信息论与编码-曹雪虹-课后习题答案
信息论与编码-曹雪虹-第二章-课后习题答案
![信息论与编码-曹雪虹-第二章-课后习题答案](https://img.taocdn.com/s3/m/268c8116866fb84ae45c8dff.png)
2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)p p == (0|11)(10|11)0.2p p == (0|10)(00|10)p p == (1|00)(01|00)0.2p p == (1|01)(11|01)p p==(1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
(完整版)信息论与编码-曹雪虹-课后习题答案
![(完整版)信息论与编码-曹雪虹-课后习题答案](https://img.taocdn.com/s3/m/051f07ef767f5acfa1c7cdaf.png)
《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。
信息论与编码_曹雪虹_张宗橙_北京邮电大学出版社课后习题答案
![信息论与编码_曹雪虹_张宗橙_北京邮电大学出版社课后习题答案](https://img.taocdn.com/s3/m/6bcd3f6e25c52cc58bd6bebd.png)
得:随意取出一球时,所需要的信息量为 (1) P(红)= P(白)=1/2
1 1 1 1 H(X)= log 2 log 2 2 2 2 2
= 1比特
3 2013-8-9
(2)P(白)= 1/100 P(红)= 99/100 所以 1 H(X)= log 2
100
1 99 99 log 2 100 100 100
13 2013-8-9
2-10
解: (1)H(colour)=2/38log19+2*(18/38)log(38/18) =0.22+1.02=1.24bit (2)H(colour,number)=H(number)=log38 =5.25bit (3)H(number|colour)=H(c,n)-H(c) =5.25-1.24=4.01bit
8 2013-8-9
2-5
解: (1)I=log18=4.17bit (2)略
9 2013-8-9
2-6
解:
(1) 平均每个符号携带的信息量:
H(X)=14/45log(45/14)+13/45log(45/13) +12/45log(45/12)+6/45log(45/6) =1.95比特/符号 (2)消息自信息量: I=1.95*45=87.8
40 2013-8-9
信源熵
H w1 H ( x / s1) w2 H ( x / s2) w3 H ( x / s3) 1.435
41 2013-8-9
5
2-23
略
28 2013-8-9
2-24
解: 1 3 4 H ( x) log 4 log 0.81 (1)
信息论与编码习题答案-曹雪虹
![信息论与编码习题答案-曹雪虹](https://img.taocdn.com/s3/m/cb33e43e580216fc700afdb3.png)
3-14
信源 符号 xi x1 x2 x3 x4 x5 x6 x7
符号概 率 pi 1/3 1/3 1/9 1/9 1/27 1/27 1/27 1/3 1/3 1/9 1/9 2/27 1/27 1/3 1/3 1/9 1/9 1/9
编码过程
编码 1/3 1/3 1/3 2/3 1/3 00 01 100 101 111 1100 1101
得p0p1p223当p0或p1时信源熵为0第三章无失真信源编码31321因为abcd四个字母每个字母用两个码每个码为05ms所以每个字母用10ms当信源等概率分布时信源熵为hxlog42平均信息传递速率为2信源熵为hx0198bitms198bitsbitms200bits33与上题相同351hu12log2?14log4?18log8?116log16?132log32?164log64?1128log128?1128log128?1984111111112481632641281282每个信源使用3个二进制符号出现0的次数为出现1的次数为p0p134相应的香农编码信源符号xix1x2x3x4x5x6x7x8符号概率pi12141811613216411281128累加概率pi00507508750938096909840992logpxi12345677码长ki12345677码字010110111011110111110111111011111110相应的费诺码信源符号概符号xi率pix1x2x3x4x5x6x7x812141811613216411281128111第一次分组0第二次分组0第三次分组0第四次分组0第五次分组011第六次分组01第七次分组01二元码0101101110111101111101111110111111105香农码和费诺码相同平均码长为编码效率为
信息论与编码-曹雪虹-课后习题答案
![信息论与编码-曹雪虹-课后习题答案](https://img.taocdn.com/s3/m/1758529b69dc5022aaea00c8.png)
《信息论与编码》-曹雪虹-课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
信息论与编码-曹雪虹-课后习题参考答案
![信息论与编码-曹雪虹-课后习题参考答案](https://img.taocdn.com/s3/m/a3cd8d53cc1755270722088d.png)
《信息论与编码》-曹雪虹-课后习题答案第二章错误!未定义书签。
2.1一个马尔可夫信源有3个符号{}1,23,uu u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
W 2、W 31231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2(0|p (0|01)p =0.5,(0|10)p 解:(0|00)(00|00)0.8p p ==(0|01)(10|01)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4有411iiWP WW==⎧⎪⎨=⎪⎩∑得13113224324412340.80.50.20.50.50.20.50.81W W WW W WW W WW W WW W W W+=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩计算得到12345141717514WWWW⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.31/6,求:(1)“3和5(2)“两个1(3)1的自信息量。
11 12 13 14 15 1621 22 23 24 25 2631 32 33 34 35 3641 42 43 44 45 4651 52 53 54 55 5661 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯ (4)x p x p X H X P X i i i 1212181log 1812361log 3612 )(log )()(1211091936586173656915121418133612)( ⎝⎛⨯+⨯+⨯-=-=⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑2.575%是身高160厘米以上的占总数的厘米以上的某女孩是大学生”的设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生)P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y1(身高>160cm)y2(身高<160cm)P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的即:bitxyp75.0)/(11=求:身高160即:ypxypxpyxpyxI5.075.025.0log)()/()(log)/(log)/(11111111⨯-=-=-=2.6掷两颗骰子,1()(1,2)(2,1)18p x p p=+=log()log18 4.170p x bit=-==7的概率log()log6 2.585p x bit=-==341231/41/8x x===⎫⎪⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202120130213001203210110321010021032011223210},求该序列的自信息量和平均每个符号携带的信息量解:122118()log log 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit === 因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和就有:123414()13()12()6()87.81I I x I x I x I x bit =+++= 平均每个符号携带的信息量为87.81 1.9545=bit/符号 2.8试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0,1,2,3}八进制脉冲可以表示8个不同的消息,例如:{0,1,2,3,4,5,6,7}二进制脉冲可以表示2个不同的消息,例如:{0,1}假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n XH / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
信息论与编码-曹雪虹-第五章-课后习题答案
![信息论与编码-曹雪虹-第五章-课后习题答案](https://img.taocdn.com/s3/m/1e85bf58c950ad02de80d4d8d15abe23482f0367.png)
信息论与编码-曹雪虹-第五章-课后习题答案第五章(2) 哪些码是⾮延长码?(3) 对所有唯⼀可译码求出其平均码长和编译效率。
解:⾸先,根据克劳夫特不等式,找出⾮唯⼀可译码31123456231244135236:62163:22222216463:164:22421:2521:2521C C C C C C --------------?<+++++=<<++?=+?>+?<5C ∴不是唯⼀可译码,⽽4C :⼜根据码树构造码字的⽅法1C ,3C ,6C 的码字均处于终端节点∴他们是即时码(1) 因为A,B,C,D四个字母,每个字母⽤两个码,每个码为0.5ms, 所以每个字母⽤10ms当信源等概率分布时,信源熵为H(X)=log(4)=2平均信息传递速率为bit/ms=200bit/s(2) 信源熵为H(X)==0.198bit/ms=198bit/s5-541811613216411281128H(U)=1 2Log2() 14Log4() +18Log8() +116Log16 ()+132Log32 ()Log64()+1128Log128()+1128Log128()+ 1.984= (2) 每个信源使⽤3个⼆进制符号,出现0的次数为出现1的次数为P(0)=P(1)=(3)相应的费诺码(5)⾹农码和费诺码相同平均码长为编码效率为:5-11(1)信源熵(2)⾹农编码:平均码长:编码效率为(3)平均码长为:编码效率:4平均码长为:编码效率:5.16 已知⼆元信源{0,1},其p0=1/4,p1=3/4,试⽤式(4.129)对序列11111100编算术码,并计算此序列的平均码长。
解:根据算术编码的编码规则,可得:P(s=11111100) = P2(0)P6(1) = (3/4)6 (1/4)27)(1log =??=S P l根据(4.129)可得:F(S) = P(0) + P(10) + P(110) + P(1110) + P(11110) + P(111110) = 1–∑≥sy y P )(= 1 – P(11111111) – P(11111110) – P(11111101) – P(11111100)= 1– P(111111) = 1– (3/4)6 = 0.82202 = 0.110100100111⼜P(S) = A(S)= 0.0000001011011001,所以F(S) + P(S) = 0.1101010 即得C = 0.1101010 得S 的码字为1101010平均码长L 为 0.875。
信息论与编码-曹雪虹-课后习题答案
![信息论与编码-曹雪虹-课后习题答案](https://img.taocdn.com/s3/m/29b1ee4d55270722182ef70a.png)
《信息论与编码》-曹雪虹-课后习题答案第二章一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =,(0|11)p =,(1|00)p =,(1|11)p =,(0|01)p =,(0|10)p =,(1|01)p =,(1|10)p =。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p == 于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
信息论与编码-曹雪虹-第二章-课后习题答案
![信息论与编码-曹雪虹-第二章-课后习题答案](https://img.taocdn.com/s3/m/268c8116866fb84ae45c8dff.png)
2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)p p == (0|11)(10|11)0.2p p == (0|10)(00|10)p p == (1|00)(01|00)0.2p p == (1|01)(11|01)p p==(1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
信息论与编码曹雪虹课后习题答案(供参考)
![信息论与编码曹雪虹课后习题答案(供参考)](https://img.taocdn.com/s3/m/7ca1376cdd36a32d73758169.png)
《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下 状态转移矩阵为:设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。
曹雪虹清华版教材《信息论与编码》课后答案
![曹雪虹清华版教材《信息论与编码》课后答案](https://img.taocdn.com/s3/m/c0f8edc8ba0d4a7302763a53.png)
信息论与编码部分习题解答(对应曹雪虹清华版教材)(谢正光,2009-05-28,于江苏南通)作业及解答(谢正光,2008-02-28,于江苏南通)2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩P(j/i)=解方程组求得W=2-2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p == (0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p == 于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP WW ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3(4)2-4 设在一只布袋中装有100个用手角摸感觉完全相同的木球,每个球上涂有一种颜色。
信息论与编码(第二版)曹雪虹(最全版本)答案
![信息论与编码(第二版)曹雪虹(最全版本)答案](https://img.taocdn.com/s3/m/f3ae200cfd4ffe4733687e21af45b307e871f988.png)
《信息论与编码(第二版)》曹雪虹答案(一)第二章Equation Chapter 1 Section 12.1一个马尔可夫信源有3个符号,转移概率为:,,,,,,,,,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:设状态u1,u2,u3稳定后的概率分别为W1,W2、W3由得计算可得2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:=0.8,=0.2,=0.2,=0.8,=0.5,=0.5,=0.5,=0.5。
画出状态图,并计算各状态的稳态概率。
解:于是可以列出转移概率矩阵:状态图为:000110110.80.20.50.50.50.50.20.8设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4 有得 计算得到2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
解:(1)(2)(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是其他15个组合的概率是(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:(5)2-42.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X代表女孩子学历X x1(是大学生)x2(不是大学生)P(X)0.250.75设随机变量Y代表女孩子身高Y y1(身高>160cm)y2(身高<160cm)P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的即:求:身高160厘米以上的某女孩是大学生的信息量即:2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少?解:1)因圆点之和为3的概率该消息自信息量2)因圆点之和为7的概率该消息自信息量2.7 设有一离散无记忆信源,其概率空间为(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量解:同理可以求得因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和就有:平均每个符号携带的信息量为bit/符号2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7}二进制脉冲可以表示2个不同的消息,例如:{0, 1}假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量八进制脉冲的平均信息量二进制脉冲的平均信息量所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
信息论与编码-曹雪虹-课后习题问题详解
![信息论与编码-曹雪虹-课后习题问题详解](https://img.taocdn.com/s3/m/4fbd7f5f0242a8956aece432.png)
《信息论与编码》-雪虹-课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p == 于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。
信息论与编码-曹雪虹-课后习题答案 (2)
![信息论与编码-曹雪虹-课后习题答案 (2)](https://img.taocdn.com/s3/m/f8241caf8e9951e79a892735.png)
《信息论与编码》-曹雪虹-课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p ==(1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信息论与编码》-曹雪虹-课后习题答案 第二章错误!未定义书签。
2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下 状态转移矩阵为:设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p ==(0|01)(10|01)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4有411i i WP W W ==⎧⎪⎨=⎪⎩∑得13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1)“3和5同时出现”这事件的自信息; (2)“两个1同时出现”这事件的自信息;(3)两个点数的各种组合(无序)对的熵和平均信息量; (4)两个点数之和(即2,3,…,12构成的子集)的熵; (5)两个点数中至少有一个是1的自信息量。
解: (1) (2) (3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 2631 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66 共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5) 2-42.5居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生)P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm )P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的即:bit x yp 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x yp x p y x p y x I 415.15.075.025.0log)()/()(log )/(log )/(11111111=⨯-=-=-= 2.6掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少? 解:1)因圆点之和为3的概率1()(1,2)(2,1)18p x p p =+=该消息自信息量()log ()log18 4.170I x p x bit =-== 2)因圆点之和为7的概率该消息自信息量()log ()log6 2.585I x p x bit =-==2.7设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ (1)求每个符号的自信息量 (2)信源发出一消息符号序列为{202120130213001203210110321010021032011223210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()loglog 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit ===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++=平均每个符号携带的信息量为87.81 1.9545=bit/符号2.8试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0,1,2,3}八进制脉冲可以表示8个不同的消息,例如:{0,1,2,3,4,5,6,7}二进制脉冲可以表示2个不同的消息,例如:{0,1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1===八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbolbit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2-9“-”用三个脉冲“●”用一个脉冲(1)I(●)=Log 4()2=I(-)=Log 43⎛⎝⎫⎪⎭0.415=(2)H=14Log 4()34Log 43⎛⎝⎫⎪⎭+0.811= 2-10(2)P(黑/黑)=P(白/黑)=H(Y/黑)=(3)P(黑/白)=P(白/白)= H(Y/白)=(4)P(黑)=P(白)= H(Y)=2.11有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。
(1)如果仅对颜色感兴趣,则计算平均不确定度(2)如果仅对颜色和数字感兴趣,则计算平均不确定度(3)如果颜色已知时,则计算条件熵 解:令X 表示指针指向某一数字,则X={1,2, (38)Y 表示指针指向某一种颜色,则Y={l 绿色,红色,黑色}Y 是X 的函数,由题意可知()()i jip x y p x =(1)3112381838()()loglog 2log 1.24()3823818jj j H Y p y p y ===+⨯=∑bit/符号 (2)2(,)()log 38 5.25H X Y H X ===bit/符号(3)(|)(,)()()() 5.25 1.24 4.01H X Y H X Y H Y H X H Y =-=-=-=bit/符号2.12两个实验X 和Y ,X={x 1x 2x 3},Y={y 1y 2y 3},l 联合概率(),ijijr x y r =为(1) 如果有人告诉你X 和Y 的实验结果,你得到的平均信息量是多少?(2) 如果有人告诉你Y 的实验结果,你得到的平均信息量是多少?(3) 在已知Y 实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少? 解:联合概率(,)ijp x y 为22221(,)(,)log (,)724112log 4log 24log 4247244i j i j ijH X Y p x y p x y ==⨯+⨯+∑=2.3bit/符号X 概率分布21()3log 3 1.583H Y =⨯=bit/符号(|)(,)() 2.3 1.58H X Y H X Y H Y =-=-Y 概率分布是=0.72bit/符号2.13有两个二元随机变量X 和Y ,它们的联合概率为并定义另一随机变量Z=XY (一般乘积),试计算: (1)H(X),H(Y),H(Z),H(XZ),H(YZ)和H(XYZ); (2)H(X/Y),H(Y/X),H(X/Z),H(Z/X),H(Y/Z),H(Z/Y),H(X/YZ),H(Y/XZ)和H(Z/XY);(3)I(X;Y),I(X;Z),I(Y;Z),I(X;Y/Z),I(Y;Z/X)和I(X;Z/Y)。
解:(1)Z=XY的概率分布如下:(2)(3)2-14(1)P(ij)=P(i/j)=(2)方法1:=方法2:2-15P(j/i)=2.16黑白传真机的消息元只有黑色和白色两种,即X={黑,白},一般气象图上,黑色的出现概率p(黑)=0.3,白色出现的概率p(白)=0.7。
(1)假设黑白消息视为前后无关,求信源熵H(X),并画出该信源的香农线图(2)实际上各个元素之间是有关联的,其转移概率为:P(白|白)=0.9143,P(黑|白)=0.0857,P(白|黑)=0.2,P(黑|黑)=0.8,求这个一阶马尔可夫信源的信源熵,并画出该信源的香农线图。
(3)比较两种信源熵的大小,并说明原因。
解:(1)221010()0.3log 0.7log 0.881337H X =+=bit/符号 P(黑|白)=P(黑)P(白|白)=P(白)P(黑|黑)=P(黑) P(白|黑)=P(白)(2)根据题意,此一阶马尔可夫链是平稳的(P(白)=0.7不随时间变化,P(黑)=0.3不随时 间变化) =0.512bit/符号2.17每帧电视图像可以认为是由3 105个像素组成的,所有像素均是独立变化,且每像素又取128个不同的亮度电平,并设亮度电平是等概出现,问每帧图像含有多少信息量?若有一个广播员,在约10000个汉字中选出1000个汉字来口述此电视图像,试问广播员描述此图像所广播的信息量是多少(假设汉字字汇是等概率分布,并彼此无依赖)?若要恰当的描述此图像,广播员在口述中至少需要多少汉字? 解:2) 3)2.20给定语音信号样值X 的概率密度为1()2xp x e λλ-=,x -∞<<+∞,求H c (X),并证明它小于同样方差的正态变量的连续熵。