高中数学函数公式

合集下载

高中数学概念公式大全

高中数学概念公式大全

高中数学概念公式大全1.代数与函数:- 一次函数的方程:y = kx + b- 二次函数的方程:y = ax² + bx + c- 三次函数的方程:y = ax³ + bx² + cx + d-指数函数的方程:y=a^x- 对数函数的方程:y = logₐ(x)-幂函数的方程:y=x^a-绝对值函数的方程:y=,x- 正弦函数的方程:y = A sin(Bx + C) + D- 余弦函数的方程:y = A cos(Bx + C) + D-反比例函数的方程:y=k/x2.平面解析几何:-直线的一般式方程:Ax+By+C=0- 直线的斜截式方程:y = kx + b-直线的点斜式方程:y-y₁=k(x-x₁)-直线的两点式方程:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁) -圆的标准方程:(x-h)²+(y-k)²=r²-椭圆的标准方程:(x-h)²/a²+(y-k)²/b²=1-双曲线的标准方程:(x-h)²/a²-(y-k)²/b²=1- 抛物线的标准方程:y = ax² + bx + c-平行线的判定:两直线的斜率相等-垂直线的判定:两直线的斜率的乘积为-13.空间解析几何:- 空间直线的参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct -空间直线的对称式方程:(x-x₁)/a=(y-y₁)/b=(z-z₁)/c-空间平面的一般式方程:Ax+By+Cz+D=0-空间平面的点法式方程:(x-x₀)/A=(y-y₀)/B=(z-z₀)/C-两直线的位置关系:平行、异面、交于一点-直线与平面的位置关系:相交、平行、共面、垂直-两平面的位置关系:平行、重合、相交4.三角函数与解三角形:- 任意角的辅助角公式:sin(π - θ) = sinθ, cos(π - θ) = -cosθ, tan(π - θ) = -tanθ-任意角的和差公式:sin(θ₁ ± θ₂) = sinθ₁cosθ₂ ± cosθ₁sinθ₂cos(θ₁ ± θ₂) = cosθ₁cosθ₂∓ sinθ₁sinθ₂tan(θ₁ ± θ₂) = (tanθ₁ ± tanθ₂)/(1 ∓ tanθ₁tanθ₂)-二倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)-三角函数的诱导公式:sin(π ± θ) = ±sinθ, cos(π ± θ) = -cosθ, tan(π ± θ) = ±tanθ-等腰三角形的性质:两底角相等,底边平分顶角,底边上的高相等- 直角三角形的性质:勾股定理(a² + b² = c²),正弦定理(sinθ = a/c),余弦定理(cosθ = b/c),正切定理(tanθ = a/b)。

高中数学基本公式大全

高中数学基本公式大全

高中数学基本公式大全以下是高中数学常用的基本公式大全:1. 二次方程求根公式:对于二次方程 ax^2 + bx + c = 0,其求根公式为: x = (-b ± √(b^2 - 4ac)) / (2a)2. 一次方程的解:对于一次方程 ax + b = 0,其解为:x = -b/a3. 因式分解公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2a^2 - b^2 = (a + b)(a - b)4. 平方差公式:a^2 - b^2 = (a + b)(a - b)5. 三角函数的基本关系:sin^2θ + cos^2θ = 1tanθ = sinθ / cosθcotθ = 1 / tanθsecθ = 1 / cosθcscθ = 1 / sinθ6. 三角函数和角度的关系:弧度与角度的转换公式:弧度 = 角度× π / 180角度与弧度的转换公式:角度 = 弧度× 180 / π7. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)8. 三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ =cos^2θ - sin^2θtan2θ = (2tanθ) / (1 - tan^2θ)9. 三角函数的半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))10. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)11. 三角函数的积化和差公式:sinAcosB = (sin(A + B) + sin(A - B)) / 2cosAsinB = (sin(A + B) - sin(A - B)) / 2cosAcosB = (cos(A + B) + cos(A - B)) / 2sinAsinB = (cos(A + B) - cos(A - B)) / 212. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些是高中数学中常用的基本公式,掌握并熟练运用这些公式可以帮助解决各种数学问题。

高中数学常用公式大全

高中数学常用公式大全

高中数学常用公式大全一、集合。

1. 集合的基本运算。

- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_UA = {xx∈ U且x∉ A}(U为全集)2. 集合元素个数关系。

- n(A∪ B)=n(A)+n(B)-n(A∩ B)(n(A)表示集合A的元素个数)二、函数。

1. 函数的定义域。

- 分式函数y = (f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。

2. 函数的单调性。

- 设x_1,x_2∈[a,b],x_1 < x_2- 对于函数y = f(x),若f(x_1),则y = f(x)在[a,b]上单调递增;若f(x_1)>f(x_2),则y = f(x)在[a,b]上单调递减。

3. 函数的奇偶性。

- 对于函数y = f(x),定义域关于原点对称。

- 若f(-x)=f(x),则y = f(x)是偶函数;若f(-x)= - f(x),则y = f(x)是奇函数。

4. 一次函数y=kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)。

5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a),顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。

- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

7. 对数函数y=log_ax(a>0,a≠1)- 性质:当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。

高中数学常用公式大全

高中数学常用公式大全

高中数学常用公式大全1.平方公式:- (a+b)² = a² + 2ab + b²- (a-b)² = a² - 2ab + b²-(a+b)(a-b)=a²-b²2.完全平方公式:-a²-b²=(a+b)(a-b)3.二次方程求根公式:- 对于二次方程ax²+bx+c=0,其中a≠0方程的解为:x=(-b±√(b²-4ac))/(2a)4.一元二次方程的判别式:- 对于二次方程ax²+bx+c=0判别式D=b²-4ac,若D>0,方程有两个不相等的实根;若D=0,方程有两个相等的实根;若D<0,方程无实数解。

5.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC6.相似三角形的定理:-AAA(全等):两个三角形的三个角分别相等,则两个三角形相似。

-SSS:两个三角形的对应边的比例相等,则两个三角形相似。

-SAS:两个三角形的一个角相等,且两边的比例相等,则两个三角形相似。

-AA:两个三角形的两个角相等,则两个三角形相似。

7.等腰三角形的性质:-底角相等:等腰三角形的两个底角相等;-等边等角:等腰三角形的两边相等,两个底角也相等;-高线一致性:等腰三角形的高线相等。

8.圆的相关公式:-圆的周长:C=2πr-圆的面积:S=πr²-圆心角与弧度的关系:θ=s/r,其中s是弧长,r是半径。

9.三角函数的关系:- tanθ = sinθ/cosθ- cotθ = cosθ/sinθ- secθ = 1/cosθ- cscθ = 1/sinθ10.平行线与三角形的对应角关系:-内错角定理:若两条平行线被一条截线切割,对应角相等。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全1. 二次函数的标准形式:y = ax² + bx + c2. 三角函数的基本关系:sin(A±B)=sinAcosB±cosAsinB3. 余弦定理:a² = b² + c² - 2bc cosA4. 正弦定理:a/sinA = b/sinB = c/sinC5. 相似三角形的定义:两个三角形的相应角相等,且相应边成比例,则称两个三角形相似。

6. 三角形面积公式:S=1/2ab sinC7. 勾股定理:a² + b² = c²8. 平面向量的定义:平面向量是指在平面上的有向线段,它由起点和终点确定,其长度和方向确定。

9. 向量的加法:a+b=b+a10. 向量的减法:a-b=b-a高中数学公式大全总结1、二次函数的标准方程:y=ax^2+bx+c2、三角函数的基本公式:sinA=a/c,cosA=b/c,tanA=a/b3、勾股定理:a^2+b^2=c^24、直角三角形面积公式:S=1/2ab5、椭圆面积公式:S=πab6、圆的面积公式:S=πr^27、梯形面积公式:S=1/2(a+b)h8、平行四边形面积公式:S=ab9、正方形面积公式:S=a^210、圆柱体体积公式:V=πr^2h探索澳洲金融数学,展开你的金融数学之旅澳洲金融数学是一门涉及金融统计学、投资分析和金融工程的综合性学科。

它侧重于金融市场、金融产品和金融服务中经济学、数学和计算机科学知识的结合。

本文将为您提供了解更多澳洲金融数学的指南,帮助您开启探索之旅。

一、澳洲金融数学的定义澳洲金融数学是一门综合性学科,涉及金融统计学、投资分析和金融工程等领域。

它涉及金融市场、金融产品和金融服务相关的经济学、数学和计算机科学知识。

二、澳洲金融数学的内容澳洲金融数学的内容包括:金融数学基础、金融数学模型、金融产品定价、金融风险管理、金融统计学、金融工程、投资管理、金融市场分析等。

高中数学公式大全归纳

高中数学公式大全归纳

高中数学公式大全归纳以下是高中数学中常用的一些公式大全的归纳:一、三角函数1. 正弦函数:sinθ = 对边/斜边2. 余弦函数:cosθ = 邻边/斜边3. 正切函数:tanθ = 对边/邻边4. 余切函数:ctgθ = 邻边/对边5. 正割函数:secθ = 对角/斜边6. 余割函数:cscθ = 对角/对边7. 半角公式:sinθ/2 = 正弦函数值/28. cosθ/2 = 余弦函数值/29. tanθ/2 = 正切函数值/210. ctgθ/2 = 余切函数值/2二、指数函数1. 指数函数:a^x = 对数函数值/ln(a)2. 幂指数函数:x^y = 指数函数值/ln(x)3. 自然指数函数:n^x = 指数函数值/ln(n)三、对数函数1. 对数函数:log2(x) = 底数指数函数值2. 对数函数:log10(x) = 底数指数函数值3. 对数函数:log(x,y) = 对数函数值/ln(y)4. 换底数对数函数:xlnx = 对数函数值/ln(新底数)5. 扩展对数函数:log2(x), log10(x), log(x,y) 等都是对数函数四、三角恒等变换公式1. sin(2θ) = 2sinθcosθ2. cos(2θ) = 2cos2θ - 13. tan(2θ) = 2tanθ/(1 - tan2θ)4. ctg(2θ) = (1 - cot2θ)/(1 + cot2θ)5. sec(2θ) = 2sec2θ - 16. csc(2θ) = 2csc2θ - 1五、导数与微分1. f"(x) = 导数2. g"(x) = 微分3. f(x) = g(x) + h(x) 时,f"(x) = g"(x) + h"(x)4. f(x) = ln(x) 时,f"(x) = 1/x5. f(x) = sin(x) 时,f"(x) = cos(x)6. g(x) = f(x) + c 时,g"(x) = f"(x) + c以上是高中数学常用的一些公式,希望能够帮助到您。

高中数学_三角函数公式大全

高中数学_三角函数公式大全

高中数学_三角函数公式大全一、基本公式1.正弦函数的基本公式:sin(A±B) = sinAcosB ± cosAsinBsin2A = 2sinAcosAsin(A+B) + sin(A-B) = 2sinAcosB2.余弦函数的基本公式:cos(A±B) = cosAcosB ∓ sinAsinBcos2A = cos^2(A) - sin^2(A)cos(A+B) + cos(A-B) = 2cosAcosB3.正切函数的基本公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)tan2A = (2tanA) / (1 - tan^2(A))tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)二、和差化积公式1.正弦函数的和差化积公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB2.余弦函数的和差化积公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB三、倍角公式1.正弦函数的倍角公式:sin2A = 2sinAcosA2.余弦函数的倍角公式:cos2A = cos^2(A) - sin^2(A)3.正切函数的倍角公式:tan2A = (2tanA) / (1 - tan^2(A))四、半角公式1.正弦函数的半角公式:sin(A/2) = ±√[(1 - cosA) / 2]2.余弦函数的半角公式:cos(A/2) = ±√[(1 + cosA) / 2]3.正切函数的半角公式:tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]五、和差化积公式1.正弦函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinB2.余弦函数的和差化积公式:cos(A±B) = cosAcosB ∓ sinAsinB六、和差化积公式的应用1. sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2sin((A-B)/2)cos((A+B)/2)2. cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)3. tanA + tanB = sin(A+B) / cosAcosBtanA - tanB = sin(A-B) / cosAcosB以上是一些常用的三角函数公式,其中涉及到的角度均为弧度制。

高中数学函数公式总结大全

高中数学函数公式总结大全

高中数学函数公式总结大全
高中数学函数公式总结如下:
1.函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x ∈A。

2.函数的三要素:定义域、值域和对应法则。

3.函数的表示方法:解析法、图象法和列表法。

4.函数的单调性:设函数f(x)的定义域为D,区间I包含于D。

如果对于区间I上任意两个自变量的值x1,x2,当x1 <x2时,都有f(x1) < f(x2),那么就说函数f(x)在区间I上是单调递增的。

如果对于区间I 上任意两个自变量的值x1,x2,当x1<x2时,都有f(x1) > f(x2),那么就说函数f(x)在区间I_是单调递减的。

5.函数的奇偶性:如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数;如果对于函数f(x)的定义域内任意一个x,都有f(-x)= -f(x),那么函数f(x)就叫做奇函数。

6.指数函数:一般地,函数y=a(a >0,且a≠1)叫做指数函数。

7.对数函数:一般地,函数y=logax(a>0,且a≠1)叫做对数函数。

8.幂函数:一般地,函数y=x“叫做幂函数,其中x是自变量,a 是常数。

9.二次函数:一般地,把形如y =ax²+bx +c (a ≠0)的函数叫做二次函数。

10.三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

以上是高中数学中常见的函数公式,希望对你有所帮助。

高中数学公式大全总结

高中数学公式大全总结

高中数学公式大全总结高中数学公式大全总结如下:1. 基本公式:- 指数函数:f(x) = a^x,其中 a 为正数。

- 对数函数:f(x) = log_a(x),其中 a 为非零正数。

- 三角函数:- 正弦函数:f(x) = sin(x),其中 x 为角度。

- 余弦函数:f(x) = cos(x),其中 x 为角度。

- 正切函数:f(x) = tan(x),其中 x 为角度。

- 割函数:f(x) = csc(x),其中 x 为角度。

- 半角函数:f(x) = sin(x)/cos(x),其中 x 为半角。

- 函数图像:- 指数函数:形如 f(x) = a^x 的图像通常呈现出指数型增长。

- 对数函数:形如 f(x) = log_a(x) 的图像通常呈现出对数型增长。

- 三角函数:三角函数的图像通常呈现出周期性的变化。

- 不等式:- a + b > c 当且仅当 a > c 且 b > c。

- 对于任意实数 a、b、c,总有 a + b + c = 3a + 2b + c。

- 对于任意整数 a、b,总有 a + b = b + a。

2. 微积分:- 导数:- 导数的定义:f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。

- 导数的四则运算法则:- 链式法则:f"(x) = g"(h) + g"(x) * f"(h)。

- 乘积法则:f"(x) * g"(x) = f(x) * g"(x) + f"(x) * g(x)。

- 加积法则:f"(x) + g"(x) = f(x) + g(x)。

- 偏导数的定义:对于任意函数 f(x),总有 f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。

高中数学公式总结大全

高中数学公式总结大全

高中数学公式总结大全高中数学是一个基础而重要的学科,其中包含了众多的公式和定理。

下面是我为您总结的高中数学公式大全(只列出了常用和重要的公式,因篇幅限制可能无法完全涵盖全部公式):-----------------一、代数运算1. 二次根式的乘除公式:(a√b) ×(c√b)= ac√b, (a√b)÷(c√b)= a÷c√b2. 幂的乘除公式:a^n × a^m = a^(n+m), a^n ÷ a^m = a^(n-m)3. 平方差公式:(a-b)² = a² - 2ab + b²4. 平方和公式:(a+b)² = a² + 2ab + b²5. 完全平方公式:a² - 2ab + b² = (a - b)²6. 立方差公式:(a-b)³ = a³ - 3a²b + 3ab² - b³7. 立方和公式:(a+b)³ = a³ + 3a²b + 3ab² + b³8. a² - b² = (a+b)(a-b)9. 二次方程的求根公式:对于 ax² + bx + c = 0 的一元二次方程,x = (-b ± √(b²-4ac)) / 2a10. 二次三角恒等式:(sinθ)² + (cosθ)² = 111. 二次三角恒等式:1 + (tanθ)² = (secθ)²12. 二次三角恒等式:1 + (cotθ)² = (cscθ)²13. 对数运算公式:log_a(xy) = log_a(x) + log_a(y), log_a(x/y) = log_a(x) - log_a(y) log_a(x^n) = nlog_a(x), log_a(1/x) = -log_a(x)14. 指数运算公式:a^x × a^y = a^(x+y), a^x ÷ a^y = a^(x-y)(a^x)^y = a^(xy), (ab)^x = a^x × b^x二、平面几何1. 圆的周长公式:C = 2πr或C = πd2. 圆的面积公式:A = πr²3. 锐角三角函数:sinθ = 对边/斜边, cosθ = 邻边/斜边, tanθ = 对边/邻边4. 余角三角函数:cscθ = 1/sinθ, secθ = 1/cosθ, cotθ = 1/tanθ5. 三角恒等式:sin(90°-θ) = cosθ, cos(90°-θ) = sinθ, tan(90°-θ) = cotθ6. 直角三角形勾股定理:a² + b² = c²或c = √(a² + b²)7. 正弦定理:a/sinA = b/sinB = c/sinC8. 余弦定理:a² = b² + c² - 2bc·cosA9. 面积公式:面积S = 0.5 ×底 ×高三、空间几何1. 简单体积公式:直方体 V = l × w × h正方体 V = a³圆柱体V = πr²h球体V = (4/3)πr³2. 简单表面积公式:直方体表面积 A = 2lw + 2lh + 2wh正方体表面积 A = 6a²圆柱体侧面积A = 2πrh圆柱体全面积A = 2πr(r+h)球体表面积A = 4πr²四、概率与统计1. 排列公式:n个元素取r个排列的情况总数为 P(n,r) = n!/(n-r)!2. 组合公式:n个元素取r个组合的情况总数为 C(n,r) = n!/(r!(n-r)!)3. 随机事件概率公式:P(A) = n(A)/n(S)4. 条件概率公式:P(A|B) = P(AB)/P(B), P(B|A) = P(AB)/P(A)5. 独立事件概率公式:P(A∩B) = P(A) × P(B)六、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d2. 等差数列前n项和公式:Sn = n/2 × (a1 + an) = n/2 × (2a1 + (n-1)d)3. 等比数列通项公式:an = a1 × q^(n-1)4. 等比数列前n项和公式:Sn = a1 × (1-q^n) / (1-q), q≠1五、其他1. 三角函数导数:(sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec²x2. 指数函数导数:(a^x)' = a^x × ln(a), (e^x)' = e^x3. 对数函数导数:(log_ax)' = 1 / (x × ln(a)), (lnx)' = 1 / x4. 反三角函数导数:(sin⁻¹x)' = 1 / √(1-x²), (cos⁻¹x)' = -1 / √(1-x²), (tan⁻¹x)' = 1 / (1+x²)-----------------这只是高中数学公式的一小部分,在学习过程中会遇到更多的公式和定理,希望以上总结对您有所帮助。

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结一、代数与函数1. 一次函数:y = kx + b,其中k为斜率,b为截距。

2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

3. 三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

4. 幂函数:y = x^n,其中n为常数。

5. 对数函数:y = loga(x),其中a为底数,x为真数。

6. 复数:形式为a+bi,其中a为实部,b为虚部,i为虚数单位。

7. 不等式:常见的不等式有一元一次不等式、一元二次不等式和绝对值不等式。

二、几何与图形1. 平面几何基本公式:包括点、线、面的基本概念和性质,如点到直线的距离、直线的斜率等。

2. 三角形:包括三角形的周长、面积、勾股定理等。

3. 圆:包括圆的周长、面积、弧长、扇形面积等。

4. 直线与圆的位置关系:包括相交、相切、相离等情况。

5. 空间几何基本公式:包括空间点、直线、平面的基本概念和性质,如点到平面的距离、直线与平面的位置关系等。

6. 立体几何:包括长方体、正方体、棱柱、棱锥、球体等的表面积和体积计算公式。

三、概率与统计1. 概率:包括事件、样本空间、概率的计算公式,如加法原理、乘法原理等。

2. 离散型随机变量:包括随机变量的期望、方差等。

3. 连续型随机变量:包括随机变量的概率密度函数、累积分布函数等。

4. 统计:包括样本、总体、统计量、抽样等的基本概念和性质,如均值、标准差、相关系数等。

四、数列与数学归纳法1. 等差数列:包括等差数列的通项公式、前n项和公式等。

2. 等比数列:包括等比数列的通项公式、前n项和公式等。

3. 数学归纳法:包括数学归纳法的基本思想和应用。

五、数论与整除性质1. 质数与合数:质数只能被1和自身整除,合数能被除了1和自身之外的数整除。

2. 最大公因数与最小公倍数:最大公因数是两个或多个整数共有的因数中最大的一个,最小公倍数是能被两个或多个整数整除的最小的一个数。

高中数学公式大全必背

高中数学公式大全必背

高中数学公式大全必背一、集合1. 集合的基本运算- 交集:A∩ B = {x|x∈ A且x∈ B}- 并集:A∪ B={x|x∈ A或x∈ B}- 补集:∁_U A={x|x∈ U且x∉ A}(U为全集)2. 集合元素个数关系(容斥原理)- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数1. 函数的定义域- 分式函数y = (f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。

2. 函数的单调性- 设x_1,x_2∈[a,b],x_1≠ x_2- 对于函数y = f(x),若f(x_1)-f(x_2)<0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递增。

- 若f(x_1)-f(x_2)>0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递减。

3. 函数的奇偶性- 对于函数y = f(x)定义域内任意x- 若f(-x)=f(x),则y = f(x)是偶函数。

- 若f(-x)= - f(x),则y = f(x)是奇函数。

4. 一次函数- 表达式y = kx + b(k≠0),斜率k=(y_2 - y_1)/(x_2 - x_1)。

5. 二次函数- 表达式y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})6. 指数函数- 表达式y = a^x(a>0,a≠1)- 当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

7. 对数函数- 表达式y=log_{a}x(a > 0,a≠1,x>0)- 当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。

高中数学公式大全(必备版)

高中数学公式大全(必备版)

高中数学公式大全(必备版)高中数学公式大全(必备版)篇一篇二篇三公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2k π+α)=sin α (k ∈Z)cos(2k π+α)=cos α (k ∈Z)tan(2k π+α)=tan α (k ∈Z)cot(2k π+α)=cot α (k ∈Z)公式二:设α为任意角,π +α的三角函数值与α的三角函数值之间的关系:sin( π+α)=-sin αcos( π+α)=-cos αtan( π+α)=tan αcot( π+α)=cot α公式三:任意角α与 - α的三角函数值之间的关系:sin(- α)=-sin α1cos(- α)=cos αtan(- α)=-tan αcot(- α)=-cot α公式四:利用公式二和公式三可以得到π- α与α的三角函数值之间的关系:sin( π- α)=sin αcos( π- α)=-cos αtan( π- α)=-tan αcot( π- α)=-cot α公式五:利用公式一和公式三可以得到2π- α与α的三角函数值之间的关系:sin(2 π- α)=-sin αcos(2 π- α)=cos αtan(2 π- α)=-tan αcot(2 π- α)=-cot α公式六:π/2 ±α及 3π/2 ±α与α的三角函数值之间的关系:sin( π/2+ α)=cos αcos( π/2+ α)=-sin αtan( π/2+ α)=-cot α2cot( π/2+ α)=-tan αsin( π/2- α)=cos αcos( π/2- α)=sin αtan( π/2- α)=cot αcot( π/2- α)=tan αsin(3 π/2+ α)=-cos αcos(3 π/2+ α)=sin αtan(3 π/2+ α)=-cot αcot(3 π/2+ α)=-tan αsin(3 π/2- α)=-cos αcos(3 π/2- α)=-sin αtan(3 π/2- α)=cot αcot(3 π/2- α)=tan α( 以上 k∈Z)注意:在做题时,将a 看成锐角来做会比较好做。

高中数学必背公式大全高考必考数学公式

高中数学必背公式大全高考必考数学公式

高中数学必背公式大全高考必考数学公式1.二次方程的根与系数之间的关系:设二次方程 ax^2 + bx + c = 0(a ≠ 0)的根为 x1 和 x2,那么有以下关系式:x1+x2=-b/ax1*x2=c/a2.一元二次不等式的求解:设二次不等式 ax^2 + bx + c > 0(a ≠ 0)的解集为 S,那么有以下关系式:a>0时,S={x,x<x1或x>x2}a<0时,S={x,x1<x<x2}3.二次函数的顶点坐标:设二次函数 y = ax^2 + bx + c 的顶点坐标为 (h, k)那么有 h = -b/2a,k = f(h) = (4ac - b^2)/4a4.一次函数的斜率与函数图像的关系:设一次函数 y = mx + c 的斜率为 m,那么有以下关系式:m>0时,函数图像上升;m<0时,函数图像下降;m=0时,函数图像水平。

5.三角函数和三角公式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)sin^2A + cos^2A = 1sin²θ + cos²θ = 16.幂函数的性质:若 a > 0 且a ≠ 1,则函数 y = ax^n (n 是整数)的性质如下:n>0时,函数图像单调递增;n<0时,函数图像单调递减;n为偶数时,函数图像关于y轴对称;n为奇数时,函数图像关于原点对称。

7.对数函数的性质:若 a > 0 且a ≠ 1,则函数 y = log_a(x) 的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(1,0),且以x轴为渐近线;log_a(a^b) = b8.指数函数的性质:若a>0且a≠1,则函数y=a^x的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(0,1),且a^0=1a^m*a^n=a^(m+n)9.排列组合公式:将n个物体排成一列,有以下公式:排列公式:从n个物体中任选m个物体的排列数为A(n,m)=n!/(n-m)!组合公式:从n个物体中任选m个物体的组合数为C(n,m)=n!/(m!*(n-m)!)10.三角函数的和差化积:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式是高中数学中的常用公式,掌握并熟练运用它们对于高考数学考试非常重要。

高中数学公式大全,高考复习必备

高中数学公式大全,高考复习必备

高中数学公式大全,高考复习必备以下是我整理的部分高中数学公式大全※基本初等函数【一次函数】-定义:形如y=ax+b(a≠0)的函数叫做一次函数。

-图象:一次函数的图象是一条直线,斜率为a,截距为b。

-性质:一次函数是奇函数,满足f(-x)=-f(x)。

【二次函数】-定义:形如y=ax^2+bx+c(a≠0)的函数叫做二次函数。

-图象:二次函数的图象是一条抛物线,对称轴为x=-b/2a,顶点为(-b/2a,f(-b/2a))。

-性质:二次函数是偶函数,满足f(-x)=f(x)。

【指数函数】-定义:形如y=a^x(a>0,a≠1)的函数叫做指数函数。

-图象:指数函数的图象经过点(0,1),当a>1时,图象在y轴右侧单调递增,在y轴左侧单调递减;当0<a<1时,图象在y轴右侧单调递减,在y轴左侧单调递增。

-性质:指数函数满足f(x+y)=f(x)*f(y),f(x-y)=f(x)/f(y),f(x*y)=(f(x))^y。

【对数函数】-定义:形如y=log_a x(a>0,a≠1)的函数叫做对数函数。

-图象:对数函数的图象经过点(1,0),当a>1时,图象在x轴右侧单调递增,在x轴左侧无定义域;当0<a<1时,图象在x轴右侧单调递减,在x轴左侧无定义域。

-性质:对数函数满足log_a(xy)=log_a x+log_a y,log_a(x/y)=log_a x-log_a y,log_a x^y=y*log_a x。

【幂函数】-定义:形如y=x^a(a≠0)的函数叫做幂函数。

-图象:幂函数的图象根据a的正负和奇偶有不同的情况。

当a>0时,图象在第一象限和第三象限;当a<0时,图象在第二象限和第四象限。

当a是奇数时,图象关于原点对称;当a是偶数时,图象关于y轴对称。

-性质:幂函数满足(x^a)^b=x^(ab),(xy)^a=x^a*y^a。

【根号函数】-定义:形如y=√x或者y=x^(1/2)的函数叫做根号函数。

高中数学《函数》常用公式

高中数学《函数》常用公式

高中数学《函数》常用公式1.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.2.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 3.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.4.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.5.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=; 两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称. 6.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.7.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.8.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.11.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.12.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 13.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 14.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ; (5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.15.分数指数幂(1)m n a=(0,,a m n N *>∈,且1n >). (2)1mn mn a a-=(0,,a m n N *>∈,且1n >). 16.根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩. 17.有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.18.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.19.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 20.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log aa a M M N N=-; (3)log log ()n a a M n M n R =∈. 21.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.22. 对数换底不等式及其推广若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数. , (2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++<.(2)2log log log 2a a am n m n +<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数公式
学好数学的第一步是“记住并深刻理解公式”,这样在做题时才会有货。

小编应同学们的需求,把整理好的高中数学公式分享给大家,还没有记住的同学抓紧时间了!
1.几何与常用逻辑用语
2.复数
3.平面向量
4.算法、推理与证明
5.不等式、线性规划
6.排列组合与二项式定理
7.函数、基本初等函数的图像与性质
8.函数与方程,函数模型及其应用
9.导数及其应用
10.三角函数的图形与性质
11.三角恒等变化与解三角形
12.等差数列、等比数列
13.数列求和及数列的简单应用
14.空间几何体
15.空间点、直线、平面位置关系
16.空间向量与立体几何
17.直线与圆的方程
18.圆锥曲线的定义、方程与性质
19.圆锥曲线的热点问题
20.概率
21.离散型随机变量及其分布
22.统计与统计案例
23.函数与方程思想,数学结合思想
24.分类与整合思想,化归与转化思想
25.坐标系与参数方程
26.不等式选讲。

相关文档
最新文档