七年级上(数学)周测试卷

合集下载

七年级上册数学第七周周考测试题

七年级上册数学第七周周考测试题

七年级上册数学第七周周测试卷姓名:班级:得分:一.选择题(共12小题)1.在有理数|﹣1|、(﹣1)2014、﹣(﹣1)、(﹣1)2015、﹣|﹣1|中负数有几个()A.0B.1C.2D.32.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg3.下列各组数中,互为相反数的是()A.|+2|与|﹣2| B.(﹣4)3与﹣43 C.﹣(﹣2)与﹣|﹣2| D.(﹣3)2与(+3)24.若m的倒数是﹣3,那么m的绝对值是()A.3B.﹣C.D.﹣35.下列说法正确的是()A.近似数3.20与3.2的精确度一样B.近似数3.0×103与3000的意义完全一样C.0.37万与3.2×103精确度不一样D.3.36万精确到百位6.已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.97.点A、B在数轴上的位置如图所示,其对应的数分别是a和b,则以下结论:①b﹣a>0;②﹣b>a;③﹣|a|>﹣|b|;④>0,正确的是()A.①②B.②③C.②④D.③④8.若a、b为有理数,则下列说法正确的是()A.若a2>b2,则a>b B.若a2>b2,则|a|<|b| C.若a2=b2,则a=b D.若a2+b2=0,则a=b=09.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.2B.3C.4D.610.计算(﹣2)11+(﹣2)10的值是()A.﹣2B.(﹣2)21C.0D.﹣21011.下列说法正确的个数有()①有理数不是整数就是分数;②|﹣a|一定是正数;③如果a大于b,那么a的倒数小于b的倒数;④n个数相乘,积的符号由负因数的个数决定;⑤如果(﹣x)2=4,那么x=﹣2;⑥如果两个数的绝对值相等,那么这两个数互为相反数.A.1个B.2个C.3个D.4个12.已知整数a1、a2、a3、a4、…,满足下列条件:a1=0、a2=﹣|a1+1|、a3=﹣|a2+2|、a4=﹣|a3+3|、a5=﹣|a4+4|、…,依此类推,则a2021=()A.﹣1009B.﹣1010C.﹣2020D.﹣2021二.填空题(共6小题)13.比较大小:.(填“>”,“<”或“=”符号)14.如图,在数轴上,注明了四段范围,若某段内有两个整数,则这段是.15.大于﹣3.5,小于3.9的整数共有个.16.数轴上有三点A、B、C,且A、B两点间的距离是4,B、C两点的距离是2,若点A表示的数是﹣2,则点C表示的数是.(写出所有可能的结果)17.定义一种新运算,则3⊗4﹣3⊗2=(填计算后结果).18.如图,已知数轴上两点A,B对应的数分别为1,﹣3,点P为数轴上一动点,点P以每秒0.5个单位的速度从O点向左运动,则经过秒,使P A=3PB.三.解答题(共6小题)19.计算:(1)4+(﹣2)2×2﹣(﹣36)÷4.(2)﹣32×(﹣)2+(++)×(﹣24).第1页共4页◎第2页共4页20.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c•(a3﹣b)的值.21.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,a+b0,c﹣a0.(2)化简:|a﹣c|+|b﹣c|+|b﹣a|﹣|a|﹣|a﹣c|.22.上海世博会第一天(5月1日)的进园人数为20.3万人,以后的6天里每天的进园数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,(单位:万人)日期2日3日4日5日6日7日人数变化+1.2﹣8.4+1.4﹣6.3+2.7+3.9(1)5月2日的进园人数是多少?(2)5月1日﹣5月7日这7天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?(3)求出这7天进园的总人数.23.探究:22﹣21=2×21﹣1×21=21×(2﹣1)=21;23﹣22=2×22﹣1×22=22×(2﹣1)=22;24﹣23=2×23﹣1×23=23×(2﹣1)=23;……(1)请你找规律,写出第n个等式;(2)计算:27﹣26﹣25﹣24﹣23﹣22﹣2;(3)计算:1+2+22+……+22016+22017﹣22018.24.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?第3页共4页◎第4页共4页。

人教版七年级上册数学周测试卷

人教版七年级上册数学周测试卷

七年级第十次周测试题(时间40分钟,满分100分)班级 姓名 成绩一、选择题(10个小题,每小题5分)1. 【正负数的意义】中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )A .10℃B .0℃C .-10 ℃D .-20℃2. 【相反数】 2023-的相反数是( )A .2023-B .2023C .12023-D .120233. 【等式的性质】已知a b =,根据等式的性质,错误的是 ( )A .22a b +=+B .ac bc =C .a b c c= D . 2211a b c c =++ 4. 【科学记数法】赤道长约为40000000m ,用科学记数法可以把数字40000000m 表示为( )A .7410⨯B .64010⨯C .540010⨯D .3400010⨯ 5. 【定义新运算】定义一种新运算:2*a b a ab =-,则()()1*2--= ( )A .3-B .3C .1-D .16. 【找规律】一组按规律排列的单项式:2x -,24x ,38x -⋅⋅⋅,则第n 个单项式是( ) A . ()11112n n n x +++- B . ()12n n n x - C . ()112n n n x +- D . ()112n n n x +- 7. 【比较大小】在13-,0.3-,0,1四个有理数中,最小的数是 ( ) A . 0 B . 13- C . 0.3- D . 1 8. 【去括号】下列去括号正确的是 ( )A .()a b c a b c --=-- B.()a b c a b c --+-=-+C.()22a b c a b c -+=-+D.()222a a b a a b ---=-+9. 【一元一次方程】下列方程是一元一次方程的是 ( )A . 2x y +=B . 2323x x -=C . 256x +=D . 123x x-=+10. 【数轴】已知,,a b c 在数轴上的位置如图所示,则下列选项正确的是 ( )A . b c c b -=-B . 0ab >C . 0a b +<D . 0c a -<二、选择题(5个小题,每小题4分,共20分)11. 【整体计算】已知26x y -=,则245x y -++= .12. 【非负性问题、乘方】若()2210a b -++=,则ab = .13. 【多项式】在多项式32231x y x xy x kxy +--+-中,不含xy 项,则k = .14. 【一元一次方程】若2x =是方程2511ax -=的解,则a = .15. 【绝对值】若 3a =,2b =,0ab > ,则a b += . 三、解答题(4个小题,共30分)16. 【有理数计算】(每小题5分,共10分)(1)()32024125284-+-⨯--÷ (2)()231311212324⎛⎫-⨯-⨯-+- ⎪⎝⎭17. 【解方程】(每小题5分,共10分)(1)254316x x x x -+-+=- (2)1623x x -=+18. 【化简求值】(6分)先化简,再求值: ()()2222221252322m n mn m n mn mn m n ⎛⎫+---- ⎪⎝⎭,其中1m =-,13n =.19. 【绝对值化简】(4分)已知,,a b c 在数轴上的位置如图所示,化简 b c a b a c --+--.。

七年级数学第一次周测试卷

七年级数学第一次周测试卷

七年级数学第一次周测试卷时间:100分钟一、填空题(每小题3分,共30分):1、长方体有个面,个顶点,条棱;2、主视图、左视图和俯视图都一样的几何体是;3、沿着五棱柱的某些棱剪开展成一个平面图形至少要剪开条棱;4、一个几何体的表面不能展成一个平面,则这个几何体一定是体;5、将下面的几何体进行分类(填序号):(1)按“柱、锥、球”分:是一类,是一类,是一类;(2)按“围成的面是曲面和平面”分:是一类,是一类;(3)按“有无顶点”分:是一类,是一类;6、十九棱柱的底面有条边,共有面,条棱;7、过十五边形的一个顶点可以作条对角线,这些对角线可以把这个十五边形分割成个三角形,这个十五边形共有条对角线;8、一座大楼,小明只看到了楼顶,则小明看到的图叫_______视图;9、一个多面体共有f个面,e条棱,v个顶点,则f+v-e= ;10、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.二、选择题(每小题3分,共30分):11、下面的几何体中,全是由曲面围成的是()(A)圆锥;(B)圆柱;(C)正方体;(D)球.12、如下图,是正方体表面展开图的是()13、用一个平面去截一个几何体,如果截面是三角形,那么这个几何体不可能是()(A)圆锥;(B)长方体;(C)圆柱;(D)三棱柱.14、如图所示,下列图形经过折叠不能围成一个棱柱的是()15、由若干个相同的小立方块搭成的几何体的三视图如图所示,则搭成这个几何体的小立方块的个数是()(A)3;(B)4;(C)5;(D)6.16、图中与其它图形不同的一个是()17、图中的立体图是由下图中图形绕直线旋转得到的,其中正确的是()18、用一个平面去截一个圆锥,截面的形状不可能是()19、在下面四个物体中,最接近圆柱的是()20、如果你按照下面的步骤做,当你完成到第五步的时候,将纸展开,会得到图形()四、解答题(共60分):21、作图题:(1)画出下面物体的主视图、左视图和俯视图(10分):主视图左视图俯视图(2)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。

七年级数学周测试卷

七年级数学周测试卷

一、选择题(每题2分,共20分)1. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.52. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a + b > 0B. a - b < 0C. -a + b > 0D. -a - b > 03. 下列代数式中,正确的是()A. 2a + 3b = 2(a + 3b)B. 2(a + b) = 2a + 2bC. 2(a - b) = 2a - 2bD. 2(a + b) = 2a + b4. 已知x + y = 5,y - x = 3,那么x的值为()A. 1B. 2C. 3D. 45. 在直角坐标系中,点P(-3, 2)关于原点的对称点是()A. (3, -2)B. (-3, -2)C. (2, 3)D. (-2, 3)6. 下列关于三角形说法正确的是()A. 任意两边之和大于第三边B. 任意两边之差小于第三边C. 任意两边之积大于第三边D. 任意两边之商大于第三边7. 下列关于圆的说法正确的是()A. 圆心到圆上任意一点的距离相等B. 圆上任意两点与圆心的距离相等C. 圆心到圆上任意一点的距离之和等于圆的周长D. 圆上任意两点与圆心的距离之差等于圆的直径8. 下列关于函数的说法正确的是()A. 函数的定义域一定是实数集B. 函数的值域一定是实数集C. 函数的定义域和值域可以是任意集合D. 函数的定义域和值域相等9. 下列关于方程的说法正确的是()A. 方程的解一定是实数B. 方程的解一定是整数C. 方程的解可以是任意数D. 方程的解一定是正数10. 下列关于不等式的说法正确的是()A. 不等式的解一定是实数B. 不等式的解一定是整数C. 不等式的解可以是任意数D. 不等式的解一定是正数二、填空题(每题2分,共20分)11. -5的相反数是__________,|-3|的值是__________。

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。

人教版数学七年级上册第10周 3.3解一元一次方程(二)——3.4实际问题与一元一次方程同步测试

人教版数学七年级上册第10周 3.3解一元一次方程(二)——3.4实际问题与一元一次方程同步测试

【人教版七年级(上)数学周周测】第10周测试卷(测试范围:3.3解一元一次方程(二)——3.4实际问题与一元一次方程)班级:___________ 姓名:___________ 得分:___________一、选择题(每小题3分,共30分)1.方程3x+2(1-x)=4的解是()A.x=25B.x=56C.x=2D.x=12.在解方程123123x x-+-=时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=63.下列方程的变形中正确的是()A.由x+5=6x﹣7得x﹣6x=7﹣5B.由﹣2(x﹣1)=3得﹣2x﹣2=3C.由310.7x-=得1030107x-=D.由139322x x+=--得2x=﹣124.解方程3132x x+-=时,去分母后可以得到()A.1﹣x﹣3=3xB.6﹣2x﹣6=3xC.6﹣x+3=3xD.1﹣x+3=3x5.解方程:4(x﹣1)﹣x=2(x+12),步骤如下:①去括号,得4x﹣4﹣x=2x+1②移项,得4x﹣x+2x=1+4③合并同类项,得3x=5④系数化1,得x=5 3经检验知x=53不是原方程的解,证明解题的四个步骤中有错,其中做错的一步是()A.①B.②C.③D.④6.某书上有一道解方程的题:13xx+=,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.72B.52C.2D.﹣27.关于x的方程5x-a=0的解比关于y的方程3y+a=0的解小2,则a的值是()A.154B.-154C.415D.-4158.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x天相遇,可列方程为()A.(9﹣7)x=1B.(9+7)x=1C.11()179x-=D.11()179x+=9.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800xB.1000(13﹣x)=800xC.1000(26﹣x)=2×800xD.1000(26﹣x)=800x10.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A .26元B .27元C .28元D .29元二、填空题(每小题3分,共30分)11.当x = 时,代数式453x -的值是-1. 12.将方程4(2x -5)=3(x -3)-1变形为8x -20=3x -9-1的变形步骤是 . 13.已知x =2是关于x 的方程a (x +1)=12a +x 的解,则a 的值是 . 14.已知方程2x ﹣3=3和方程3103m x--=有相同的解,则m 的值为 . 15.已知关于x 的方程3a ﹣x =2x+3的解为2,则代数式a 2﹣2a +1的值是 . 16.如图,点A 、B 在数轴上,它们所对应的数分别是12x -和5,且点A 、B 到原点的距离相等,则x 的值为 .17.a ,b 互为相反数,c ,d 互为倒数,则关于x 的方程2()3(1)20a b x cd x x ++--=的解为x = .18.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元.若设这件衣服的成本是x 元,根据题意,可得到的方程是 .19.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的方程为 .20.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调 人到甲队. 三、解答题(共40分)21.(12分)解下列方程:(1)4x +3=2(x -1)+1(2)246231xx x -=+--22.(8分)按要求完成下面题目:323221+-=--x x x 解:去分母,得424136+-=+-x x x ……①即 8213+-=+-x x ………………② 移项,得 1823-=+-x x …… ③ 合并同类项,得 7=-x …………④ ∴ 7-=x ………… ………………⑤ 上述解方程的过程中,是否有错误?答: ;如果有错误,则错在________步.如果上述解方程有错误,请你给出正确的解题过程:23.(8分)张新和李明到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.24.(12分)我市某景区原定门票售价为50元/人.为发展旅游经济,风景区决定采取优惠售票方法吸引游客,优惠方法如下表:时间优惠方法非节假日每位游客票价一律打6折节假日根据游团人数分段售票:10人以下(含10人)的游团按原价售票;超过10人的游团,其中10人仍按原价售票,超出部分游客票价打8折.(1)某旅游团共有20名游客,若在节假日到该景区旅游,则需购票款为元.(2)市青年旅行社某导游于5月1日(节假日)和5月20日(非节假日)分别带A团和B团都到该景区旅游,已知A、B两个游团合计游客人数为50名,两团共付购票款2000元,则A、B两个旅游团各有游客多少名?参考答案1.C2.D3.D4.B【解析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:方程两边乘以6得:6﹣2(x+3)=3x,去括号得:6﹣2x﹣6=3x,故选B5.B【解析】移项要变号,②没有变号.解:①去括号,得4x﹣4﹣x=2x+1②移项,得4x﹣x﹣2x=1+4③合并同类项,得x =5 故选B . 6.A【解析】□处用数字a 表示,把x =﹣2代入方程即可得到一个关于a 的方程,解方程求得a 的值.解:□处用数字a 表示, 把x =﹣2代入方程得1223a-=-, 解得:a =72. 故选A . 7.B .【解析】∵5x -a =0, ∴x =5a , ∵3y +a =0, ∴y =-3a , ∴-3a -5a=2, 去分母得:-5a -3a =30, 合并得:-8a =30, 解得:a =-154. 故选B . 8.D .【解析】设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11()179x +=.故选D .【解析】设分配x名工人生产螺母,则(26-x)人生产螺钉,根据每天生产的螺钉和螺母刚好配套可列出方程1000(26-x)=2×800x.10.C【解析】根据题意,设电子产品的标价为x元,按照等量关系“标价×0.9﹣进价=进价×20%”,列出一元一次方程得:0.9x﹣21=21×20%解得:x=28所以这种电子产品的标价为28元.故选C.11.1/212.去括号13.4/514.2【解析】先求出方程2x﹣3=3的解,然后把x的值代入方程,求解m的值.解:解方程2x﹣3=3得:x=3,把x=3,代入方程,得,1﹣=0,解得:m=2.故答案为:2.15.1.【解析】先把x=2代入方程求出a的值,再把a的值代入代数式进行计算即可.解:∵关于x的方程3a﹣x=+3的解为2,∴3a﹣2=+3,解得a=2,∴原式=4﹣4+1=1.故答案为:1.【解析】根据题意得到两数互为相反数,利用相反数的定义列出方程,求出方程的解即可得到x 的值. 解:根据题意得:+5=0,去分母得:x ﹣1+10=0, 解得:x =﹣9. 故答案为:﹣9. 17.3【解析】因为a ,b 互为相反数,所以a +b =0,又c ,d 互为倒数,所以cd =1,所以方程2()3(1)20a b x cd x x ++--=即3(x -1)-2x =0,所以3x -2x -3=0,所以x =3. 18.(1+50%)x ·80%-x =28【解析】根据题意可得衣服的标价为:(1+50%)x 元,售价为:(1+50%)x ·80%,根据售价-进价=28列出一元一次方程. 19.12x (x ﹣1)=2×5 【解析】每支球队都需要与其他球队赛(x ﹣1)场,但2队之间只有1场比赛, 所以可列方程为:12x (x ﹣1)=2×5. 20.3【解析】设从乙队调x 人到甲队,则27+x =2(18-x ),解得:x =3. 21.(1)x =-2;(2)x =4.【解析】 (1)首先进行去括号,然后进行移项合并同类项,求出x 的值;(2)首先进行去分母,然后去括号,移项合并同类项,求出x 的值. 解:(1) 4x +3=2x -2+1 4x -2x =-2+1-3 2x =-4 解得:x =-2(2)2(x-1)-(x+2)=3(4-x) 2x-2-x-2=12-3xx+3x=12+44x=16解得:x=4.22.有;①;x=-3 5【解析】根据解方程的方法进行判定,可以发现在去括号的时候没有变号,而且常数项也没有乘.解:有,第①步6x-3(x-1)=4-2(x+2)6x-3x+3=4-2x-43x+3=-2x5x=-3解得:x=-3 523.李明上次所买书籍的原价为100元【解析】假设原价为x元,即可得出等式方程70%x+20=x﹣10,求出即可.解:设原价为x元,根据题意得:70%x+20=x﹣10,。

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。

周周测试卷七年级上数学

周周测试卷七年级上数学

一、选择题(每题2分,共20分)1. 下列数中,属于正数的是()A. -3B. 0C. 1.5D. -2.32. 下列各数中,有理数是()A. √2B. πC. 1/3D. 0.1010010001…3. 下列各数中,无理数是()A. √9B. √16C. √25D. √1004. 若 |a| = 5,则 a 的值可能是()A. 5B. -5C. 10D. -105. 下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 06. 下列方程中,正确的是()A. 2x + 3 = 7B. 3x - 2 = 8C. 4x + 5 = 10D. 5x - 6 = 127. 下列各数中,偶数是()A. 3B. 4C. 5D. 68. 下列各数中,质数是()A. 2B. 3C. 4D. 59. 下列各数中,合数是()A. 4B. 5C. 6D. 710. 下列各数中,正整数是()A. 0B. 1C. 2D. 3二、填空题(每题2分,共20分)11. -2 + 3 - 4 的结果是 ________ 。

12. 0.5 × 4 + 0.3 × 2 的结果是 ________ 。

13. 下列各数中,最小的数是 ________ 。

14. 下列各数中,最大的数是 ________ 。

15. 下列各数中,有理数是 ________ 。

16. 下列各数中,无理数是 ________ 。

17. 下列各数中,偶数是 ________ 。

18. 下列各数中,质数是 ________ 。

19. 下列各数中,合数是 ________ 。

20. 下列各数中,正整数是 ________ 。

三、解答题(每题10分,共30分)21. 解方程:2x - 3 = 7。

22. 解方程:3x + 4 = 15。

23. 计算下列各式的值:0.4 × 5 - 0.2 × 3 + 0.1 × 10。

人教版七年级上册数学第15周角测试题

人教版七年级上册数学第15周角测试题

【人教版七年级(上)数学周周测】第15周测试卷(测试范围:4.3角)班级:___________ 姓名:___________ 得分:___________一、选择题(每小题3分,共30分)1.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是( )A. B. C. D.2.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )A. 85°B.160°C.125°D.105°第2题图第5题图第6题图3.已知∠α=35°19′,则∠α的余角等于( )A.144°41′B.144°81′C.54°41′D.54°81′4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于( )A.30°10′B.60°10′C.59°50′D.60°50′5.如图,对图中各射线表示的方向下列判断错误的是( )A.OA表示北偏东15°B.OB表示北偏西50°C.OC表示南偏东45°D.OD表示西南方向6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于( )A.40°B.35°C.30°D.20°第6题图第7题图7.如图,∠AOB是平角,OC是射线,OD平分∠AOC,OE平分∠BOC,∠BOE=18°,则∠AOD的度数为( )A.78°B.62°C.88°D.72°8.钟表在3点时,它的时针和分针所组成的角(小于180°)是( )A.30°B.60°C.75°D.90°9.如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为( )A.40°B.45°C.50°D.60°第9题图 第10题图10.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( ) ①AD 平分∠BAF ;②AF 平分∠DAC ;③AE 平分∠DAF ;④AE 平分∠BA C. A.1 B.2 C.3 D.4二、填空题(每小题3分,共30分)11.把能用一副三角尺直接画出(或利用其角的加减可画出)的角的度数从左边框内挑出写入右边框内.12.∠A =32°36′它的补角为 。

七年级上册数学周测试卷

七年级上册数学周测试卷

一、选择题(每题4分,共20分)1. 下列数中,不是有理数的是()A. -2.5B. √4C. 0D. π2. 如果a=3,b=-2,那么a²+b²的值是()A. 7B. 9C. 5D. 13. 下列哪个图形是轴对称图形?()A. 长方形B. 等腰三角形C. 正方形D. 等边三角形4. 下列哪个选项不是方程?()A. 2x+3=7B. x²=4C. 5y-2=3D. 3a=95. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)二、填空题(每题5分,共20分)6. 3的平方根是______,5的立方根是______。

7. 若a=4,b=-6,那么a²+b²的值是______。

8. 在直角三角形中,若两直角边的长度分别为3和4,则斜边的长度是______。

9. 如果x²-5x+6=0,那么x的值是______。

10. 在直角坐标系中,点B(-1,-2)关于原点的对称点是______。

三、解答题(每题10分,共30分)11. 解下列方程:(1) 2x-5=7(2) 3x²-9x+6=012. 计算下列各式的值:(1) (a+b)² - (a-b)²(2) (2x+3y)² - (x+y)²13. 在平面直角坐标系中,已知点A(-2,3)和点B(4,-1),求线段AB的中点坐标。

四、应用题(10分)14. 某商店为了促销,将一件标价为200元的商品打八折出售,顾客购买时还享有满100减20元的优惠活动。

请问顾客购买此商品实际需要支付多少钱?答案:一、选择题1. D2. B3. D4. D5. A二、填空题6. ±√3,√5/37. 498. 59. 2或3 10. (1,2)三、解答题11. (1) x=6 (2) x=2或x=3/212. (1) 4a² (2) 3x²+5xy+3y²13. 线段AB的中点坐标为(1,1)四、应用题14. 实际支付金额= 200 × 0.8 - 20 = 140元。

BFB数学七年级(上册)周周清测试卷(八)

BFB数学七年级(上册)周周清测试卷(八)

BFB 数学七年级(上册)周周清测试卷(八)第三章 实数(B 卷)一、选择题(本大题有10小题,每小题3分,共30分)1. 下列说法中,正确的是( )A.64的平方根是8B.4的平方根是2或2-C.()23-没有平方根 D.16的平方根是4和4-2.( )A.5±B.5C.4-D. 3. 下列说法正确的个数是( )()20.60.360.6-=∴- ①是0.36的一个平方根 20.80.640.64=∴ ②的平方根是0.82393414⎛⎫-= ⎪⎝⎭③()25255±=± ④ A.1 B.2 C.3 D.44. 的运算结果应在( )A.6到7之间B.7到8之间C.8到9之间D.9到10之间5. 下列说法中,正确的是( )A.无理数包括正无理数、0和负无理数B.无理数是用根号形式表示的数C.无理数是开方开不尽 的数D.无理数是无限不循环小数6. 在227,1.414,π,2 ( )A.2B.3C.4D.57. 已知一个正方形的边长为a ,面积为S ,则( )A.SB.S 的平方根是aC.a 是S 的算术平方根D.a =8. 大于-( )A.9个B.8个C.7个D.5个9. 在Rt ABC △中,90∠= ,c 为斜边,a ,b( )A.3a b c +-B.33a b c --+C.33a b c +-D.2a10. 当x >2,得( )A.xB.4x -C.4x +D.4x -二、填空题(本大题有6小题,每小题4分,共24分)11. _________.12. 2,那么()23x +=_________________.13.的相反数是__________,的倒数是__________.14. 若实数x ,y 0,则x 与y 的关系是_______________.15. 若()223a +______________.16. a 的值为____________. 三、解答题(本大题有7小题,共66分)17. (6分)计算:(1)(2)26x <<.18. (8分)设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的实数,求a b c ++的立方根.19. (8分)若x ,y 都是实数,且8y ,求3x y +的立方根.20. (10分)已知:x ,y 是实数,且()21x -x y 的负倒数.21. (10分)座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为2T =其中T 表示周期(单位:s ),l 表示摆长(单位:m ),9.8g m =/2s ,假如一台座钟的摆长为0.4m ,它每摆动一个来回发出一次滴答声,那么在1min 内,该座钟大约发出多少次滴答声?22. (12分)观察下列各式及验证过程:=(1)(2)针对上述多式反映的规律,写出用n(2n≥的自然数)表示的等式,并进行验证.。

七年级数学周考测试卷

七年级数学周考测试卷

七年级数学周考测试卷一、选择题:1.以下图形中,能够折叠成正方体的是( )A B C D2.假设a 是有理数,那么4a 与3a 的大小关系是( )A.4a>3aB.4a=3aC.4a<3aD.不能确定3.以下各对数中互为相反数的是( )A.32与-23B.-23与(-2)3;C.-32与(-3)2D.(-3×2)2与23×(-3)4.某班有40名学生,将他们的身高分成4组,在160~165cm 区间的有8名学生,那么这个小组的人数占全体的( )A.10%B.15%C.20%D.25%5.一个数的倒数的相反数是135,这个数是( ) A.165 B.516 C.-165 D.-5166.为了了解1万台某种电视机的使用寿命,从中抽出10台进行测试, 以下表达正确的选项是( )A.1万台某种电视机是总体;B.每台电视机是个体;C.10台电视机的使用寿命是样本;D.以上说法都不正确7.当a<0,化简a a a,得( ) A.-2 B.0 C.1 D.28.把27430按四舍五入取近似值,保存两个有数数字, 并用科学记数法表示应是( )A.2.8×104B.2.8×103C.2.7×104D.2.7×1039.某养鱼专业户年初在鱼塘中投放了500条草鱼苗,6个月后从中随机捞取17条草鱼,称重如下:估计这鱼塘中年初投放的500条草鱼此时的总质量大约为( )千克.A.845B.854C.846D.847 10.一条船在灯塔的北偏东030方向,那么灯塔在船的什么方向〔 〕A .南偏西030;B .西偏南040;C .南偏西060;D .北偏东030O C ABD 11.假设2x+3=5,那么6x+10等于〔 〕A .15;B .16;C .17;D . 3412.∠AOB=3∠BOC,假设∠BOC=30°,那么∠AOC 等于( )A.120°B.120°或60°C.30°D.30°或90°13.某商店有两个进价不同的计算器都卖了80元,其中一个 赢利60%,另一个亏本20%,在这次买卖中,A .不赔不赚;B .赚了10元;C .赔了10元;D .赚了50元 14.城镇人口占总人口比例的大小表示城镇化水平的上下,由下面统计图可知, 我国城镇化水平提升最快的时期是( )A.1953年~1964年;B. 1964年~1982年;C. 1982年~1990年;D. 1990年~2022年;二、填空题:15.调查某城市的空气质量,应选择_______(填抽样或全面)调查.16.假设│x+2│+〔y-3〕2=0,那么xy=____. 17.∠α=72°36′,那么∠α的余角的补角是_____度.18.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=︒36,那么∠AOB=_ __. 19.观察以下数字的排列规律,然后在括号内填入适当的数:3,-7,11,15-,19,-23,〔 〕,( ).20.假设线段AB=10cm,在直线AB 上有一点C,且BC=4cm,M 是线段AC 的中点,那么AM=______cm.三、解做题:21. 计算:(1) 22350(5)1--÷--; (2) 2211210.53(2)3⎡⎤⎛⎫⎡⎤----⨯⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦.22.解方程:(1) 6)5(34=--x x ; (2)53210232213+--=-+x x x .39.1%1982年1964年807060504030果树数挂果树23.一条射线OA,如果从点O 再引两条射线OB 和OC,使∠AOB=60°, ∠BOC=20°, 求∠AOC 的度数.24.某果农承包了一片果林,为了了解整个果林的挂果情况, 果家随机抽查了局部果树挂果树进行分析.以下图是根据这组数据绘制的统计图,图中从左到右各长方形之比为5:6:8:4:2,又知挂果数大于60的果树共有48棵.(1)果农共抽查了多少棵果树?(2)在抽查的果树中,挂果树在40~60之间的树 有多少棵,占百分之几?25. 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该假设何分配工人?26.甲、乙、丙三人在长400米的环形跑道上,同时同地分别以每秒6米、4米、8米的速度跑步出发,并且甲、乙反向,甲、丙同向,当丙遇到乙时,即反向迎甲而跑,遇上甲时,又反向迎乙,如此练习下去,直到甲、乙、丙三人相遇为止,当这一过程结束时,求丙跑了多少米?27.“五一〞长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便马上带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?28. 某学校班主任暑假带着该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠.〞乙旅行社说:“教师在内全部按票价的6折优惠.〞假设全部票价是240元.〔1〕如果有10名学生,应参加哪个旅行社,并说出理由.〔2〕当学生人数是多少时,两家旅行社收费一样多?]29. 某地的一种绿色蔬菜,在市场上假设直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产水平是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一局部蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.答案:一、选择题:C D C C D C A C C A B B B D二、填空题:15. 抽样调查;16.-617.162.618.144019.27,-31;20.3或7cm三、解做题:21.解:当OC 在∠AOB 的内部时,如答图(1),此时∠AOC=∠AOB-∠BOC=60°- 20°=40°. 当OC 在∠AOB 的外部时,如图(2),此时∠AOC=∠AOB+∠BOC=60°+20°=80°, ∴∠AOC 等于40°或80°.(1)OCA B (2)O C A B 22.略. 23.(1) -12,(2)416-; 24.(1) x=3, (2)167=x ; 25.(1)200棵,(2)56%;26. 解:设哥哥追上弟弟需要x 小时,由题意得:x x 226+=解这个方程得: 21=x 所以,弟弟行走了211+小时小于1小时45分,未到外婆家,哥哥能够追上. 27. 解:〔1〕甲 240×10×0.5+240=1440乙 240×〔10+1〕×0.6=1584〔2〕设当学生人数为 x 人时.240·x ·0.5+240=240(x+1) ·0.6x=428. 解:方案一:4000×140=560000〔元〕;方案二:15×6×7000+〔140-15×6〕×1000=680000〔元〕;方案三:设精加工x 吨,那么 14015616x x-+= 解得,x=60,7000×60+4000×〔140-60〕=740000〔元〕 答:选择第三种.。

2024年华师大版七年级数学上册阶段测试试卷988

2024年华师大版七年级数学上册阶段测试试卷988

2024年华师大版七年级数学上册阶段测试试卷988考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、M点在数轴上表示4,N点离M的距离是3,那么N点表示()A. 1B. 7C. 1或7D. 1或12、若你是工商局的统计员,要为商家提供关于这商品的直观统计图,则应选择统计图是()A. 条形统计图B. 折线统计图C. 扇形统计图D. 前三种都可以3、甲;乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸( )A. 甲B. 乙C. 丙D. 丁4、若三条直线交于一点,则共有对顶角(平角除外)()B. 5对C. 4对D. 3对5、下列叙述正确的是( )A. 近似数8.96×104精确到百分位B. 近似数5.3万精确到千位C. 0.130精确到百分位D. 近似数1.8与1.80表示的意义相同6、【题文】如图所示,有下列结论①②③④其中正确的有()A. 1个B. 2个C. 3个D. 4个7、(2015•盘锦)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.8、代数式2a2+3a+1的值是6,则6a2+9a+5的值是()A. 18B. 16D. 20评卷人得分二、填空题(共9题,共18分)9、(2014春•涿州市校级月考)已知:如图;CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF 与AE的位置关系,并说明你的理由.证明:∵CD⊥DA,DA⊥AB,(____)∴∠CDA=∠DAB=____°.(垂直定义)又∠1=∠2,____∴∠CDA-∠1=____;(等式的性质)即∠3=____.∴DF____AE.(____,____)10、1的相反数是____,倒数是____.11、(2014春•扬中市校级期末)如图,在△ABC中,CE,BF是两条高,若∠A=65°,则∠BOC的度数是____.12、在-6,0,3,8这四个数中,最小的数是____.13、比较大小:﹣____﹣(填“>”或“<”)14、若代数式2a m b4与-5a2b n+1是同类项,则m n= ______ .15、某市6月份日最高气温统计如图所示,则在日最高气温这组数据中,众数是______ ℃,中位数是 ______ ℃.16、观察下面的一列数;按某种规律在横线上填上适当的数:1,-2,4,-8,16,____.17、把多项式按照字母x升幂排列:____.评卷人得分三、判断题(共9题,共18分)18、相等的角是对顶角.____.(判断对错)19、(4a2b3-2ab2)÷2ab2=2ab.____.(判断对错)4421、计算-22与(-2)2的结果相等.(____)22、(-4)-(-1)=-3____.(判断对错)23、-a8÷(-a)2=(-a)8-2=(-a)6=a6.____.(判断对错)24、同一平面内,一条直线不可能与两条相交直线都垂直.____.(判断对错)25、面积相等的两个三角形是全等三角形.()26、﹣x2(2y2﹣xy)=﹣2xy2﹣x3y.________.(判断对错)评卷人得分四、证明题(共1题,共10分)27、如图;在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm;(1)试说明△AED≌△ACD;(2)求线段BC的长.评卷人得分五、解答题(共3题,共6分)28、解下列不等式或不等式组。

七年级上册数学测试卷题目

七年级上册数学测试卷题目

一、选择题(每题4分,共20分)1. 下列各数中,正数是()A. -3.2B. 0.5C. -2.5D. 02. 下列各数中,有理数是()A. πB. √2C. 0.101001…D. -3/43. 下列各数中,绝对值最小的是()A. -2B. 0C. 1.5D. -34. 下列各数中,是偶数的是()A. 7B. 16C. -9D. 35. 下列各数中,是质数的是()A. 15B. 14C. 11D. 9二、填空题(每题4分,共16分)6. 5的平方根是______,2的立方根是______。

7. (-3)的相反数是______,|5|的值是______。

8. 2.5的平方是______,0.1的立方是______。

9. (-2)×(-3)=______,5÷(-0.5)=______。

三、解答题(共64分)10.(12分)计算下列各题:(1)(2+3i) + (4-5i)(2)(5-2i) - (3+4i)(3)(3+4i) × (2-5i)(4)(6-3i) ÷ (2+i)11.(12分)解下列方程:(1)2x - 3 = 7(2)5x + 4 = -2(3)2(x-3) = 5x + 1(4)3(x+2) - 4 = 2x - 112.(12分)已知:a=3,b=-2,求下列各式的值:(1)a² + b²(2)a² - b²(3)ab(4)a²b13.(12分)观察下列数列:1, 4, 9, 16, 25, …(1)写出这个数列的通项公式;(2)求出第10项的值;(3)如果这个数列继续下去,第100项是多少?14.(12分)一个长方形的长是5cm,宽是3cm,求这个长方形的面积和周长。

15.(12分)一个等腰三角形的底边长是6cm,腰长是8cm,求这个三角形的面积。

四、应用题(共20分)16.(10分)某市决定对城市绿化进行投资,计划在5年内投资1000万元。

七年级上学期第3次周考数学试卷

七年级上学期第3次周考数学试卷

亳州市黉学英才中学 班级 姓名 考号……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………… 线……………………………………………………答……………………………………………………题…………………………………………线………………………考场号: 座位号: 亳州市黉学英才中学2018年第三次周考测试卷七年级数学(全卷四个大题,共22个小题;满分120分,考试时间90分)题号 一 二 三 四 总分 得分一、选择题(每小题3分,共30分)1.在3.14,0,-(-2),5,-15%,中,非负整数有( )A.0个B.1个C.2个D.3个2.如果a -2的相反数是5,那么a 的值是( )A .-5B .7C .3D .-33. 2--的倒数是 ( )A.-2B.2C.D.4.若,那么a 一定是( )A.正数B. 负数C. 1D.±1 5.下列算式中,积为负数的是( ) A.B.C.D.6.一个数和它的倒数相等,这个数是( )A.1B.-1C.1±D.01和±7.在算式中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )A.+B.-C.⨯D.÷8.下列有理数大小关系判断正确的是( )A.10191---->)(B. 100->C. 33-+<D. 01.01-->9.如果a +b<0,ab >0那么a ,b 两个数一定是( )A.a >0,b >0B.a <0,b <0C.a <0,b >0D.a >0,b <010.若ab ≠0,则bb aa +的值不可能是( )A.2B.0C.-2D.11 2 3 4 5 6 7 8 9 10二、填空题(每小题4分,共20分)11.气温由-3℃上升2℃后是 .12.若定义新运算a ※b=(-2)×a ×3×b,请利用此定义计算2※(-3)= . 13.与-3的差为0的数是 . 14.031a =-++b ,则a+b = .15.有理数a 、b 、c 在数轴上的位置如图,判断正负,用“>”或“<”填空:a+b 0,a ﹣c 0.三、计算题(每题5分,共20分)16.(1)-7+(-5)-(-90)-15 (2)-8+(+0.25)-(-9)+⎪⎭⎫⎝⎛41-4--第1页,共4页第2页,共4页……………………………答……………………………………………………题…………………………………………线……………………………………………………答……………………………………………………题…………………………………………线……………………………………………………密……………………………………………………封…………………………………………线………………………四、解答题(共50分)17.已知|a|=3,|b|=5,且a <b ,求a-b 的值.(8分)18.在如图所示的运算流程中:(1)若输入的数是-2,则输出值是多少?(4(2)若输入的数是3,则输出值是多少?(4分)19.已知有理数a,b,c,d,m,它们之间有如下关系:a,b 互为相反数,c,d 互为倒数,m 的绝对值为2,则 (a+b+cd)m-cd 的值是多少?(8分)20.一只小虫沿一条东西方向放着的木棒爬行,先以3米/分钟速度向东爬行5分钟,又以相同速度 向西爬行9分钟,求此时距出发点的距离.(8分)21.(9分)某检修小组从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

七年级数学上册全册单元测试卷检测题(WORD版含答案)

七年级数学上册全册单元测试卷检测题(WORD版含答案)

七年级数学上册全册单元测试卷检测题(WORD版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.4.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.5.如图,两个形状、大小完全相同的含有30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018至2019学年上学期七年级(数学)周测试卷第3次
班级: 姓名: (满分100分)
一、 填空题(每空2分,共30分)
1.最大的负整数是___________; 最小的正整数是____________
2.绝对值小于5的整数有______个;
3. 的相反数是4, 0得相反数是 ,-(-4)的相反数是 。

4.绝对值最小的数是 ,-313
的绝对值是 。

3.14-π= 5.若零件的长度比标准多0.1cm 记作0.1cm ,那么—0.05cm 表示
6.大于-412且小于114的整数有 。

7.已知的值是那么y x y x +==,2
13,6 . 8. 三个连续整数,中间一个数是a ,则这三个数的和是___________.
9. 用“>”或“<”号填空:有理数a ,b ,c 在数轴上对应的点如图:
则a +b +c______0;|a|______|b|;a +c_____b ;
二、 解答题(共70分)
10.计算(1-9题,4分/题;11-12题,5分/题。

共46分)
(1) (-6)+(-8)
(2) (-4)+2.5 (3) (-7)+(+7)
(4) (-7)+(+4)
(5) (+2.5)+(-1.5) (6) 0+(-2)
(7) -3+2
(8) (+3)+(+2) (9) ()a a +-
c a b
(10) )15()41()26()83(++-+++- (11) (-1.5)+134⎛⎫+ ⎪⎝⎭+(+3.75)+142⎛⎫- ⎪⎝⎭
11.(10分)把下列各数填在相应的大括号里 +12,-6,0.54,7,0,3.14,200%,3万,-124,3.4365,-413
,-2.543。

正整数集合{ …},
负整数集合{ …},
分数集合{ …},
自然数集合{ …},
负数集合{ … }。

12.(14分)某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+
12、-5、-7
(1)到晚上6时,出租车在什么位置。

(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?。

相关文档
最新文档