绝对值PPT教学课件

合集下载

《绝对值》ppt课件

《绝对值》ppt课件
4
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培

绝对值ppt课件

绝对值ppt课件

做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12


原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −


=_______
4
4
距离为_______,所以
=_______
注意
绝对值是求数轴上某点到原点
距离的运算
02
方法展示
02 方法展示
【示例1】化简下列各数:


=_____
− +

2020
=_____43;
【示例2】如果 = ,则 =_______
-2020
=_____
A、±
B、
C、−

2018
=_____
D、

绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____
4
3
在数轴中标出点A、B的位置,并比较它们的大小:_____
所以 + =_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____

人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)

人教版七年级数学上册1.2.4《绝对值》课件  (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.

课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7


- 8 >- 3
21
7

(3)化简,得:-(-0.3)=0.3,-
1 3

1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__

3 8

-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.

绝对值课件(共20张PPT)

绝对值课件(共20张PPT)
(4)绝对值等于2的数是___2_或__-_2.
易错提醒: 注意绝对值等于某个正数的数有两个,他们互为相反
数,解题时不要遗漏负值.
例 4 已知 x-4 y-3 =0,求 x+y 的值.
[解析] 一个数的绝对值总是大于或等于 0,即为非负 数,若两个非负数的和为 0,则这两个数同时为 0.
解:根据题意可知 x-4=0,y-3=0, 所以x=4,y=3,故x+y=7.
思考: 一个正数的绝对值是什么?
一个负数的绝对值是什么?
0的绝对值是什么?
结论1:一个正数的绝对值是正数.
一个负数的绝对值是正数.
0的绝对值是0.
|a|≥0
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
思考: 字母a表示一个有理数,你知道a的绝对值
等于什么吗?
正数的绝对值是它本身
()
思考: 一个正数的绝对值是什么?
驶,记向东行驶的里程数为正 两辆出租车都从O 字母a表示一个有理数,你知道a的绝对值等于什么吗?
(2)当a是负数时,|a|=__;
.
(2)绝对值等于的正数是_____,
地出发,甲车向东行驶10km到达A处,记作 (5)有理数的绝对值一定是非负数.
(2)一个数的绝对值等于它的相反数,这个数一定是

典例精析
例1 求下列各数的绝对值. 12, 3 -7.5, 0. 5
解:
|12|=12;
| 3 |= 3
5
5

正数的绝对值等于它本身
; 负数的绝对值等于它的相反数
|0|=0.
0的绝对值是0
例2 填一填
(1)绝对值等于0的数是___0, (2)绝对值等于的正数是_____,

1.4 绝对值 课件(共20张PPT)华东师大版数学七年级上册

1.4 绝对值  课件(共20张PPT)华东师大版数学七年级上册
答案:C
知2-练
感悟新知
3-1.关于| a | +2,下列叙述正确的是( ) A. 有最大值 2B. 有最小值 2C. 有最小值 0D. 有最大值 0
B
感悟新知
知2-练
如果 a=-4,且 | a | = | b |,求 | b+4 | 的值 .
例4
解题秘方:紧扣“若 |x|=a(a>0),则 x=± a”进行值
性质
绝对值
探究
绝对值的非负性
归纳
同学们再见!
授课老师:
时间:2024年9月15日
知1-练
感悟新知
1-1.下列等式正确的是( )A.| - 9|= - 9B. | - | =3C. - | - 7|=7D. - ( +2) = - 2
D
知1-练
感悟新知
若 |x|=2 024,则 x=_________ .
例2
± 2 024
解题秘方:根据绝对值的几何意义可知,数轴上表示数 x 的点与原点的距离为 2 024 个单位长度,则 x 为 2 024 或- 2 024.
知1-练
感悟新知
2-1. [ 月考·攀枝花 ]一个数的相反数的绝对值等于 3,则这个数是( )A.3 B. - 3C.± 3 D.
C
感悟新知
知2-讲
知识点
绝对值的非负性
2
1. 非负性 任何一个有理数的绝对值总是正数或 0(通常也称非负数) . 即对任意有理数 a,总有 | a | ≥ 0.2. 绝对值等于它本身的数是非负数,绝对值等于它相反数的数是非正数, 0 是绝对值最小的数,即:若 | a |=a,则a ≥ 0;若 | a |=-a,则 a ≤ 0.

绝对值ppt课件

绝对值ppt课件

[例 2] 求出下列各数的绝对值:




-1 ,0.3,0,-5,-(-3 ).








解:因为-1 到原点的距离是 1 个单位长度,所以|-1 |=1 .
因为 0.3 到原点的距离是 0.3 个单位长度,所以|0.3|=0.3.
因为 0 到原点的距离是 0 个单位长度,所以|0|=0.
1.(2022 荆门)如果|x|=2,那么 x 等于( C )
A.2
B.-2

C.2 或-2 D.2 或

2.绝对值为 4 的有理数为

-10
.

±4

,绝对值为 10 的负有理数为

3.若 a 的绝对值与-3 的绝对值相等,求 a 的值.







解:-3 的绝对值为|-3 |=3 .

因为 a 的绝对值为 3 .
a+b=0;
(3)任意实数的绝对值都是非负数,即|a|≥0.
新知应用
1.如图所示,点 A 所表示的数的绝对值是(
A.3 B.-3
C.


D.-



2.|- |=

,|+3.5|=
3.5
.
A
)
3.把下列各数表示在数轴上,并写出其绝对值.
4,2.5,-3,-1.5.
解:如图所示.
由数轴可得,|4|=4,|2.5|=2.5,|-3|=3,
|-1.5|=1.5.
绝对值的性质
[例 3] 化简:

-|+3|,|-(-8)|,|0|,-|-1 |,-|+(-6)|.

绝对值(37张PPT)数学

绝对值(37张PPT)数学
16
17
解 如图,
(2)超市D距货场A多远?

返回
解 向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,5.5-1.5-2=2(km),超市D距货场A有2 km.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(3)货车一共行驶了多少千米?
解 货车一共行驶了5.5+2+1.5+2=11(km).
答案
解析
7.计算:|-2|+2=____.
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 |-2|+2=2+2=4.
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
9.绝对值不大于5的整数共有____个.
11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 绝对值不大于5的整数有-5,-4,-3,-2,-1,0,1,2,3,4,5,共11个.
A
2.|-3|等于( )
C
答案
1
2
3
4
5
6
7
8

绝对值ppt课件

绝对值ppt课件
绝对值ppt课件
contents
目录
• 绝对值的概念 • 绝对值的运算 • 绝对值的应用 • 绝对值的拓展知识 • 总结与回顾
01
绝对值的概念
绝对值的定义
01
绝对值是一个数到原点的距离, 用数学符号表示为:a的绝对值( a ≧ 0)和│a│(a < 0)。
02
一个正数的绝对值是它本身;一 个负数的绝对值是它的相反数;0 的绝对值是0。
绝对值在数学中的应用
在数学中,绝对值是一个非常重 要的概念,它可以用来表示实数
的距离。
绝对值的性质包括:非负性、传 递性、三角不等式等。
绝对值的应用还包括比较大小、 解方程等。
绝对值在物理中的应用
在物理学中,绝对值的概念可 以用来描述粒子的位置、速度 等物理量。
绝对值的性质可以用来计算物 理量的大小和方向。
绝对值的除法
|a| / |b| = |a/b|,即绝对值的 除法等于两数绝对值的商。
应用案例分享
案例一
在数轴上,点A和点B分别表示-5 和2,求A和B之间的距离。利用 绝对值的加法,可以计算出AB之 间的距离为7。
案例二
在数轴上,点C表示-3,点D表示 5,求C和D之间的距离。利用绝 对值的减法,可以计算出CD之间 的距离为8。
绝对值与不等式的关系
通过绝对值,我们可以将不等式转化为等式,从而可以更容易地解 决不等式问题。
应用
在数学中,绝对值被广泛应用于解不等式和方程的问题。
05
总结与回顾
主要概念总结
绝对值的定义
绝对值是一个数到原点的 距离,用符号“|”表示。
绝对值的性质
正数的绝对值是它本身, 负数的绝对值是它的相反 数,0的绝对值是0。

绝对值PPT教学课件

绝对值PPT教学课件

绝对值不等式
若a和b为实数,则有|a||b|≤|a+b|≤|a|+|b|成立。
绝对值的几何意义
数轴上的绝对值
在数轴上,一个数到原点的距离等于该点与原点之间的距离。例如,点A表 示的数为-3,则点A到原点的距离为3,即|-3|=3。
绝对值的几何解释
绝对值还可以理解为在数轴上,一个点到任意一个点之间的距离。例如,点B 表示的数为x,点C表示的数为y,则|x-y|表示点B到点C的距离。
对于形如“|x| > a”或“|x| < a”的 不等式,可以通过去掉绝对值符号, 将不等式转化为若干个不等式组来解 决。
要点三
绝对值不等式的应用
绝对值不等式可以用来解决一些实际 问题,例如在物理、化学、生物等领 域中,常常需要使用绝对值不等式来 解决一些限制条件或优化问题。
在函数中的应用
绝对值函数的定义
3. 根据以上两点,进行 化简求值。
习题二:绝对值的比较大小
详细描述
2. 比较两个负数的绝对值大小: 先取它们的相反数,再比较大小 。
总结词:掌握比较两个数的绝对 值大小的方法,能够根据两个数 的绝对值判断它们的大小关系。
1. 比较两个正数的绝对值大小: 直接比较它们的绝对值即可。
3. 比较两个数的绝对值大小:先 分别求出它们的绝对值,再比较 大小。
3
绝对值的定义也可以理解为:一个数a的绝对值 就是a和0之间的距离。
绝对值的意义
01
绝对值的意义在于它反映了数在数轴上的位置离原点的远近程 度。
02
对于任何有理数a,它都有一个对应的绝对值|a|,这个绝对值
表示了a离原点的距离。
通过比较两个数的绝对值大小,我们可以知道它们在数轴上的

绝对值(共18张PPT)

绝对值(共18张PPT)
7
7
|+7|=7
2.8
2.8
|-2.8|=2.8
0
0
| 0 |=0
知识点 绝对值
思考 从刚才得到的结果你有什么启示?
|1|=1
|-1.5|=1.5
| 0 |=0
| -2 |=2
|+7|=7
|-2.8|=2.8
一个正数的绝对值是什么?一个负数的绝对值是什么?0的绝对值是什么?
…..
非负性
知识点 绝对值
1
距离为1
|1|=1
-1.5
距离为1.5
|-1.5|=1.5
0
| 0 |=0.
例1 写出数轴上这些点表示的数的绝对值?
到原点的距离为0
-2
| -2 |=2.
到原点的距离为2
知识点 绝对值
跟踪训练 表示+7的点与原点的距离是_______;即:+7的绝对值是_______,记做___________;表示-2.8的点与原点的距离是_______; 即:-2.8的绝对值是_______,记做___________;表示0的点与原点的距离是_______; 即:0的绝对值是_______,记做___________;
第一章 有理数
七上数学 RJ
1.2.4 绝对值
1.ห้องสมุดไป่ตู้ 有理数
同步数学教学课件
问题1 什么是相反数?
只有符号不同的两个数,互为相反数.比如:1和-1,3和-3,0的相反数是0.
课堂导入
问题2 互为相反数的两个数在数轴上对应的点的位置有什么特点?
-3
3
(1)3和-3这两点关于原点对称 ;(2)3和-3到原点的距离相同,都是3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

│-5│=5 A
│4│=4 B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-5的绝对值应该记作│-5︱=?
4的绝对值应该记作 │4︱ =?
0的绝对值应该如何表示呢?
│0︱ =?
练习:
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.表示+7的点与原点的距离是 7 , 即+7的绝对值是 7 ,记作 7 7 ;
催化剂

2SO3
SO2 +Cl2 +2H2O = H2SO4+2HCl (氯水褪色) SO2 +Br2+2H2O = H2SO4+2HBr (溴水褪色)
4. SO2的氧化性 SO2+2H2S = 3S + 2H2O
5. SO2的漂白性
实验
现象: 品红溶液褪色,
ห้องสมุดไป่ตู้
向试管中加
加热后溶液变回红色
入5ml SO2 水溶液,滴
测试时间 0小时 1小 2小 4小 5小 后 时后 时后 时后 时后
雨水的pH值 4.74 4.63 4.57 4.53 4.53
1.请你写出酸雨开始呈酸性的化学方程式.
SO2+H2O H2SO3 2SO2+O2=2SO3 O2+2H2SO3=2 H2SO4 SO3+H2O=H2SO4
2.这种雨水的pH值逐渐减小,其原因何在? (提示:从硫元素的化合价和酸性强弱方面考虑)
练习:
6.绝对值小于3的负整数有_-_2_、_-1__;
7.
2.3
-__2_.__3,
2 15
2 __1__5_,
9
(
9 2
)
__2___.
8.用>、<、=号填空:
│-0.05│ >0; │-3│ │0.8│ =│-0.8│
|<-5|;
练习:足球比赛中对所用的足球有严格的规定, 下面是5个足球的质量检测结果(用正数表示超 过规定质量的克数,用负数表示不足规定质量 的克数)-20 +10 +12 -8 -11请指 出哪个足球的质量好一些,并用绝对值的知识 加以说明。
1体4易积0体的溶积水于的大水二约氧可化以硫溶解
二氧化硫是一种无色、有刺激性气味、有毒、比 空气重、容易液化、易溶于水的气体。
课堂习题 1
常温常压下,下列气体溶解度由大到小的顺序为: HCl > SO2 > Cl2 > O2
(1)SO2 (2) O2 (3)HCl (4)Cl2
二、二氧化硫的化学性质
(2) 0 0
(3) 7 7
从上题中你有什么样的启示?你能用自 已的话总结出绝对值的性质吗?
议一议:
(1) 7 7
(2) 0 0
(3) 7 7
2.8 2.8
绝对值的性质: 1、(1)正数的绝对值是它的本身;
(2)0的绝对值是0; (3)负数的绝对值是它的相反数。
2、非负性 由绝对值的定义可知绝对值 具有非负性,即|a|≥0。
练习:
1(、1判)断负下数列没各有题绝:对值。× (2)有些数的绝对值有两个。× (3)正数和零的绝对值是它的本身。√ (4)负数和零的绝对值是它的相反数。√ (5)任何有理数的绝对值一定不是负数。√
练习:
2、-5.2 的绝对值是 _5__.__2___,
绝对值等于3.1的数是_3_.__1__或__-__3_.__1___.
新课标人教版七年级数学
1.2.4 绝对值
情境引入:
博物馆
学校
农场
6千米
6千米
A
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
a A -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
数a的绝对值: 数轴上表示这个数的点与原点之间的距离。
记作: |a|
问:像-5、4的绝对值应该如何记呢?
2、SO2的危害
(4)酸雨还会加速建筑物、桥梁、工业设备的腐蚀。
3、来源
(1)火山的爆发
SO2主要来源于哪里?
(2)主要来自化石 燃料的燃烧
(3)含硫矿石 的冶炼
(4)硫酸、磷酸、纸浆生产的工 业废气含硫矿石的冶炼
保护环境
4月22日世界地球日 6月5日世界环境日
一个城市的环保部门采集了一份雨水样品,每隔一段时 间测定一次pH值,其结果如下:
漂白机理:
加品红溶液, 振荡,然后 加热试管, 比较前后溶
SO2 与某些有色物质化合生成无 色 物质,但是这些无色物质不稳 定,容易分解而恢复原来的颜色 。
液颜色的变 化。
Cl2 ,Na2O2 , O3——— 氧化漂白
活性炭
——— 吸附漂白
SO2
—— 化合漂白
为什么长时间放置的报纸和草帽会黄?
三、SO2的用途
求x+y–z的值。
本节课你掌握了以下知识吗?
绝对值的定义是什么? 绝对值的性质是什么? 一个数a的绝对值就是数轴上表示 这个数的点与原点之间的距离。
绝对值的性质: (1)正数的绝对值是它的本身;
(2)0的绝对值是0;
(3)负数的绝对值是它的相反数。
作业:
课本P18 4、7
思考:
课本P18 10
A、通入紫色石蕊试液
都是酸性氧化物,都可 以使石蕊变红
C、通入澄清石灰水
都可以使澄清石 灰水变浑浊
B、闻气味
SO2有刺激性气味,
而CDO、2没通有 入品红溶液中
SO2可使品红褪色, 而CO2不能
课堂习题 2
二氧化硫和氯气都有漂白性,现把二者以等物质 的量混合,让混合气体通入品红溶液,则其漂白性将 [ D]
答:记为-8的足球质量好一些。
因为 │-20│= 20, │-8│ = 8,
│+10│=10, │+12│=12, │-11│=11;
所以│-8│ < │+10│ < │-11│ < │+12│ < │-20│
也就是说记为-8的足球与规定的质量相差比较小, 因此其质量比较好。
思考:
1.计算:|–(+3.6)| + |–(–1.2)| – |–[+(–4)]| 2.已知 |x–2| + |y–3| + |z–4| = 0,
3.、绝对值最小的数是____0_____,
绝对值等于它本身的数是_非__负__数__.
4.如果 x 4,则x _4__或__-__4_;
若 a 3 ,则a __1__.__5_或__-1.5 2
5.若 a a,则a一定是_非__正__数__; 如果a b ,那么a与b的关系是相__等__或__相反
空气中的氧气在灰尘等存在下能够逐渐将水中的H2SO3 氧化成强酸硫酸.
五、酸雨的防治
①研究开发能代替化石燃料的新能源; 氢能、太阳能、核能。
②对含硫燃料进行预先脱硫处理; ③对释放的二氧化硫进行处理或回收利用; ④提高全民的环保意识,加强国际合作。
课堂习题 1
下列可以用来鉴别SO2 和CO2 的方法是[ B D ]
练习、请标出下列含S物质的化合价
-2
0
+4
+6
H2S
S
SO2
SO3
?思
考 根据SO2中S的化合价推断它具有怎样的
性质?
! 结

既有氧化性,又有还原性
3. SO2的还原性
实 验:
向一支试管 现象: 滴加BaCl2没有明显现象
中加入5ml
滴加H2O2有白色沉淀生成
SO2水溶液,
加盐酸后白色沉淀不消失
制硫酸
防腐剂
SO2用途
作漂白剂
杀菌剂
四、二氧化硫对环境的污染
1、酸雨的形成 方式2: SO2→ H2SO3 →H2SO4
方式1
书写两种方式形成酸雨的化学方程式。
2、SO2的危害
(1)直接污染大气
SO2有哪些危害的危害?
2、SO2的危害
(2)能直接破坏农作物、森林和草原,使土壤酸化
结束
2、SO2的危害 (3)酸雨还会使湖泊酸化,造成鱼类死亡
二氧化硫的性质和用途
酸雨
1. 什么是酸雨? 2. 正常雨水pH应在什么范围? 3. 酸雨是怎样形成的? 4. 酸雨有什么危害?怎样防治?
一、物 理 性 质
颜色和状态
观察已制的SO2气体·
无色气体
气味
强烈的刺激性气味 ,
密度
有毒 和空比气的空相气对重平均分子
量对比
沸点
容易沸液点为化-10度
溶解性
思考?
SO2是什么氧化物?
酸性 氧化

酸性氧化物有哪些性质?
1.酸性氧化物
与水反应生成酸(大多数) 能与碱反应生成盐和水
能与碱性氧化物反应生成盐
课堂习题 2
写出SO2和NaOH反应的化学方程式。
课堂习题 3
写出SO2和Na2O和CaO反应的化学方程式。
2、SO2与水反应
观察到什么实验现象?
试管中的水面上升,滴入紫色石蕊试液后,溶液变红。
A 、和氯气单独通过时相同 B、和二氧化硫单独通过时相同
C、是二者作用效果之和 D、可能失去漂白性
! 分
二氧化硫和硫酸发生化学反应生成新物质

SO2 + Cl2 + 2H2O
2HCl + H2 SO4
而HCl 和H2 SO4是没有漂白性的,因此漂白性
可能消失
表示2.8的点与原点的距离是 2.8 ,
即2.8的绝对值是2.8 ,记作 2.8 2.8;
相关文档
最新文档