . 氯的相对原子质量是35.45 gD . 氯化钠是由a 与d 粒子构成6.下列各选项中,事实与解释不符合的是选项 事实解释A 食物变质分子本身发生变化 B 金刚石很坚硬,石墨却很软 碳原子的排列不同C 酒精可做温度计内的填充物温度改变,酒精分子的体积发生变化 D液氧和氧气均能使燃着的木条烧得更旺同种分子的化学性质相同7.下图为利用固碳酶作催化剂实现二氧化碳转化为物质丙(乙烯)的微观示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年福州市初中毕业班质量检测数学试题
一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .
31 B .3
1
- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).
(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 (4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).
A .88=-a a
B .4
4
)(a a =- C .623a a a =⋅ D .2
2
2
)(b a b a -=- (6)下列几何图形不.
是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形
(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).
A .6π
B .12π
C .18π
D .24π
(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四
C D
B A
从正面看
A
D
C
B
O
边形AA ’B ’B 是正方形,则m+n 的值是( ). A .3 B .4 C .5 D .6
(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据 x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).
A .a 、b
B .a 、b +2
C .a +2、b
D .a +2、b +2
(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2
二、填空题:(每小题4分,共24分)
(11) 12-=________.
(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.
(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.
(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则
AB
AD
的值是________. (16)如图,直线y 1=x 3
4
-与双曲线y 2=x k 交于A 、B 两点,点C 在x 轴上,连
接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)
(17)( 8分)先化简,再求值: 1
12)121(2++-÷+-x x x x ,其中x =2+1
(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DF
A
B
A
B
D
F
A
B
C
O
x
y
A
B
C
E
F
求证:AB=DE .
(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)
(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹
图用我们现在所熟悉的方程组的形式表述出来,就是⎩
⎨⎧=+=+3411610
4y x y x ,请你根据图2所示的算
筹图,列出方程组,并求解.
(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若
∠COB=2∠PCB ,求证:PC 是⊙O 的切线.
A
B
C
D
图
1
图
2
(22)( 10分)已知y是x的函数,自变量x的取值范围是-3.5≤x≤4,下表是y与x的几组对应值:
x -3.5 -3 -2 -1 0 1 2 3 4
y 4 2 1 0.67 0.5 2.03 3.13 3.78 4
请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.
(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的
点,画出该函数的图象;
(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
序号函数图象特征函数变化规律
示例1 在y轴右侧,函数图象呈上升状态当0<x≤4 ,y随x的增大而增大
示例2 函数图象经过点(-2,1) 当时x=-2时,y=1
(i)
函数图象的最低点是(0,0.5)
(ii)
在y轴左侧,函数图象呈下降状态
(3)当a<x≤4时,y的取值范围为0.5≤y≤4,则a的取值范围为__________.
(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所
需时间分别做了20次统计,并绘制如下统计图:
次数
20路公交车
66路公交车
请根据以上信息,解答下列问题: (1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.
(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.
(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)
(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;
(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;
(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.
(25)( 14分)如图,抛物线)0,0(2
<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示);
A
B
C
D
E
F
图1
A
B
C
D
E
F
图2 A
B
C
D
E
F
G
图3
(2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E
连接AB 、CE ,求证:CE ∥AB ;
(3)在(2)的条件下,连接OB ,当∠OBA=120°,
2
3
≤k≤3求CE
AB 的取值范国.。