2021年苏科版苏州市八年级数学下册期末复习试题及答案(二)

合集下载

2021年苏科版苏州市初二数学下册期末复习题及答案(一)

2021年苏科版苏州市初二数学下册期末复习题及答案(一)

苏州市2011~2021学年第二学期期末复习卷(一)初二数学(满分:100分时间:120分钟)一、选择题(每题2分,共20分)1.使分式24xx-有意义的x的取值范围是()A.x=2 B.x≠2 C.x≠-2 D.x≠02.如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为( )3.下列各式从左到右的变形正确的是( )A.122122x y x yx yx y--=++B.0.220.22a b a ba b a b++=++C.11x xx y x y+--=--D.a b a ba b a b+-=-+4.下列四组线段中,不构成比例线段的一组是( )A.1 cm,2 cm,3 cm,6 cm B.2 cm,3 cm,4 cm,6 cmC.1cm,2cm,3cm,6cm D.1 cm,2 cm,3 cm,4 cm5.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为31,那么袋中共有球( )个A.6个B.7个C.9个D.12个6.函数y=k x+1与函数y=kx在同一平面直角坐标系中的图象大致是( )7.如图,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③AC ABCD BC=;④AC2=AD·AB.其中能够单独判定△ABC∽△ACD的条件个数为( ) A.1 B.2 C.3 D.48.若关于x、y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为( )A.a<4 B.a>4 C.a<-4 D.a>-49.如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于点F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABC;④△ADF与△CFB.其中相似的为( ) A.①④B.①②C.②③④D.①②③10.已知函数y=x-5,令x=12、1、32、2、52、3、72、4、92、5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1,y1)、Q(x2,y2),则P、Q两点在同一个反比例函数图象上的概率是( )A.19B.445C.745D.25二、填空题(每题2分,共20分)11.若分式211xx-+的值为零,则x的值为_______.12.分式21 3x x-与229x-的最简公分母是_______.13.已知分式方程612axa x+=-的解是x=1,则a的值是_______.14.关于x的不等式3x-a≤0只有两个正整数解,则a的取值范围是_______.15.在比例尺为1:100 000的交通图上,距离为15厘米的甲、乙两地之间的实际距离约为_______千米.16.如图,在同一时刻,小明测得他的影长为1米,距他不远处的一棵树的影长为5米,已知小明的身高为1.5米,则这棵树的高是_______米.第16题 第17题 第18题 第20题17.如图,在等边△ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥BC .如果BC =8 cm ,AD:DB =1:3,那么△ADE 的周长等于_______cm .18.如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .19.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是_______.20.如图是一个山谷的横截面示意图,宽AA'为15 m ,用曲尺(两直尺相交成直角)从山谷两侧测量出OA =1m ,OB =3 m ,O'A'=O.5 m ,O'B'=3 m(点A 、O 、O'、A'在同一条水平线上),则该山谷的深h =_______m .三、解答题(共60分)21.(4分)计算:33(36)821+-+-.22. (5分)先化简:21111x x x ⎛⎫-÷ ⎪--⎝⎭,再选择一个恰当的x 值代入并求值.23. (5分)解分式方程:12211x x x +=-+.24.(6分)如图,在△ABC 中,AB =AC ,∠A =36°,线段AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE .(1)试说明:∠CBE =36°;(2)试说明:AE 2=AC ·EC .25.(6分)如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同,现将它们洗匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用画树状图或列表的方法求贴法正确的概率.26.(8分)如图,在以O为原点的平面直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B(a,b)在第一象限,四边形OABC是矩形,反比例函数y=kx(k>0,x>0)的图象与AB相交于点D,与BC相交于点E,且BE=CE.(1)试说明:BD=AD;(2)若四边形ODBE的面积是9,求k的值.27.(8分)某电器城经销A型号彩电,2021年四月份每台彩电售价为2 000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元.(1) 2021年四月份每台A型号彩电的售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1 800元,B型号彩电每台进货价为1 500元,电器城预计用不大于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?28.(10分)如图①,点C将线段AB分成两部分,如果AC BCABAC=,那么称点C为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果121S SS S=,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.29.(10分)在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、1.B 2.C 3.A 4.D 5.C 6.A 7.C 8.A 9.C 10.B二、11.1 12.x(x+3)(x-3) 13.7 14.6≤a<9 15.15 16.7.5 17.618.2 19.1320.30三、21.8 22.x+1 23.x=3 24.略25.(1)12(2)列表如下:1626.(1)略(2)927.(1)2 500元(2)有四种进货方案:①购进A型号彩电7台,B型号彩电13台;②购进A 型号彩电8台,B型号彩电12台;③购进A型号彩电9台,B型号彩电11台;④购进A 型号彩申.10台,B型号彩电10台(3)按方案①进货才能使电器城获利最大,最大利润是5 300元28.(1)直线CD是△ABC的黄金分割线(2)三角形的中线不可能是该三角形的黄金分割线 (3)略 (4)画法不唯一29.(1)如图,作BH ⊥x 轴,垂足为H ,那么四边形BCOH 为矩形,OH =CB =3.在Rt △ABH 中,AH =3,BA =35,所以BH =6.因此点B 的坐标为(3,6). (2) 因为OE =2EB ,所以223E B x x ==,243E B y y ==,E (2,4). 设直线DE 的解析式为y =kx +b ,代入D (0,5),E (2,4),得5,2 4.b k b =⎧⎨+=⎩ 解得12k =-,5b =.所以直线DE 的解析式为152y x =-+. (3) 由152y x =-+,知直线DE 与x 轴交于点F (10,0),OF =10,DF =55. ①如图,当DO 为菱形的对角线时,MN 与DO互相垂直平分,点M 是DF 的中点.此时点M 的坐标为(5,52),点N 的坐标为(-5,52). ②如图,当DO 、DN 为菱形的邻边时,点N 与点O 关于点E 对称,此时点N 的坐标为(4,8).③如图,当DO 、DM 为菱形的邻边时,NO =5,延长MN 交x 轴于P .由△NPO ∽△DOF ,得NP PO NO DO OF DF==, 即51055NP PO ==. 解得5NP =,25PO =.此时点N 的坐标为(25,5)-.。

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷一、选择题1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12 3D.16 32.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,将△BCD沿CD折叠,点B恰好落在AB中点E处,则∠A=()A.75° B.60° C.45° D.30°5.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )A.78°B.75°C.60°D.45°6.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)7.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是( )A. B.﹣1 C. D.二、填空题8.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______9.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.10.如图,已知在矩形ABCD中,AB=4,AD=8,将△ABC沿对角线AC翻折,点B落在点E处,联结DE,则DE的长为______________.11.如图,在▱ABCD中,AB=13,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为 .12.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为 .13.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为 .14.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.15.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.16.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.17.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为__________.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.三、解答题19.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE.直线CE的关系式是y=﹣0.5x+8,与x轴相交于点F,且AE=3.(1)求OC 长度;(2)求点B'的坐标;(3)求矩形ABCO 的面积.20.已知函数y=x 34,完成下列问题: (1)画出此函数图象;(2)若B 点(6,a )在图象上,求a 的值;(3)过B 点作BA ⊥x 轴于A 点,BC ⊥y 轴于C 点,求OB 的长;(4)将边OA 沿OE 翻折,使点A 落在OB 上的D 点处,求折痕OE 直线解析式.21.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌△CDE ;(2)若AB=4,BC=8,求图中阴影部分的面积.22.准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.23.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.24.如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t <6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD的长;(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)连接DE,当t为何值时,△DEF为直角三角形?(4)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?25.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形.(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.参考答案1.答案为:D;2.B3.C4.D5.B6.B.7.答案为:A.8.答案为:51.9.答案为:2.10.答案为: .11.答案为:3.12.答案为: 2.13.答案为:3.7514.答案为:4﹣6.15.答案是:2.16.解:在Rt△ABC中,由勾股定理可知:AC=4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.17.答案为:2;18.答案为:(-2014,+1).19.解:(1)∵直线y=﹣0.5x+8与y轴交于点为C,∴令x=0,则y=8,∴点C坐标为(0,8),∴OC=8;(2)在矩形OABC中,AB=OC=8,∠A=90°,∵AE=3,∴BE=AB﹣BE=8﹣3=5,∵是△CBE沿CE翻折得到的,∴EB ′=BE=5,在Rt △AB ′E 中,AB ′===4,由点E 在直线y=﹣0.5x+8上,设E (a ,3),则有3=﹣0.5a+8,解得a=10,∴OA=10,∴OB ′=OA ﹣AB ′=10﹣4=6,∴点B ′的坐标为(0,6);(3)由(1),(2)知OC=8,OA=10,∴矩形ABCO 的面积为OC ×OA=8×10=80.20.(1)画图略;(2)a=8;(3)OB=10;(4)y=0.5x.21.解:(1)证明:由翻折的性质可得AF=AB ,∠F=∠B=90°.∵四边形ABCD 为矩形,∴AB=CD ,∠B=∠D=90°.∴AF=CD ,∠F=∠D.又∵∠AEF=∠CED ,∴△AFE ≌△CDE(AAS).(2)∵△AFE ≌△CDE ,∴AE=CE.根据翻折的性质可知FC=BC=8.在Rt △AFE 中,AE 2=AF 2+EF 2,即(8-EF)2=42+EF 2,解得EF=3.∴AE=5.∴S 阴影=12EC ·AF=12×5×4=10. 22.(1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∴∠EBD=∠FDB ,∴EB ∥DF ,∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)∵四边形BFDE 为菱形,∴BE=ED ,∠EBD=∠FBD=∠ABE ,∵四边形ABCD 是矩形,∴AD=BC ,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,∴菱形BFDE 的面积为:×2=23. (1)证明:根据翻折的方法可得EF=EC ,∠FEG=∠CEG.又∵GE=GE ,∴△EFG ≌△ECG.∴FG=GC.∵线段FG 是由EF 绕F 旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE 是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8-x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,=,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=0.5BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=0.5BE.∴G为BE的中点.∴CG=BG=0.5BE.24.解:(1)如图①∵DF⊥BC,∠C=30°,∴DF=0.5CD=0.5×2t=t.∵AE=t,∴DF=AE.∵∠ABC=90°,DF⊥BC,∴DF∥AE∴四边形AEFD是平行四边形;(2)①显然∠DFE<90°;②如图①′,当∠EDF=90°时,四边形EBFD为矩形,此时AE=0.5AD,∴t=0.5(12−2t),∴t=3;③如图①″,当∠DEF=90°时,此时∠ADE=90°∴∠AED=90°-∠A=30°∴AD=0.5AE,∴12−2t=0.5t,∴t=4.8.综上:当t=3秒或t=4.8秒时,△DEF为直角三角形;(3)如图②,若四边形AEA′D为菱形,则AE=AD,∴t=12-2t,∴t=4.∴当t=4时,四边形AEA′D为菱形.25.(1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.∵点B与点E关于PQ对称,∴CE=BC=5cm.在Rt△CDE中,DE=4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm.在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=5/3cm,∴菱形BFEP的边长为5/3cm.②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.。

八年级数学下册 课后补习班辅导 一次函数的图像、性质和应用、二元一次方程组讲学案 苏科版(2021

八年级数学下册 课后补习班辅导 一次函数的图像、性质和应用、二元一次方程组讲学案 苏科版(2021

八年级数学下册课后补习班辅导一次函数的图像、性质和应用、二元一次方程组讲学案苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册课后补习班辅导一次函数的图像、性质和应用、二元一次方程组讲学案苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册课后补习班辅导一次函数的图像、性质和应用、二元一次方程组讲学案苏科版的全部内容。

一次函数的图像、性质和应用;二元一次方程组【本讲教育信息】 一. 教学内容:一次函数的图像、性质和应用;二元一次方程组的图像解法[学习目标]1。

理解一次函数的图像是一条直线以及它的性质,会画一次函数的图像。

2。

会应用一次函数的性质解决实际问题,能够用图像法解二元一次方程组. 3。

通过学习,进一步体会“数形结合”的数学思想方法以及数学建模的思想.二. 重点、难点:能够熟练地用描点法、两点法画出一次函数的图像,用图像法解二元一次方程组,理解一次函数性质并会应用一次函数解决问题是重点;难点是对一次函数性质的理解以及应用一次函数解决问题.三. 知识要点:1。

一次函数与正比例函数的图像一般地,一次函数)0(≠+=k b kx y 的图像是过(0,k b-),(0,b)的一条直线;特殊的,正比例函数)0(≠=k kx y 的图像是过(0,0),(1,k )的一条直线。

直线)0(≠+=k b kx y 是由直线)0(≠=k kx y 向上()0>b 或向下()0<b 平移b 单位得到的。

或者说直线)0(≠+=k b kx y 是由直线)0(≠=k kx y 向右⎪⎭⎫ ⎝⎛>-0kb或向左⎪⎭⎫ ⎝⎛<-0kb 平移kb -单位得到的.2。

江苏省2021-2021年八年级下期末考试数学试卷及答案

江苏省2021-2021年八年级下期末考试数学试卷及答案

第二学期(xuéqī)期末考试八年级(niánjí)数学(shùxué)试卷(shìjuàn) 本试卷由填空题、选择题和解答题三大题组成(zǔ chénɡ),共28题,满分130分°考试用时120分钟。

注意事项:1.答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2.答题必须用0.5mm黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效,一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑°)1.下列方程中,是关于x的一元二次方程的为A.2x2=0 B.4x2=3y C.x2+=-1 D.x2=(x-1)(x-2)2.分式的值为0,则A.x=-2 B.x=±2 C.x=2 D.x=03.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤菱形,将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是A.B.C.D.4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为A.12 B.16 C.20 D.245.下列根式中,最简二次根式是A. B.C.D.6.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值A.只有1个B.可以有2个C.可以有3个D.有无数个7.反比例函数的图象如图所示,则这个反比例函数的解析式可能是B.y=C.y=D.y=A.y=1x8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足(chuí zú)为G,若BG=4,则△CEF的面积(miàn jī)是A.4B.32C.22D.29.如图,△ABO的面积(miàn jī)为3,且AO=AB,双曲线y=经过(jīnggu ò)点A,则k的值为A.B.3 C.6 D.910.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点(dǐngdiǎn)E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为A.6 B.5 C.2D.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.方程x2-5x=0的解是▲.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=2,DB=8,则CD的长为▲.13.某校八年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是▲.14.如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,DF=6,则BC=▲.15.若(a+2)2与互为相反数,则笔的值为▲.16.若方程(fāngchéng)有增根,则m的值为▲.17.在梯形(tīxíng)ABCD中,AD∥BC,AB=DC=3,沿对角线BD翻折梯形ABCD,若点A恰好(qiàhǎo)落在下底BC的中点E处,则该梯形的面积为▲.18.如图,在△OAB中,∠ABO=45°,顶点(dǐngdiǎn)A在反比例函数y=3x (x>0)的图象(tú xiànɡ)上,则OB2—OA2的值为▲.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分8分,每小题4分)解方程:(1) (2x-1)(x+3)=4 (2)20.(本题满分8分,每小题4分)化简或计算:(1)(x2-2xy+y2)÷(2)21.(本题满分6分)先化简:,然后给a选择一个你喜欢的数代入求值.22.(本题满分6分)如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.23.(本题满分7分)某报社为了解苏州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题.(1)本次参与调查(diào chá)的市民共有▲人,m=▲,n=▲;(2)图2所示的扇形(shàn xínɡ)统计图中D部分扇形所对应的圆心角是▲度;(3)请将图1的条形统计图补充(bǔchōng)完整;(4)根据(gēnjù)调查结果(jiē guǒ).学校准备开展关于雾霾知识竞赛,某班要从小明和小刚中选一人参加,现设计了如下游戏来确定:在一个不透明的袋中装有2个红球和3个白球,它们除了颜色外都相同,小明先从袋中随机摸出一个球,小刚再从剩下的四个球中随机摸出一个球,若摸出的两个球颜色相同,则小明去;否则小刚去.现在,小明同学摸出了一个白球,则小明参加竞赛的概率为多少?24.(本题满分6分)为了构建城市立体道路网络,决定修建一条轻轨铁路,为了使工程提前6个月完成,需将原定的工作效率提高25%.原计划完成这项工程需要多少个月?25.(本题满分8分)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).直线l⊥y轴.于点D(0,3),与反比例函数和一次函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?26.(本题满分8分)如图,E为正方形ABCD对角线BD上的一点,且BE=BC=1.(1)求∠DCE的度数;(2)点P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.27.(本题满分9分)如图,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120°.(1)试说明△APC与△PBD相似.(2)若CD=1,AC=x,BD=y,请你求出y与x之间的函数关系式.(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α与β之间满足某种关系式,问题(2)中的函数关系式仍然成立.你同意小明的观点吗?如果你同意,请求出α与β所满足的关系式;若不同意,请说明理曲.28.(本题满分10分)如图,矩形OABC的顶点B的坐标(zuòbiāo)为(1,2),反比例函数y=(0<m<2)的图象(tú xiànɡ)与AB交于点E,与BC交于点F,连接OE、OF、EF.(1)若点E是AB的中点(zhōnɡ diǎn),则m=▲,S△OEF=▲;(2)若S△OEF=2S△BEF,求点E的坐标(zuòbiāo);(3)是否(shì fǒu)存在点E及y轴上的点M,使得△MFE△BFE?若存在,写出此时点E的坐标;若不存在,说明理由.内容总结(1)第二学期期末考试八年级数学试卷本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分°考试用时120分钟。

2020-2021学年八年级数学苏科版下册反比例函数与几何综合题专题练习(2)

2020-2021学年八年级数学苏科版下册反比例函数与几何综合题专题练习(2)

2021八年级下册反比例函数与几何综合解答题专题练习(2)1.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,点A 、B 在x 轴上,点C 、D 在第二象限,点M 是BC 中点.已知AB=6,AD=8,∠DAB=60°,点B 的坐标为(-6,0).(1)求点D 和点M 的坐标;(2)如图∠,将□ABCD 沿着x 轴向右平移a 个单位长度,点D 的对应点D 和点M 的对应点M '恰好在反比例函数ky x=(x>0)的图像上,请求出a 的值以及这个反比例函数的表达式; (3)如图∠,在(2)的条件下,过点M ,M '作直线l ,点P 是直线l 上的动点,点Q 是平面内任意一点,若以,B C '',P 、Q 为顶点的四边形是矩形,请直接写出所有满足条件的点Q 的坐标. 2.如图,正方形AOCB 的边长为4,反比例函数的图象过点()3,4E .(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线12y x b =-+过点D ,与线段AB 相交于点F ,求点F 的坐标;(3)连接,OF OE ,探究AOF ∠与EOC ∠的数量关系,并证明.3.阅读理解:己知:对于实数a≥0,b≥0,满足 a = b 时,等号成立,此时取得代数式a+b 的最小值.根据以上结论,解决以下问题:(1)拓展:若a>0,当且仅当a=___时,a+1a有最小值,最小值为____; (2)应用:∠如图1,已知点P 为双曲线y=4x(x>0)上的任意一点,过点P 作PA∠x 轴,PB 丄y 轴,四边形OAPB 的周长取得最小值时,求出点P 的坐标以及周长最小值: ∠如图2,已知点Q 是双曲线y=8x(x>0)上一点,且PQ∠x 轴, 连接OP 、OQ ,当线段OP 取得最小值时,在平面内取一点C ,使得以0、P 、Q 、C 为顶点的四边形是平行四边形,求出点C 的坐标.4.在平面直角坐标系第一象限中,已知点A 坐标为()1,0,点D 坐标为()1,3,点G 坐标为()1,1,动点E 从点G 出发,以每秒1个单位长度的速度匀速向点D 方向运动,与此同时,x 轴上动点B 从点A 出发,以相同的速度向右运动, 两动点运动时间为:(02)t t <<, 以AD AB 、分别为边作矩形ABCD , 过点E 作双曲线交线段BC 于点F ,作CD 中点M ,连接BE EF EM FM 、、、 (1)当1t =时,求点F 的坐标.(2)若BE 平分AEF ∠, 则t 的值为多少? (3)若EMF ∠为直角, 则t 的值为多少?5.如图,在直角坐标系xOy 中,矩形ABCD 的DC 边在x 轴上,D 点坐标为(6,0)-边AB 、AD 的长分别为3、8,E 是BC 的中点,反比例函数ky x=的图象经过点E ,与AD 边交于点F .(1)求k 的值及经过A 、E 两点的一次函数的表达式;(2)若x 轴上有一点P ,使PE PF +的值最小,试求出点P 的坐标;(3)在(2)的条件下,连接EF 、PE 、PF ,在直线AE 上找一点Q ,使得QEF PEF S S ∆∆=直接写出符合条件的Q 点坐标.6.如图,在平面直角坐标系中,直线12y x =-与反比例函数ky x=的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2.(1)求反比例函数的表达式;(2)点A 上方的双曲线上有一点C ,如果ABC 的面积为30,直线BC 的函数表达式.7.如图,双曲线y 1=1k x与直线y 2=2x k 的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b)是双曲线y 1=1k x上的任意一点,且0<a <4. (1)分别求出y 1、y 2的函数表达式;(2)连接PA 、PB ,得到∠PAB ,若4a =b ,求三角形ABP 的面积; (3)当点P 在双曲线y 1=1k x上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.8.已知边长为4的正方形ABCD ,顶点A 与坐标原点重合,一反比例函数图象过顶点C ,动点P 以每秒1个单位速度从点A 出发沿AB 方向运动,动点Q 同时以每秒4个单位速度从D 点出发沿正方形的边DC→CB→BA 方向顺时针折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .∠求出该反比例函数解析式;∠连接PD ,当以点Q 和正方形的某两个顶点组成的三角形和∠PAD 全等时,求t 值;9.如图,在平面直角坐标系中有Rt ABC ,90BAC ∠=︒,AB AC =,(3,0)A -,(0,1)B ,(,)C m n . (1)请直接写出C 点坐标.(2)将ABC 沿x 轴的正方向平移t 个单位,'B 、'C 两点的对应点、正好落在反比例函数ky x=在第一象限内图象上.请求出t ,k 的值.(3)在(2)的条件下,问是否存x轴上的点M和反比例函数kyx图象上的点N,使得以'B、'C,M,N为顶点的四边形构成平行四边形?如果存在,请求出所有满足条件的点M和点N的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.11.如图,A、B是双曲线y=kx上的两点,过A点作AC∠x轴,交OB于D点,垂足为C,过B点作BE∠x轴,垂足为E.若∠ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积.(2)求k 的值.12.如图,在∠ABC 中,AC=BC ,AB∠x 轴于A ,反比例函数y=kx(x >0)的图象经过点C ,交AB 于点D ,已知AB=4,BC=52. (1)若OA=4,求k 的值.(2)连接OC ,若AD=AC ,求CO 的长.13.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式; (2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB的面积.14.已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . ∠求m ,k 的值;∠直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C .∠若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;∠过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d . 15.如图,已知一次函数y=32 x−3与反比例函数y=kx的图象相交于点A(4,n),与x 轴相交于点B .(1)填空:n 的值为___,k 的值为___;(2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)观察反比例函数y=kx的图象,当y∠−2时,请直接写出自变量x 的取值范围。

2020-2021学年江苏省苏州市八年级下册期末数学试卷及答案-精品试卷

2020-2021学年江苏省苏州市八年级下册期末数学试卷及答案-精品试卷

最新江苏省苏州市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A. B. C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,若CF=2,FD=4,则BC的长为()A.6 B.2 C.4 D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= .15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= .三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A (﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ 与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,若CF=2,FD=4,则BC的长为()A.6 B.2 C.4 D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF 的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1 .【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为 4 .【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2 .【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于 4 .【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3 .【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 8 .【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5 ),B′(5,5 ),C′(7,3 );(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a ﹣1,2b﹣1 ).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A (﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ 与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.2017年4月4日。

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。

期末备考 第5章《分式方程》 实际应用解答专项(二)2020-2021学年 北师大版八年级数学下册

期末备考 第5章《分式方程》 实际应用解答专项(二)2020-2021学年 北师大版八年级数学下册

八年级数学北师大版下册期末备考:第5章《分式方程》实际应用解答专项(二)1.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?2.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.3.某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?4.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?5.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?6.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?7.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?8.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?9.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?10.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)11.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?12.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?13.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?14.某商家预测某种粽子能够畅销,就用6000元购进了一批这种粽子,上市后销售非常好,商家又用14000元购进第二批这种粽子,所购数量是第一批购进数量的2倍,但每袋进价多了5元.(1)该商家两批共购进这种粽子多少袋?(2)由于储存不当,第二批购进的粽子中有10%腐坏,不能售卖.该商家将两批粽子按同一价格全部销售完毕后获利不低于8000元,求每袋粽子的售价至少是多少元?15.某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳.面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进手机壳按同一价格销售,全部售完后,为使得获利不少于2000元,那么销售单价至少为多少?参考答案1.解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.2.解:设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.依题意,得.解方程,得x=100.经检验:x=100是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.3.解:(1)设第一批购进书包的单价为x元.依题意,得,整理,得20(x+4)=21x,解得x=80.检验:当x=80时,x(x+4)≠0,∴x=80是原分式方程的解.答:第一批购进书包的单价为80元,(2)=300+1050=1350答:商店共盈利1350元.4.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.5.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400═2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.6.解:设用于练习的宣纸的单价是x元∕张.由题意,得,解得x=0.2.经检验,x=0.2是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.7.解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.8.解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,依题意得:+=1,解得x=20,检验,当x=20时,3x≠0,所以原方程的解为x=20.所以3x=3×20=60(天).答:乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天;(2)设甲、乙两队合作完成这项工程需要y天,则有y(+)=1,解得y=15.需要施工的费用:15×(15.6+18.4)=510(万元).∵510>500,∴工程预算的费用不够用,需要追加预算10万元.9.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.10.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.11.解:(1)设A商品每件x元,则B商品每件(30+x)元,根据题意,得:,经检验:x=20是原方程的解,所以A商品每件20元,则B商品每件50元.(2)设购买A商品a件,则购买B商品共(10﹣a)件,列不等式组:300≤20•a+50•(10﹣a)≤380,解得:4≤a≤6.7,a取整数:4,5,6.有三种方案:①A商品4件,则购买B商品6件;费用:4×20+6×50=380,②A商品5件,则购买B商品5件;费用:5×20+5×50=350,③A商品6件,则购买B商品4件;费用:6×20+4×50=320,所以方案③费用最低.12.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.13.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.14.解:(1)设该商家第一次购进这种粽子x袋,则第二次购进2x袋,依题意,得:﹣=5,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意,∴x+2x=600.答:该商家两批共购进这种粽子600袋.(2)设每袋粽子的售价是y元,依题意,得:[200+200×2×(1﹣10%)]y﹣6000﹣14000≥8000,解得:y≥50.答:每袋粽子的售价至少是50元.15.解:(1)设第一批手机壳进货单价为x元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批手机壳的进货单价是8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥2000,解得:m≥12.答:销售单价至少为12元.。

9.5《三角形的中位线》期末复习优生专题提升训练2020-2021学年苏科版八年级数学 下册

9.5《三角形的中位线》期末复习优生专题提升训练2020-2021学年苏科版八年级数学  下册

2021年苏科版八年级数学第9章《三角形的中位线》期末复习优生专题提升训练(附答案)1.如图,在△ABC中,AB=3,AC=5,AD平分∠BAC,AD⊥BF于点D,点E为BC的中点,连接DE,则DE的长是()A.0.5B.0.75C.1D.22.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=23°,则∠PFE的度数为()A.23°B.25°C.30°D.46°3.如图,△ABC中,AB>AC,AE平分∠BAC,BD⊥AE于D,CE⊥AE于E,F为BC的中点,给出结论:①FD∥AC;②FE=FD;③AB﹣AC=DE;④∠BAC+∠DFE=180°.其中正确的是()A.①②B.①②③C.①②④D.①②③④4.如图,在△ABC中,点D、E、F分别是各边的中点,若△ABC的面积为16cm2,则△DEF的面积是()cm2.A.2B.4C.6D.85.如图,在△ABC中,BC=12,AC=16,∠C=90°,M是AC边上的中点,N是BC边上任意一点,且2CN<BC,若点C关于直线MN的对称点C'恰好落在△ABC的中位线上,则CN=.6.如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE =2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为.7.如图,在△ABC中,AD是中线,AE是角平分线,点F在AE上,∠CF A=90°,试判断DF与AB的位置关系,并说明理由.8.如图,△ABC中,AD平分∠BAC,AD⊥BD,E为BC的中点.(1)求证:DE∥AC;(2)若AB=4,AC=6,求DE的长.9.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.10.如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.11.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.12.如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG ⊥AD于F,交AB于G,连接EF,求线段EF的长.13.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若四边形AEDF的周长为24,AB=15,求AC的长;(2)求证:EF垂直平分AD.14.探索与证明如图,在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE相交于点O,M、N分别是BO、CO的中点,顺次连接E、M、N、D四点.(1)求证:EMND是平行四边形;(2)探索:BC边上的中线是否过点O?为什么?15.如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H 分别是DE、BE、BC的中点.(1)求∠FGH度数;(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.16.如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.求证:AC=BD.17.如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).小明的思路是:在图1中,连接BD,取BD的中点H,连接HE,HF,根据三角形中位线定理和平行线性质,可证得∠BME=∠CNE.问题:如图2,在△ABC中,AC>AB,D点在AC上,AB=CD,E,F分别是BC,AD 的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.18.如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)试说明:FG=(AB+BC+AC);(2)如图2,若BD、CE分别是△ABC的内角平分线,则线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想;(3)如图3,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,则线段FG与△ABC三边的数量关系是.19.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为20,BD=5.①△ABD的面积为,②求△BDE中BD边上的高EF的长;(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)20.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.21.已知:如图,在△ABC中,AD平分∠BAC,CN⊥AD于E交AB于N,F是AC的中点,FE的延长线交BC于M.试判断BM=MC的正确性.如果正确,请给出证明过程;若不正确,请说明理由.22.如图,在▱ABCD中,E,F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N,求证:MN∥AD,MN=AD.23.如下图,已知BE、CD分别是△ABC的角平分线,并且AE⊥BE于E点,AD⊥DC于D点.求证:(1)DE∥BC;(2).参考答案1.解:∵在△ABC中,AD平分∠BAC,AD⊥BF,AB=3,∴点D是BF的中点,且AB=AF=3.∵AC=5,∴FC=AC﹣AF=5﹣3=2.又∵点E为BC的中点,∴DE是△BFC的中位线,∴DE=FC==1.故选:C.2.解:在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=23°,∴∠PEF=∠PFE=23°.故选:A.3.解:延长CE交AB于G,延长BD交AC延长线于H,∵AE平分∠GAC,AE⊥GC,∴AG=AC,GE=CE,同理可得,AB=AH,BD=HD,∵BF=CF,BD=HD,∴DF∥CH,即DF∥AC,故①正确,∴DF=CH,∵GE=CE,BF=CF,∴EF=BG,∵GB=AB﹣AG=AH﹣AC=CH,即GB=CH,∴GB=CH,即EF=DF,故②正确,∴AB﹣AC=AB﹣AG=BG,过G作GI⊥BH于I,∵∠GED=∠EDI=∠GID=90°,∴四边形GIDE是矩形,∴GI=ED,∴BG>GI=ED,∴AB﹣AC>DE,故③错误;∵EF∥BG,DF∥HC,∴∠FED=∠BAD,∠FDE=∠HAD,∴∠FED+∠FDE=∠BAD+∠HAD=∠BAC,∵∠FED+∠FDE+∠EFD=180°,∴∠BAC+∠EFD=180°,故④正确;故选:C.4.解:∵点D、F分别是AB,AC的中点,∴DF∥BC,DF=BC,∴DF∥BE,∵E是BC的中点,∴BE=BC,∴DF=BE,∴四边形BEFD是平行四边形,∴BD=EF,在△BDE和△FED中,,∴△BDE≌△FED(SSS),同理可证△DAF≌△FED,△EFC≌△FED,即△BDE≌△DAF≌△EFC≌△FED,∴S△DEF=S△ABC=×16=4(cm2),故选:B.5.解:在△ABC中,BC=12,AC=l6,∠C=90°,则由勾股定理知AB===20.取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=8,MH=10,HC′=2,HN=6﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(6﹣x)2=x2+22,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=6,MC=MC′=8,∴GC′=2,∵∠NHC'=∠C'GM=90°,∠NC'M=90°,∴∠HNC'+∠HC'N=∠GC'M+∠HC'N=90°,∴∠HNC'=∠CGC'M,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =4.∴C'M>GM,此时点C′在中位线GM的延长线上,不符合题意.综上所述,满足条件的线段CN的长为或.故答案为:或.6.解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH于J.∵BD∥CH,∴∠B=∠NCH,∵BN=CN,∠DNB=∠KNC,∵△DNB≌△HNC(ASA),∴BD=CH,DN=NH,∵BD=EC=2,∴EC=CH=2,∵∠A+∠ACH=180°,∠A=60°,∴∠ECH=120°,∵CJ⊥EH,∴EJ=JH=,∴EH=2EJ=2,∵DM=ME,DN=NH,∴MN=EH=.故答案为.7.解:DF∥AB.理由如下:如图,延长CF交AB于点G,∵AE是角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,∴△AGF≌△ACF(ASA),∴GF=CF,即点F是GC的中点,∵AD是△ABC的中线,∴点D是BC的中点∴DF是△BCG的中位线,∴DF∥AB.8.(1)证明:延长BD交AC于H,在△ADB和△ADH中,,∴△ADB≌△ADH,∴BD=HD,又E为BC的中点.∴DE∥AC;(2)解:∵△ADB≌△ADH,∴AH=AB=4,∴CH=AC﹣AH=2,∵BD=HD,又E为BC的中点,∴DE=CH=1.9.(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAE.∵AD⊥BD,∴∠ADB=∠ADE=90°.在△ADB与△ADE中,∴△ADB≌△ADE,∴BD=DE.(2)∵△ADB≌△ADE,∴AE=AB=12,∴EC=AC﹣AE=8.∵M是BC的中点,BD=DE,∴DM=EC=4.10.解:(1)在△ABC中,∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE=BC,∵CF=BC,∴DE=CF.(2)∵AC=BC,AD=BD,∴CD⊥AB,∵BC=4,BD=2,∴CD==2,∵DE∥CF,DE=CF,∴四边形DEFC是平行四边形,∴EF=CD=2.(3)过点D作DH⊥BC于H.∵∠DHC=90°,∠DCB=30°,∴DH=DC=,∵DE=CF=2,∴S四边形DEFC=CF•DH=2×=2.11.证明:(1)∵AN平分∠BAC∴∠1=∠2,∵BN⊥AN∴∠ANB=∠AND,在△ABN和△ADN中,,∴△ABN≌△ADN(ASA)∴BN=DN;(2)∵△ABN≌△ADN∴AD=AB=10,DN=NB,∴CD=AC﹣AD=16﹣10=6,又∵点M是BC中点,∴MN是△BDC的中位线,∴MN=CD=3.12.解:在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=6,GF=CF,则BG=AB﹣AG=8﹣6=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.13.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB,DF=AF=AC,∴AE+DE=AB=15,AF+DF=AC,∵四边形AEDF的周长为24,AB=15,∴AC=24﹣15=9;(2)证明:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF垂直平分AD.14.(1)证明:△ABC的边AC、AB上的中线BD、CE相交于点O,M、N分别是BO、CO 的中点,∴ED∥BC且ED=BC,MN∥BC且MN=BC,∴ED∥MN且ED=MN,∴四边形MNDE是平行四边形.(2)BC边上的中线过点O,理由如下:作BC边上的中线AF,交BD于M,连接DF,∵BD、AF是边AC、BC上的中线,∴DF∥BA,DF=BA.∴BD=3DM,∵BO=BD,∴O和M重合,即BC边上的中线一定过点O.15.解:(1)∵F、G、H分别是DE、BE、BC的中点,∴FG∥DB,GH∥EC.∴∠DBE=∠FGE,∠EGH=∠AEG.∠FGH=∠FGE+∠EGH=∠ABE+∠BEA=180°﹣∠A=180°﹣90°=90°.(2)如图所示:连接FM、HM.∵M、H分别是BC和DC的中点,∴MH∥BD,MH=.同理:GF∥BD,GF=.∴四边形FGHM为平行四边形.∵G、H、M分别是BE、BC、DC的中点,∴GH==3,,由(1)可知:∠FGH=90°,∴四边形FGHM为矩形.∴∠GHM=90°.∴GM==5.16.证明:取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,则EH∥AC,EH=AC,HF∥BD,FH=BD,∴∠3=∠2,∠1=∠4,∵OM=ON,∴∠1=∠2,同理∠EFH=∠GFE=∠1=∠2,∴∠4=∠EFH,∴EH=HF,∵EH=AC,FH=BD,∴AC=BD.17.解:判断△AGD是直角三角形.证明:如图连接BD,取BD的中点H,连接HF、HE,∵F是AD的中点,∴HF∥AB,HF=AB,∴∠1=∠3,同理,HE∥CD,HE=CD,∴∠2=∠EFC,∵AB=CD,∴HF=HE,∴∠1=∠2,∵∠EFC=60°,∴∠3=∠EFC=∠AFG=60°,∴△AGF为等边三角形,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=90°,即△AGD是直角三角形.18.解:(1)∵BD⊥AF,在△ABF和△MBF中,∴△ABF≌△MBF(ASA)∴MB=AB∴AF=MF,同理:CN=AC,AG=NG,∴FG是△AMN的中位线∴FG=MN,=(MB+BC+CN),=(AB+BC+AC).(2)图(2)中,FG=(AB+AC﹣BC)解:如图(2),延长AF、AG,与直线BC相交于M、N,∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中∵,∴△ABF≌△MBF(ASA)∴MB=AB,AF=MF,同理:CN=AC,AG=NG∴FG=MN,=(BM+CN﹣BC),=(AB+AC﹣BC),答:线段FG与△ABC三边的数量关系是FG=(AB+AC﹣BC).(3)解:FG=(AC+BC﹣AB),理由是:∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中∵,∴△ABF≌△MBF(ASA)∴MB=AB,AF=MF,同理:CN=AC,AG=NG∴FG=MN,=(CN+BC﹣BM),=(AC+BC﹣AB).故答案为:FG=(AC+BC﹣AB).19.解:(1)作EF⊥BD垂足为F,(2)①∵AD为△ABC的中线,∴S△ABD=S△ABC,∵△ABC的面积为20,∴△ABD的面积为10;②∵BE为△ABD的中线,∴S△BDE=S△ABD=5,∵BD=5,∴EF的长=2;③∵EG∥BC,BE为△ABD的中线,∴EG是△ACD的中位线,∴DG是△ACD的中线,∴S△BDE=S△CDG,S△BDE=S△CDG=S△ABD=S△ABC=,∴S△GDC=,又∵S△COD=n,∴S△GOC=S△GDC﹣S△COD=.20.解:(1)FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.21.解:结论BM=MC正确.证明过程如下:∵AD平分∠BAC,∴∠NAE=∠CAE.∵CE⊥AD,∴∠AEN=∠AEC=90°.∵AE=AE,∴△ANE≌△ACE.∴NE=CE.∵F为AC的中点,∴AF=CF.∴EF∥AB.∵AF=CF,∴BM=MC.22.证明:连接EF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵DE=CF,∴AE=BF.∴四边形ABFE和四边形CDEF都是平行四边形.∴BM=ME,CN=NE.∴MN是△BCE的中位线.∴MN∥AD,MN=AD.23.证明:(1)延长AD、AE,交BC于F、G;∵BE⊥AG,∴∠AEB=∠BEG=90°;∵BE平分∠ABG,∴∠ABE=∠GBE;∴∠BAE=∠BGE;∴△ABG是等腰三角形;∴AB=BG,E是AG中点;同理可得:AC=CF,D是AF中点;∴DE是△AFG的中位线;∴DE∥BC.(2)由(1)知DE是△AFG的中位线,∴DE=FG;∵FG=BG+CF﹣BC,且AB=BG,AC=CF;∴FG=AB+AC﹣BC,即DE=(AB+AC﹣BC).。

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2021年人教版数学八年级下册期末《压轴题专项》复习卷1.如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.2.阅读下面材料:我们知道一次函数y=kx+b(k≠0,k、b是常数)的图象是一条直线,到高中学习时,直线通常写成Ax+By+C=0(A≠0,A、B、C是常数)的形式,点P(x0,y0)到直线Ax+By+C=0的距离可用公式d=计算.例如:求点P(3,4)到直线y=﹣2x+5的距离.根据以上材料解答下列问题:(1)求点Q(﹣2,2)到直线3x﹣y+7=0的距离;(2)如图,直线y=﹣x沿y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.3.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF.(2)在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的S.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.5.将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.6.如图,已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M.(1)求a的值及AM的长(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标.(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD 的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.7.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC 上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=0.75x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M 的坐标.8.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x ﹣2与x轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.9.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.10.如图,直线y=2x+m(m>0)与x轴交于点A(-2,0)直线y=-x+n(n>0)与x轴、y轴分别交于B、C 两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,直接写出点E的坐标.11.如图,直线l:交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是, BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由。

2021年苏科版八年级数学下学期期末测试题含答案 (2)

2021年苏科版八年级数学下学期期末测试题含答案 (2)

202X~202X第二学期初二数学期末测试卷一、选择题(本题共10小题,每小题3分,共30分)1.要使分式有意义,则x的取值范围是……………………………………()A.x≠1;B.x>1;C.x<1;D.x≠﹣1;2.在分式3aax,22x yx y+-,a ba b+-,22y ay a+-中,最简分式有………………………()A.1个;B.2个;C.3个;D.4个;3.对于反比例函数kyx=(k<0),下列说法正确的是……………………………()A.图象经过点(1,﹣k); B.图象位于第一、三象限;C.图象是中心对称图形; D.当x<0时,y随x的增大而减小;4.下列对称图形中,是轴对称图形,但不是中心对称图形的有………………………()A.1个;B.2 个;C.3 个D.4个5.如图,在菱形ABCD中,对角线AC长为3cm,∠ABC=60°,则菱形ABCD的周长为…()A. 6cm B.12cm C.12cm D.24cm6.在一次有24000名学生参加的数学质量抽测的成绩中,随机取2000名考生的数学成绩进行分析,则在该抽样中,样本指的是………………………………………………………()A.所抽取的2000名考生的数学成绩; B.24000名考生的数学成绩;C.2000; D.2000名考生;7.下列事件中,属于必然事件的是……………………………………………………()A. 3个人分成两组,其中一组必有2人; B.经过路口,恰好遇到红灯;C.打开电视,正在播放动画片; D.抛一枚硬币,正面朝上;8. 在反比例函数1kyx-=的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是……()A.k>1;B.k>0;C.k≥1;D.k<1;9.(202X•龙岩)某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是…………………………()5题图第10题图第14题图A . ()7207202120%x x -=+;B .()7207202120%xx -=-; C .()7207202120%x x-=+; D .()7207202120%x x =++; 10.如图,P 为正方形ABCD 的对角线BD 上任一点,过点P 作PE⊥BC 于点E ,PF⊥CD 于点F ,连接EF .给出以下4个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP.其中,所有正确的结论是…………………………………( )A .①② ;B .①③ ;C .①②④;D .①③④;二、填空题(本题共8小题,每小题3分,共24分)11.函数33x y x -=-中,自变量x 的取值范围是 . 12.若反比例函数k y x =的图象经过点(1,﹣1),则k= .13.若关于x 的方程2222x m x x++=--有增根,则m 的值是 .14.(202X •山西)如图,已知一次函数y=kx-4的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数8y x= 在第一象限内的图象交于点C ,且A 为BC 的中点,则k= .15.如图,已知▱ABCD 的对角线AC 、BD 相交于点O ,点E 是CD 的中点,若BD=12cm ,△DOE 的周长为15cm ,则▱ABCD 的周长为 cm .16.如图,菱形ABCD 中,∠B=60°,AB=4.则以AC 为边长的正方形ACEF 的边长为 .17.已知一次函数32y x b =+与反比例函数3y x=中,x 与y 的对应值如下表: x -3 -2 -3 1 2 332y x b =+ -3 32- 0 3 926 3y x = -1 32- -3 3 321 则不等式2x b x+>的解为 . 18.如图,点A 在双曲线k y x=的第二象限的那一支上,AB 垂直于y 轴于点B ,点C 在x 轴第15题图 第17题图第16题图负半轴上,且OC=2AB ,点E 在线段AC 上,且AE=2EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为 .三、解答题(本题共9小题,共72分)19.(10分)计算:316248- (2) 0(3)271232---++20.(10分)(1)计算:22142x x x --+ (2)解方程:2311x x x+=--.21.(5分)先化简,再求值:22121m m m m m m --⎛⎫÷- ⎪+⎝⎭其中12m =+22.(7分)中学生骑电动车上学的现象越来越受到社会的关注.某市记者随机调查了一些家长对这种现象的态度(A :无所谓;B :反对;C :赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,C 部分所占扇形的圆心角度数为 °;选择图①进行统计的优点是 ;(2)将图②补充完整;(3)根据抽样调查结果,请你估计该市50000名中学生家长中有多少名家长持赞成态度?23.(6分)如图,已知点E ,F 分别是▱ABCD 的边BC ,AD 上的中点,且∠BAC=90°.(1)求证:四边形AECF 是菱形;(2)若∠B=30°,BC=10,求菱形AECF 面积.24.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得11AB C ,画出11AB C .(2)作出△ABC 关于坐标原点O 成中心对称的222A B C .25.(8分)如图,点B (3,3)在双曲线k y x =(x >0)上,点D 在双曲线4y x =-(x <0)上,点A 和点C 分别在x 轴、y 轴的正半轴上,且点A 、B 、C 构成的四边形为正方形(1)求k 的值;(2)求点A 的坐标.26.(6分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.27.(8分)已知:如图,在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN.(1)求证:△ADN≌△CBM.(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由.28.(10分)已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC-CB-BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)求出该反比例函数解析式;(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.参考答案一、选择题:1.A;2.B;3.C;4.B;5.C;6.A;7.A;8.A;9.A;10.C;二、填空题:11. 3x<;12.-1;13.0;14.4;15.36;16.6;17. 1x>或20x-<<;18.-6;三、解答题:19.(1)226-(233;20.(1)12x-;(2)12x=;21.1212m=-;22.(1)54;扇形统计图能够清晰的反映出各部分占总数的百分比;(2)略;(3)7500;23. (1)证明:∵四边形ABCD是平行四边形,∴AD=BC,在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=12BC=CE,同理,AF=12AD=CF,∴AE=CE=AF=CF,∴四边形AECF是菱形;(2)解:连接EF交AC于点O,如图所示:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=12BC=5,353,∵四边形AECF是菱形,∴AC⊥EF,OA=OC,∴OE是△ABC的中位线,∴OE=12AB=532,∴EF=53,∴菱形AECF的面积=12AC•EF=12×5×53253.24.略;25.(1)3k=;(2)A(1,0);26. 解:设前一小时的速度为x千米/时,则一小时后的速度为1.5x千米/时,由题意得:180218011.53xx x-++=,解得x=60.经检验:x=60是分式方程的解.答:前一小时的行驶速度为60千米/时.27. (1)证明:∵四边形ABCD是矩形,∴∠D=∠B,AD=BC,AD∥BC.∴∠DAC=∠BCA.又由翻折的性质,得∠DAN=∠NAF,∠ECM=∠BCM,∴∠DAN=∠BCM.在△AND和△CBM中,∠D=∠B,AD=BC,∠DAN=∠BCM,△AND≌△CBM(ASA).(2)证明:连接NE、MF,∵△AND≌△CBM,∴DN=BM.又由翻折的性质,得DN=FN,BM=EM,∴FN=EM.又∵∠NFA=∠ACD+∠CNF=∠BAC+∠EMA=∠MEC,∴FN∥EM.∴四边形MFNE是平行四边形.四边形MFNE不是菱形,理由如下:由翻折的性质,得∠CEM=∠B=90°,∴在△EMF中,∠FEM>∠EFM.∴FM>EM.∴四边形MFNE不是菱形.28. 解:(1)∵正方形ABCD的边长为4,∴C的坐标为(4,4),设反比例解析式为kyx=,将C的坐标代入解析式得:k=16,则反比例解析式为16yx=;(2)当Q在DC上时,如图1所示:此时△APD≌△CQB,∴AP=CQ,即t=4-4t,解得45t=,则DQ=4t=165,即116,45Q⎛⎫⎪⎝⎭;当Q在BC边上时,有两个位置,如图2所示:若Q在上边,则△QCD≌△PAD,∴AP=QC,即4t-4=t,解得43t=,则QB=8-4t=83,此时284,3Q⎛⎫⎪⎝⎭;若Q在下边,则△APD≌△BQA,则AP=BQ,即8-4t=t,解得85t=,则QB=85,即384,5Q⎛⎫⎪⎝⎭;当Q在AB边上时,如图3所示:此时△APD≌△QBC,∴AP=BQ,即4t-8=t,解得t=83,因为0≤t≤125,所以舍去.图1 图2图3综上所述116,45Q ⎛⎫ ⎪⎝⎭;284,3Q ⎛⎫ ⎪⎝⎭,384,5Q ⎛⎫ ⎪⎝⎭; (3)当0<t ≤1时,Q 在DC 上,DQ=4t ,则s=12×4t ×4=8t ; 当1≤t ≤2时,Q 在BC 上,则BP=4-t ,CQ=4t-4,AP=t ,则s=S 正方形ABCD-S △APD-S △BPQ-S △CDQ=16-12AP•AD - 12PB•BQ -12DC•CQ=16-12t×4-12(4-t )•【4-(4t-4)}-12×4(4t-4)═-2t2+2t+8; 当2≤t ≤125时,Q 在AB 上,PQ=12-5t ,则s=12×4×(12-5t ),即s=-10t+24. 总之,1s =8t (0<t ≤1);2s =2228t t -++(1≤t ≤2);3s =-10t+24(2≤t ≤125)。

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

八年级下册数学10.5:分式方程(应用题篇)解答题训练(二)1.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天胎生产口罩数量的1.5倍,并且乙厂单独完成60万只口罩生产的时间比甲厂单独完成同样数量的口罩生产的时间要多用5天.(1)将60万只用科学记数法表示为只;(2)求甲、乙两厂每天分别可以生产多少万只口罩?2.为响应“地球熄灯一小时”的号召,某饭店在当天晚上推出烛光晚餐活动.计划用2000元购进一定数量的蜡烛,因为是批量购买,每支蜡烛的价格比原价低20%,结果用相同的费用比原计划多购进25支,则每支蜡烛的原价为多少?3.在今年的3月12日第43个植树节期间,某校组织师生开展了植树活动.在活动之前,学校决定购买甲、乙两种树苗.已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元;(2)若准备用7600元购买甲、乙两种树苗共200棵,则至少要购买乙种树苗多少棵?4.甲、乙两个施工队共同完成某区域绿化改造工程,乙队先单独做3天后,再山两队合作7天完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的2倍,求甲、乙两个施工队单独完成此项工程各需多少天?5.为打赢“扶贫攻坚战”,某单位计划选购甲、乙两种果树苗送给贫困户,已知甲种果树苗单价比乙种果树苗的单价高10元,若用500元单独购买甲种果树苗与300元单独购买乙种果树苗的数量相同.(1)请问甲,乙两种果树苗的单价各为多少元?(2)如果该单位计划购买甲,乙两种水果树苗共5500棵,总费用不超过92500元,则甲种果树苗最多可以购买多少棵?6.在新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.2元,且用7000元购买A型口罩的数量与用4200元购买B 型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3960元,则增加购买A型口罩的数量最多是多少个?7.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)m n每小时拣快递数量(件)1200 1000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?8.列方程或不等式解应用题:新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,其中A消毒液的单价比B消毒液的单价多40元,用3200元购买B消毒液的数量是用2400元购买A消毒液数量的2倍.(1)求两种消毒液的单价;(2)学校准备用不多于6800元的资金购买A、B两种消毒液共70桶,问最多购买A 消毒液多少桶?9.某商店第一次用600元购进某种型号的水笔若干支,第二次又用600元购进该款水笔,但每支水笔的进价比第一次贵1元,所以购进数量比第一次少了30支.问第一次每支水笔的进价为多少元.10.广州某公交线路日均运送乘客总量为15600人次,实施5G快速公交智能调度后,每趟车平均运送乘客量比智能调度前增加了20%.若日均运送乘客总量保持不变,则每日发车数量比智能调度前减少26趟.求实施智能调度前每趟车平均运送乘客量为多少人次.11.某中学九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.12.某校九年级两个班在“慈善一日捐”活动中各捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少5人,请你根据上述信息提出一个用分式方程解决的问题,并写出解题过程.13.为了加强疫情防控,某学校购进了部分N95口罩和一次性医用口罩,已知购买N95口罩共花费2000元,购买一次性医用口罩共花费1000元,购买一次性医用口罩数量是购买N95口罩数量的2.5倍,且购买一个N95口罩比购买一个一次性医用口罩多花4元.(1)求购买一个N95口罩、一个一次性医用口罩各需多少元?(2)该单位决定再次购买N95口罩和一次性医用口罩共3000个,恰逢该商场对两种口罩的售价进行调整,N95口罩售价比第一次购买时降低了20%,一次性医用口罩售价比第一次购买时降低了50%,如果此次购买N95口罩和一次性医用口罩的总费用不超过3250元,那么该单位至少可购买多少个一次性医所口罩?14.2020年12月以来,各地根据疫情防控工作需要,为尽快完成检测任务,我市组织甲、乙两支医疗队开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.问甲队每小时检测多少人?15.接种疫苗是阻断病毒传播的有效途经,为了保障人民群众的身体健康,我国目前正在开展新冠疫苗大规模接种工作,现有A、B两个社区疫苗接种点,已知A社区疫苗接种点每天接种的人数是B社区疫苗接种点每天接种人数的1.2倍,A社区疫苗接种点种完6000支疫苗的时间比B社区疫苗接种点种完6000支疫苗的时间少1天.(1)求A、B两个社区疫苗接种点每天各接种多少人?(2)一段时间后,A社区接种点每天前来接种的人数比(1)中的人数减少了10m人,而B社区疫苗接种点由于加大了宣传力度,每天前来接种的人数增加到了(1)中A社区疫苗接种点每天接种的人数,这样A社区接种点3m天与B社区接种点(m+20)天一共种完了69000支疫苗,求m的值.参考答案1.解:(1)60万=600000=6×105,故答案是:6×105;(2)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.答:甲厂每天能生产口罩6万只,乙厂每天能生产口罩4万只.2.解:设每支蜡烛的原价为x元,依题意得:﹣=25,解得x=20.经检验x=20是所列方程的根,且符合题意.答:每支蜡烛的原价为20元.3.解:(1)设甲种树苗每棵x元,则乙种树苗每棵(x﹣6)元.依题意列方程得,,800x﹣4800=680x,解得x=40,经检验x=40是原方程的根.答:甲种树苗每棵40元.(2)设购买乙种树苗的y棵,则购买甲种树苗的(200﹣y)棵,根据题意,得34y+40(200﹣y)≤7600,解得,∵y为整数,∴y的最小值为67.答:至少要购买乙种树苗67棵.4.解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需2x天,根据题意得:+=1.解得:x=12.经检验,x=12是原方程的解,且符合实际问题的意义,2x=24.答:甲施工队单独完成此项工程需12天,则乙施工队单独完成此项工程需24天.5.解:(1)设甲种果树苗的单价为x元,则乙种果树苗的单价为(x﹣10)元,根据题意,得=.解得x=25,经检验x=25是原方程的解.则x﹣10=15.答:甲种果树苗的单价为25元,则乙种果树苗的单价为15元.(2)设甲种果树苗可以购买y棵,根据题意,得25y+15(5500﹣y)≤92500.解得y≤1000.答:甲种果树苗最多可以购买1000棵.6.解:(1)设B型口罩的单价为x元,则A型口罩的单价为(x+1.2)元,根据题意,得:.解方程,得:x=1.8.经检验:x=1.8是原方程的根,且符合题意.所以x+1.2=3.答:A型口罩的单价为3元,则B型口罩的单价为1.8元;(2)设增加购买A型口罩的数量是a个,则购买B型口罩的数量是2a个.根据题意,得:3a+1.8×2a≤3960.解不等式,得:m≤600.答:增加购买A型口罩的数量最多是600个.7.解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得:,解得:≤a≤,∵a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则w=6a+4(8﹣a)=2a+32,∵k=2>0,∴w随a的增大而增大,当a=2时,w最小,w最小=2×2+32=36(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.8.解:(1)设B消毒液的单价为x元,则A消毒液的单价为(x+40)元,依题意得:=2×,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+40=120.答:A消毒液的单价为120元,B消毒液的单价为80元.(2)设购进A消毒液m桶,则购进B消毒液(70﹣m)桶,依题意得:120m+80(70﹣m)≤6800,解得:m≤30.答:最多购买A消毒液30桶.9.解:设第一次每支水笔的进价为x元,则第二次每支水笔的进价为(x+1)元,依题意得:﹣=30,整理得:x2+x﹣20=0,解得:x1=4,x2=﹣5,经检验,x1=4,x2=﹣5是原方程的解,x1=4符合题意,x2=﹣5不符合题意,舍去.答:第一次每支水笔的进价为4元.10.解:设限行期间这路公交车每天运行x车次,+26=,解得:x=100,经检验x=100是原分式方程的根,答:实施智能调度前每趟车平均运送乘客量为100人次.11.解:设骑车学生的速度为xkm/h,由题意得,﹣=,解得:x=15.经检验:x=15是原方程的解.答:骑车学生的速度为15km/h.12.问题:两班各有多少人?解:设2班有x人,则1班有(x+5)人,依题意得:﹣=4,依题意得:x2+5x﹣2250=0,解得:x1=45,x2=﹣50.经检验,x1=45,x2=﹣50是原方程的解,x1=45符合题意,x2=﹣50不符合题意,舍去,∴x+5=50(人).答:1班有50人,2班有45人.13.解:(1)设购买一个一次性医用口罩需x元,则购买一个N95口罩需(x+4)元.列方程:×2.5=,解得:x=1.经检验x=1是原方程的解,∴x+4=5.答:购买一个普通口罩需1元,购买一个N95口罩需5元.(2)设购买一次性医用口罩y个.则购买N95口罩(3000﹣y)个,依题意得:1×(1﹣50%)y+5×(1﹣20%)(3000﹣y)≤3250.解得:y≥2500.∴该单位至少可购买2500个一次性医所口罩.14.解:设甲队每小时检测x人,则乙队每小时检测(x﹣15)人,由题意可得,=×(1﹣10%).解得x=60.经检验x=60是原方程的解,且符合题意.答:甲队每小时检测60人.15.解:(1)设B社区疫苗接种点每天各接种x人,则A社区疫苗接种点每天各接种1.2x 人,根据题意,得+1=.解得x=1000.经检验x=1000是原方程的解,且符合题意.所以1.2x=1200.答:A社区疫苗接种点每天各接种1200人,B社区疫苗接种点每天各接种1000人;(2)根据题意,得(1200﹣10m)•3m+1200(m+20)=69000,整理,得m2﹣160m+1500=0.解得m1=150(舍去),m2=10,答:m的值是10.。

2021-2022学年江苏省南京市联合体八年级(下)期末数学试题及答案解析

2021-2022学年江苏省南京市联合体八年级(下)期末数学试题及答案解析

2021-2022学年江苏省南京市联合体八年级(下)期末数学试卷一、选择题(本大题共6小题,共12.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C.D.2. 式子√x −4在实数范围内有意义,则x 的取值范围是( ) A. x ≥0B. x ≤4C. x ≥−4D. x ≥43. 下列事件是随机事件的是( ) A. 抛出的篮球会下落 B. 没有水分,种子发芽 C. 购买一张彩票会中奖D. 自然状态下,水会往低处流4. 分式16x 2与−13xy 的最简公分母是( ) A. 6x 3yB. 6x 2yC. 18x 2yD. 18x 3y5. 如图,一次函数y 1=kx +b 与反比例函数y 2=mx 相交于点A(a,2)和B(−4,−3),当mx >kx +b 时,则x 的取值范围是( )A. x <−4或0<x <6B. x <−3或0<x <6C. −3<x <0或x >6D. −4<x <0或x >66. 如图,在正方形ABCD 中,AB =4,E 为AB 边上一点,点F 在BC 边上,且BF =1,将点E 绕着点F 顺时针旋转90°得到点G ,连接DG ,则DG 的长的最小值为( )A. 2B. 2√2C. 3D. √10二、填空题(本大题共10小题,共20.0分)7. 计算:(√2)2=______;√(−2)2=______. 8. 小明同一条件下进行射门训练,结果如表:射门次数n 20 50 100 200 500 踢进球门频数m133558104255踢进球们频率m n0.65 0.70 0.58 0.52 0.52根据表中数据,估计小明射门一次进球的概率为______(精确到0.1).9. 比较大小:√5−12______12(填“>”“<”“=”).10. 为了解某校500名初二学生每天做课后作业的时间,从中抽取50名学生进行调查,该调查中的样本容量是______.11. 已知平行四边形ABCD 中,∠A +∠C =110°,则∠B 的度数为______.12. 已知A(x 1,y 1)B(x 2,y 2)为反比例函数y =−3x 图象上的两点,且x 1<x 2<0,则:y 1______y 2(填“>”或“<”).13. 若分式方程1x−3=a−xx−3有增根,则a 的值是______.14. 反比例函数y =kx 的图像过点(−2,a)、(2,b),则a +b =______.15. 如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC +BD =24cm ,△OAB 的周长是18cm ,则EF =______cm .16. 如图,B 、C 分别是反比例函数y =6x (x >0)与y =−2x (x >0)的图像上的点,且BC//y 轴,过点C 作BC 的垂线交y 轴于点A ,则△ABC 的面积为______.三、解答题(本大题共10小题,共68.0分。

2020-2021学年江苏省苏州市八年级(下)期末数学试卷(含解析)

2020-2021学年江苏省苏州市八年级(下)期末数学试卷(含解析)

2020-2021学年江苏省苏州市八年级(下)期末数学试卷一、选择题(本大题共10小题,共20.0分)1.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个2.2013年12月14日21时11分,嫦娥三号成功着陆月球.某玩具厂生产嫦娥三号模型1000个,为检测这批模型质量的合格情况,从中随机抽查了50个,合格49个.下列说法正确的是()A. 总体是99个嫦娥三号模型的合格情况.样本是49个嫦娥三号模型的合格情况B. 总体是1000个嫦娥三号模型的合格情况.样本是49个嫦娥三号模型的合格情况C. 总体是1000个嫦娥三号模型的合格情况,样本是99个嫦娥三号模型的合格情况D. 总体是1000个嫦娥三号模型的合格情况,样本是50个嫦娥三号模型的合格情况3.下列说法正确的是()A. 了解“某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B. “任意画一个三角形,其内角和是360°”这一事件是不可能事件C. 甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则甲的成绩比乙稳定D. 三张分别画有正方形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是134.若a3=b2,则a+bb的值为()A. 32B. 53C. 52D. 235.已知实数a,b在数轴上的位置如图所示.化简:√a2−√b2−√(b−1)2的结果是()A. 1−aB. −a−1C. a−1D. a+16.方程2x2−5x+3=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 无实数根D. 两根异号7.已知数据−1、2、3、−π、−5,其中负数出现的频率是()A. 20%B. 40%C. 50%D. 60%8.如图,▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,OE⊥BD交BC于点E,CD=1,则CE的长为()A. 12B. √32C. 13D. √339.如下图,在一块长35m,宽26m的矩形地面上,修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行)剩余部分种花草,要使剩余部分的面积为850m2,则道路的宽为()A. 0.5mB. 1mC. 1.5mD. 1.8m10.如图,点A在函数y=−8图象上,过点A作AB⊥x轴于点B,x连接OA,则△ABO的面积为()A. 2B. 4C. 8D. 16二、填空题(本大题共8小题,共16.0分)11.y=√x+1中实数x的取值范围是______.x−212.从−3.−l,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是______.13.如图,矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,则CF=____.14.如图,在△ABC中,D,E分别是AB和AC上的点,且DE//BC,如果AD=2cm,AB=6cm,AE=1.5cm,则EC=______cm.15.已知长方形的周长为4a+2b,其一边长为a−b,则另一边长为_________.16.我们把满足下面条件的△ABC称为“黄金三角形”:①△ABC是等腰三角形;②在三角形的某条边上存在不与顶点重合的点P,使得P与P所在边的对角顶点连线把△ABC分成两个不全等的等腰三角形.(1)△ABC中,AB=AC,∠A:∠C=1:2,可证△ABC是“黄金三角形”,此时∠A的度数为______.(2)△ABC中,AB=AC,∠A为钝角.若△ABC为“黄金三角形”,则∠A的度数为______.17.若一个反比例函数的图象与直线y=2x−6的一个交点为A(m,m−2),则这个反比例函数的表达式是______ .18.菱形的两条对角线的长为6和8,则菱形面积为______,周长为______.三、解答题(本大题共10小题,共64.0分)19.(1)分解因式:a3−10a2+25a(2)计算:(2m2n−2)2⋅3m−3n3(结果只保留正整数指数幂)(3)计算:b+1a2−4÷b2+ba+2.20. 用适当方法解方程:x 2+6x +3=0.21. 已知:y =2x 2−ax −a 2,且当x =1时,y =0,先化简,再求值:(1−a−2a 2−4)÷a 2+aa 2+4a+4.22. 在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC 以C 点为旋转中心,顺时针旋转90°得到的△A 1B 1C 1;(2)以点O 为位似中心,在第一象限画出△ABC 的位似图形△A 2B 2C 2,使△A 2B 2C 2与△ABC 的位似比为2:1.23.某校1500名学生分别来自甲、乙、丙三个地区.现随机抽查部分学生,得到如下统计图.(1)一共抽查______名学生;(2)a=______,b=______,来自乙地区的人数比甲地区的人数多______%;(3)补全条形统计图,并根据以上统计估计全校学生中来自乙地区的人数大约是多少人?24.如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.25.湖州奥体中心是一座多功能的体育场,目前体育场内有一块一长80m,宽60m的长方形空地,体育局希望将其改建成花园小广场,设计方案如图,阴影区域是面积为192平方米的绿化区(四块相同的直角三角形),空白区域为活动区,且四周出口宽度一样.(1)体育局先对四个绿化区域进行绿化,在完成工作量的1后,施工方进行了技术改3进,每天的绿化面积是原计划的两倍结果提前四天完成四个绿化区域的改造,问原计划每天绿化多少平方米?(2)老师提出了一个问题:你能不能求出活动区的出口宽度是多少呢?请你根据小丽的方法求出活动区的出口宽度,请把过程写下来.26.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为边AB上一点,DO垂直平分CE于点O,以CE为直径作⊙O,交BC于点F.(1)求证:AB与⊙O相切;(2)若CD⋅CF=12,求⊙O的半径长;(3)在(2)的条件下,若AE =OD ,求AD 的长.27. 在平面直角坐标系中:定义一:点P(m,n)和点Q(x,y),若{x =m +2y =n −1,则称点Q 为点P 的“友邻点”.例如:点(3,4)的“友邻点”为(5,3);定义二:在平面内,点G 为线段AB 上任意一点,对于平面内的一点H ,若满足GH ≤AB ,则称点H 为线段AB 的“陪伴点”.(1)若点Q(−2,−4)是反比例函数y =kx (k ≠0)图象上点P 的“友邻点”,k =______; 若已知A(0,1),B(0,−1),则C(2,2),D(−2,1),E(√3,0)三点中,是线段AB 的“陪伴点”的是______.(2)已知点P(m,n)在一次函数c 1:y =−√3x −√3+1的图象上,设点P 的“友邻点”Q(x,y)的运动轨迹为c 2. ①求c 2对应的函数解析式.②若A(1,0),B(−1,0),点H 是c 2上一点,若点H 是线段AB 的“陪伴点”,求出点H 横坐标x H 的取值范围.28.(1)如图1,AH⊥CG,EG⊥CG,点D在CG上,AD⊥CE于点F,求证:ADCE =AHCG;(2)在△ABC中,记tanB=m,点D在直线BC上,点E在边AB上①如图2,m=3,点D在线段BC上,且AD⊥CE于点F,若AD=3CE,则CDBE=______;②如图3,m=√33,点D在线段BC的延长线上,连接DE交AC于M,∠CMD=60°,DE=2AC,CD=3√3,求BE的长.答案和解析1.【答案】C【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.【答案】D【解析】解:总体是1000个嫦娥三号模型的合格情况,样本是50个嫦娥三号模型的合格情况.故选D.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.【答案】B【解析】解:A、了解“某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,故此选项错误;B、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,正确;C、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,故此选项错误;D、三张分别画有正方形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心,故此选项错误;对称图形卡片的概率是:23故选:B.直接利用抽样调查以及方差、三角形内角和定理、中心对称图形的定义分别分析得出答案.此题主要考查了抽样调查以及方差、三角形内角和定理、中心对称图形的定义,正确把握相关定义是解题关键.4.【答案】C【解析】解:设a3=b2=t,则a=3t,b=2t,所以a+bb =3t+2t2t=52.故选:C.设a3=b2=t,则可用t表示a、b得到a=3t,b=2t,然后把它们代入分式中约分即可.本题考查了比例的性质:运用比例性质用一个字母分别表示a、b,然后利用分式的性质计算.5.【答案】B【解析】解:由数轴可得:−1<a<0,0<b<1,则√a2−√b2−√(b−1)2=−a−b−(1−b)=−a−1.故选:B.直接利用数轴结合二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.6.【答案】B【解析】解:∵△=(−5)2−4×2×3=1>0,∴方程2x2−5x+3=0有两个不相等的实数根.故选:B.由方程的系数结合根的判别式可得出△=1>0,由此即可得出原方程有两个不相等的实数根,此题得解.本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.7.【答案】D【解析】解:∵在−1、2、3、−π、−5中,负数有3个,∴负数出现的频率是35=60%;故选D.数据总数为5个,负数有3个,再根据频率公式:频率=频数÷总数代入计算即可.本题考查了频数与频率.频率的计算方法:频率=频数÷总数.8.【答案】D【解析】解:∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵△ABO是等边三角形,∴AO=BO=AB,∴AO=OC=BO=OD,∴AC=BD,∴四边形ABCD是矩形.∴OB=OC,∠ABC=90°,∵△ABO是等边三角形,∴∠ABO=60°,∴∠OBC=∠OCB=30°,∠BOC=120°,∵BO⊥OE,∴∠BOE=90°,∠EOC=30°,∴∠EOC=∠ECO,∴EO=EC,∴BE=2EO=2CE,∵CD=1,∴BC=√3CD=√3,∴EC=13BC=√33,故选:D.首先证明四边形ABCD是矩形,在Rt△BOE中,易知BE=2EO,只要证明EO=EC即可本题考查平行四边形的性质、矩形的判定、等边三角形的性质、等腰三角形的判定等知识,解题的关键是直角三角形30度角的性质的应用,属于中考常考题型.9.【答案】B【解析】设道路的宽为x米.依题意得:(35−x)(26−x)=850,解得:x1=1,x2=60(不合题意,舍去)所以,道路宽为1m。

2020-2021学年八年级数学北师大版下册期末综合复习模拟测试卷2(附答案)

2020-2021学年八年级数学北师大版下册期末综合复习模拟测试卷2(附答案)

2020-2021学年北师大版八年级数学下册期末综合复习模拟测试卷2(附答案)一.选择题(共10小题,每小题3分,共计30分)1.下列分解因式正确的是()A.xy2﹣4y=y(x+2y)(x﹣2y)B.4x2﹣y2=y2(2x+1)(2x﹣1)C.x3﹣4x2+x=x(x﹣2)2D.4x3﹣4x2+x=x(2x﹣1)22.下列各式中,能用平方差公式分解因式的是()A.x2+4y2B.﹣x2+4y2C.x2﹣2y+1D.﹣x2﹣4y23.假设每个人的工作效率一样,若m个人完成某项工程需要a天,则(m+n)个人完成此项工程需要的天数为()A.B.C.a+m D.4.若关于x的分式方程的解为非负数,则m的取值范围是()A.m≤5B.m<5且m≠3C.m≠3D.m≤5且m≠3 5.已知一元一次不等式组的解集为x<3,那么a的取值范围是()A.a≥2B.a>2C.a≤2D.a<26.某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.6折B.7折C.8折D.9折7.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()cmA.3B.4C.7D.118.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则CE的长为()A.B.C.D.19.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B10.如图,在平行四边形ABCD中,AD=6,点E在边AD上,点F在BC的延长线上,且满足BF=BE=8,过点C作CE的垂线交BE于点G,若CE恰好平分∠BEF,则BG的长为()A.2B.3C.4D.2二.填空题(共10小题,每小题3分,共计30分)11.计算:20203﹣2019×2020×2021=.12.已知,则的值等于.13.已知可以写成3+,根据这一做法解决:当整数x的值为时,分式的值为整数.14.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程+=2有正整数解,则所有整数a的乘积为.15.已知关于x的不等式(3a﹣2b)x<a﹣4b的解集是,则关于x的不等式bx﹣a >0的解集为.16.若关于x的不等式2(x﹣1)≤x+m恰好有3个正整数解,则m的取值范围为.17.在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=4.若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则CP的长为.18.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD中,AB =BC,AD=2,CD=5,∠ABC=60°,则线段BD=.19.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.20.如图,在▱ABCD中,∠ABC=45°,AB=6,CB=14.点M,N分别是边AB,AD 的中点,连接CM,BN,并取CM,BN的中点,分别记为点E,F,连接EF,则EF的长为.三.解答题(共8小题,21、22、23、24每小题6分,25、26、27、28每小题9分,共计60分)21.分解因式:(1)x3﹣25x;(2)m(a﹣3)+2(3﹣a).22.已知方程组的解满足x为非负数,y为正数.(1)求m的取值范围.(2)若不等式(m+1)x<m+1的解集为x>1,求满足条件的整数m的值.23.先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.24.某种型号油电混合动力汽车,从A地到B地,只用燃油行驶,需用燃油76元;从A地到B地,只用电行驶,需用电26元,已知每行驶1千米,只用燃油的费用比只用电的费用多0.5元.(1)若只用电行驶,每行驶1千米的费用是多少元?(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?25.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.26.图1是由一副三角板拼成的图案,其中∠ACB=∠DBE=90°,∠A=30°,∠ABC=60°,∠BDE=∠E=45°.(1)求图1中∠EBC的度数.(2)若将图1中的三角板BDE不动,将另一三角板ABC绕点B顺时针或逆时针旋转α度(0°<α<90°).当∠ABE=2∠DBC时,求∠ABD的度数(图2,图3,图4仅供参考).27.如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.28.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,点B 的对应点为E,点A的对应点D落在线段AB上,DE与BC相交于点F,连接BE.(Ⅰ)求证:DC平分∠ADE;(Ⅱ)试判断BE与AB的位置关系,并说明理由;(Ⅲ)若BE=BD,求∠ABC的大小.(直接写出结果即可)参考答案一.选择题(共10小题,每小题3分,共计30分)1.解:A、原式=y(xy﹣4),不符合题意;B、原式=(2x+y)(2x﹣y),不符合题意;C、原式=x(x2﹣4x+1),不符合题意;D、原式=x(4x2﹣4x+1)=x(2x﹣1)2,符合题意.故选:D.2.解:A.x2+4y2两项的符号相同,不能用平方差公式分解因式;B.﹣x2+4y2是2y与x的平方的差,能用平方差公式分解因式;C.x2﹣2y+1是三项不能用平方差公式分解因式;D.﹣x2﹣4y2两项的符号相同,不能用平方差公式分解因式.故选:B.3.解:设该项工程总量为1,由m个人完成某项工程需要a天,则m个人的工作效率为,∴每个人的工作效率为;则(m+n)个人完成这项工程的工作效率是(m+n)×;∴(m+n)个人完成这项工程所需的天数是1÷[(m+n)×]=(天).故选:A.4.解:去分母得,3=x﹣2+m,解得,x=5﹣m,∵分式方程的解为非负数,∴5﹣m≥0,∴m≤5,又∵x≠2,∴5﹣m≠2,m≠3,∴m的取值范围是m≤5且m≠3,故选:D.5.解:∵一元一次不等式组的解集为x<3,∴a+1≥3,解得:a≥2.故选:A.6.解:设打x折,根据题意可得:1100×﹣700≥700×10%,解得:x≥7,故至多可以打7折.故选:B.7.解:∵MN是线段AB的垂直平分线,∴NA=NB,∵△BCN的周长是7cm,∴BC+CN+BN=7(cm),∴BC+CN+NA=7(cm),即BC+AC=7(cm),∵AC=4cm,∴BC=3(cm),故选:A.8.解:因为AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,所以△ADE是等腰直角三角形,所以AB=,AE=2,∠A=45°,若作BH⊥AC于H,则AH=2,所以E和H重合,所以BE⊥AC,在Rt△BCE中,CE=,故选:D.9.解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.10.解:如图,延长EF,GC两条线相交于点H,过点G作GP∥EF交BC于点P,∵四边形ABCD是平行四边形,∴BC=AD=6,∵BF=BE=8,∴CF=BF﹣BC=2,∵CE平分∠BEF,∴∠GEC=∠HEC,∵CE⊥GC,∴∠ECG=∠ECH=90°,在△ECG和△ECH中,,∴△ECG≌△ECH(ASA),∴CG=CH,∵GP∥EF,∴∠PGC=∠FHC,在△PCG和△FCH中,,∴△PCG≌△FCH(ASA),∴CP=CF=2,∴BP=BF﹣PF=8﹣4=4,∵BF=BE,∴∠BEF=∠BFE,∵GP∥EF,∴∠BGP=∠BEF,∠BPG=∠BFE,∴∠BGP=∠BPG,∴BG=BP=4.故选:C.二.填空题(共10小题,每小题3分,共计30分)11.解:原式=2020×[20202﹣(2020﹣1)×(2020+1)]=2020×(20202﹣20202+1)=2020×1=2020.故答案为:2020.12.解:已知等式整理得:=2,即a﹣b=﹣2ab,则原式===﹣5,故对答案为:﹣513.解:把==2+,∵是整数,∴应是整数,∵5=1×5=﹣1×(﹣5),∴x﹣2=1,x﹣2=﹣1,x﹣2=5,x﹣2=﹣5,解得:x=3或1或7或﹣3,故答案为:3或1或7或﹣3.14.解:关于x的不等式组,整理得,,由不等式组至少有三个整数解,可得a>﹣2,关于x的分式方程+=2,整理得x=,∵分式方程有正整数解,且x≠2,∴a=﹣1或a=5,∴﹣1×5=﹣5,故答案为:﹣5.15.解:不等式(3a﹣2b)x<a﹣4b,解得:x>,3a﹣2b<0,即3a<2b,∴=,即9a=16b,,∵3a﹣2b<0,9a=16b,∴b<0,a<0,∴bx﹣a>0的解集为x<,故答案为:.16.解:解不等式2(x﹣1)≤x+m,得x≤m+2.∵不等式恰好有3个正整数解,∴正整数解为1、2、3.∴3≤m+2<4,解得1≤m<2.故答案为1≤m<2.17.解:(1)当∠ABC=60°时,则BC=AB=2,当点P在线段AB上时,∵∠PCB=30°,故CP⊥AB,则PC=BC cos30°=2×=;当点P(P′)在AB的延长线上时,∵∠P′CB=30°,∠ABC=60°,则△P′BC为的等腰三角形则BP′=BC=2,(2)当∠ABC=30°时,同理可得,PC=2;故答案为2或.18.解:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图所示,∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2,∴BD2=(2)2+52=45,∵BD>0,∴BD=3,故答案为:3.19.解:根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.①∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t,解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm,∵AD=12cm,BC=15cm,∴PD=AD﹣AP=12﹣t,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t,解得t=4s,∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.20.解:如图,连接BE交CD于点G,连接GN,过点G作GH⊥DN于点H,∵四边形ABCD是平行四边形,∴AD=CB=14,CD=AB=6,∵点M,N分别是边AB,AD的中点,∴AN=DN=AD=7,BM=AB=3,∵AB∥CD,∴∠BME=∠GCE,∠MBE=∠CGE,∵点E是CM的中点,∴ME=CE,在△MEB和△CEG中,,∴△MEB≌△CEG(AAS),∴BE=GE,BM=GC=3,∴DG=CD﹣GC=3,∵∠D=∠ABC=45°,GH⊥DN,∴DH=GH=DG=3,∴NH=DN﹣DH=7﹣3=4,∴GN==5,∵BF=FN,BE=EG,∴EF是△BGN的中位线,∴EF=GN=.故答案为:.三.解答题(共8小题,21、22、23、24每小题6分,25、26、27、28每小题9分,共计60分)21.解:(1)原式=x(x2﹣25)=x(x+5)(x﹣5);(2)原式=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2).22.解:(1)解方程组得,根据题意,得:,解得﹣3≤m<;(2)∵不等式(m+1)x<m+1的解集为x>1,∴m+1<0,解得m<﹣1,又﹣3≤m<,∴﹣3≤m<﹣1,则整数m的值为﹣3、﹣2.23.解:(﹣x+1)÷=[﹣(x﹣1)]÷=•=•=,∵分式的分母x+1≠0,x2﹣1≠0,x2+2x+1≠0,解得:x≠±1,∴取x=0,当x=0时,原式==﹣1.24.解:(1)设只用电行驶,每行驶1千米的费用是x元,则只用燃油行驶,每行驶1千米的费用是(x+0.5)元,依题意得:=,解得:x=0.26,经检验,x=0.26是原方程的解,且符合题意.答:只用电行驶,每行驶1千米的费用是0.26元.(2)A,B两地间的路程为26÷0.26=100(千米).设用电行驶m千米,则用油行驶(100﹣m)千米,依题意得:0.26m+(0.26+0.5)(100﹣m)≤39,解得:m≥74.答:至少需用电行驶74千米.25.解:(1)由△ABC是等边三角形可得,∠ABC=∠C=60°,∵∠ADC=∠ABC+∠BAD,∠AEB=∠C+∠EBC,∠AEB=∠CDA,∴∠BAD=∠EBC,∵∠BPD=∠ABE+∠BAD,∴∠BPD=∠ABE+∠EBC=∠ABC=60°;(2)∵BQ⊥AD于Q,∴∠BQP=90°,∵∠BPD=60°,∴∠PBQ=90°﹣∠BPD=30°,在Rt△BPQ中,∵PQ=3,∠PBQ=30°,∴BP=2PQ=6,又∵PE=1,∴BE=BP+PE=6+1=7.26.解:(1)∠EBC=∠ABC+∠EBD=60°+90°=150°;(2)第一种情况:若逆时针旋转α度(0<α<60°),如图2:据题意得90°﹣α=2(60°﹣α),解得α=30°,∴∠EBC=90°+(60°﹣30°)=120°,∴∠DBC=120°﹣90°=30°,∴∠ABD=60°﹣30°=30°;第二种情况,若逆时针旋转α度(60°≤α<90°),如图3,据题意得90°﹣α=2(α﹣60°),解得α=70°,∴∠EBC=90°﹣(70°﹣60°)=80°,∴∠DBC=90°﹣80°=10°,∵∠ABD=60°+10°=70°;第三种情况:若顺时针旋转α度,如图4,据题意得90°+α=2(60°+α),得α=﹣30°,∵0<α<90°,α=﹣30°不合题意,舍去,故α=30°或70°时,∠ABD的度数是30°或70°.27.解:(1)设AP与BC交于H,∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.28.(Ⅰ)证明:∵△DCE是由△ACB旋转得到,∴CA=CD,∠A=∠CDE,∴∠A=∠CDA,∴∠CDA=∠CDE,∴CD平分∠ADE.(Ⅱ)解:结论:BE⊥AB.由旋转的性质可知,∠ACD=∠BCE,∵CA=CD,CB=CE,∴∠CAD=∠CDA=∠CBE=∠CEB,∵∠ABC+∠CAB+∠ACD+∠DCB=180°,∴∠ABC+∠CBE+∠DCB+∠BCE=180°,∴∠DCE+∠DBE=180°,∵∠DCE=90°,∴∠DBE=90°,∴BE⊥AB.(Ⅲ)如图,设BC交DE于O.连接AO,过点B作BH⊥CD交CD的延长线于H,作BT⊥CE于T,∵∠H=∠BTC=∠HCT=90°,∴∠HBT=∠DBE=90°,∴∠DBH=∠EBT,∵BD=BE,∠H=∠BTE=90°∴△BHD≌△BTE(AAS),∴BH=BT,∵BH⊥CH,BT⊥CE,∴∠DCO=∠DEB=45°,∵∠ACB=90°,∴∠ACD=∠OCD,∵CD=CD,∠ADC=∠ODC,∴△ACD≌△OCD(ASA),∴AC=OC,∴∠AOC=∠CAO=45°,∵∠ADO=135°,∴∠CAD=∠ADC=67.5°,∴∠ABC=22.5°,∵∠AOC=∠OAB+∠ABO,∴∠OAB=∠ABO=22.5°.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市2011~2021学年第二学期期末复习卷(二)初二数学(满分:100分 时间:120分钟)一、选择题(每题2分,共20分)1.如果x :y =2:3,那么下列各式不成立的是 ( ) A .53x y y += B .13y x y -= C .123x y = D .1314x y +=+ 2.计算22222a b a b a ba b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭的结果是 ( ) A .1a b - B .1a b+ C .a -b D .a +b 3.若反比例函数y =kx(k 为常数,且k ≠0)的图象过点(3,-4),则下列各点在该图象上的是 ( )A .(6,-8)B .(-6,8)C .(-3,4)D .(-3,-4)4.(2011.沈阳)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵;路线二的全程是30千米,平均车速比走路线一的平均车速能提高80%,因此能比走路线一提前10分钟到达,若设走路线一的平均车速为x 千米/时,则根据题意,得 ( )A .()253010180%60x x -=+ B .()253010180%x x -=+ C .()302510180%60x x -=+ D .()302510180%x x-=+ 5.有下面两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60°,那么这个等腰三角形一定是等边三角形.则下列结论正确的是( ) A .只有命题①正确 B .只有命题②正确 C .命题①、②都正确 D .命题①、②都不正确6.(2011.宿迁)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是 ( )A .1B .12 C .13D .147.(2011.六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E ”与下面四个较小的“E ”中是位似图形的是 ( ) A .左上 B .左下 C .右上 D .右下8.如图,D为△ABC的边AB上的一点,∠DCA=∠B,若AC6,AB=3 cm,则AD的长为( )A.32cm B.53cm C.2 cm D.52cm9.如图,已知点E(-4,2)、F(-1,-1),以点O为位似中心,按比例尺1:2把△EFO缩小,则点E的对应点E'的坐标为( )A.(2,-1)或(-2,1) B.(8,-4)或(-8,4)C.(2,-1) D.(8,-4)10.周末商场搞促销活动,其中一顾客想购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:欲购买的商品原价(元) 优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券如果你购买这三件物品,最少花钱为A.500元B.600元C.700元D.800元二、填空题(每题2分,共20分)11.(2011.玉溪)如果分式11x+有意义,那么x的取值范围是_______.12.如图,点P在函数y=2x(x>0)的图象上,PA⊥x轴、PB⊥y轴,垂足分别为A、B,则矩形OAPB的面积为_______.13.正比例函数y=k x与反比例函数y=kx的图象相交于A、B两点,已知点A的横坐标为1,点B的纵坐标为-3,则点A的坐标为_______.14.(2011.黑河)中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率是_______.15.有三个不为零的式子:x2-4,x2-2x,x2-4x+4,从中任选两个你喜欢的式子组成一个分式是_______,把这个分式化简所得的结果是_______.16.(2011.十堰)关于x、y的二元一次方程组5323x yx y a+=⎧⎨+=⎩的解是正整数,则整数a的值为_______.17.如图,小明从路灯下向前走了5米,发现自己在地面上的影子长DE 是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB 是_______米.18.如图,在已建立直角坐标系的4×4正方形方格纸中,△ABC 是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P 、A 、B 为顶点的三角形与△ABC 相似,则格点P 的坐标是_______.19.在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD 2=BD ·DC ,则∠BCA =_______. 20.(2011.十堰)如图,在□AOBC 中,对角线交于点E ,双曲线y =kx(k>0)经过A 、E 两点,若□AOBC 的面积为18,则k =_______. 三、解答题(共60分)21.(4分)化简:213124xx x -⎛⎫-÷ ⎪--⎝⎭.22.(4分)解方程:213xx x +=+.23.(6分)已知四边形ABCD ,对角线AC 、BD 交于点O .现给出四个条件:①AC ⊥BD ;②AC 平分对角线BD ;③AD ∥BC ;④∠OAD =∠ODA ,请你以其中的三个条件作为命题的题设,以“四边形ABCD 为菱形”作为命题的结论. (1)写出一个真命题,并证明;(2)写出一个假命题,并举出一个反例说明.24.(6分)已知反比例函数y =kx的图象与一次函数y =3x +m 的图象相交于点(1,5). (1)求这两个函数的关系式.(2)求这两个函数图象的另一个交点的坐标.25.(6分)小莉和小慧用如图所示的两个转盘做游戏,转动这两个转盘各一次,若两次数字和为奇数,则小莉胜;若两次数字和为偶数,则小慧胜.这个游戏对双方公平吗?试用列表法或画树状图法加以分析.26.(8分)如图,在梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.(1)△EDM与△FBM相似吗?为什么?(2)若DB=9,求BM的长.27.(9分)(2011.湖州)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和鳜鱼.有关成本和销售额见下表:(1) 2021年,王大爷养殖甲鱼20亩,鳜鱼10亩.王大爷这一年共收益多少万元?(收益=销售额-成本)(2) 2021年,王大爷继续用这30亩水塘全部养殖甲鱼和鳜鱼,计划投入成本不超过70万元,若每亩养殖的成本、销售额与2021年相同,要获得最大收益,则他应养殖甲鱼和鳜鱼各多少亩?(3)已知甲鱼每亩需要饲料500 kg ,鳜鱼每亩需要饲料700 kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次,王大爷原定的运输车辆每次可装载多少饲料?28.(9分)如图,在△ABC 中,AB =5,BC =3,AC =4,动点E(与点A 、C 不重合)在AC边上,EF ∥AB 交BC 于点F .(1)当△ECF 的面积与四边形EABF 的面积相等时,求CE 的长; (2)当△ECF 的周长与四边形EABF 的周长相等时,求CE 的长;(3)试问在AB 上是否存在点P ,使得△EFP 为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF 的长.29.(8分)两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =2.固定△ABC 不动,将△DEF 进行如下操作:(1)如图(1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、 CF 、FB ,四边形CDBF 的形状在不断的变化,它的面积是否变化,如果不变请求出 其面积.如果变化,说明理由.(2)如图(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明 理B EFCD图(1)AB EFCD 图(2)由.参考答案一、1.D 2.B 3.C 4.A 5.C 6.D 7.B 8.C 9.A 10.B二、11.x≠-1 12.2 13.(1,3) 14.111615.答案不唯一16.5或7 17.5.618.(1,4),(3,4),(3,1) 19.65°或115°20.6三、21.原式=x+222.x=623.(1)若①②③,则四边形ABCD为菱形证明略(2)若①③④,则四边形ABCD为菱形反例略24.(1)y=3x+2 (2)(-53,-3)25.这个游戏对双方公平列表如下:26.(1)相似(2)327.(1)17(万元) (2)应养殖甲鱼25亩,养殖鳜鱼5亩(3)4 000 kg28.(1) CE=2(2) 247(3)在AB上存在点P.使△EFP为等腰直角三角形,此时EF=6037或EF=1204929. ⑴不变S四边形CDBF=3⑵形状为菱形,证明过程略。

相关文档
最新文档