信息论与编码理论第二章习题答案

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。

《信息论与编码》习题解答-第二章

《信息论与编码》习题解答-第二章

《信息论与编码》习题解答第二章 信源熵-习题答案2-1解:转移概率矩阵为:P(j/i)=,状态图为:⎪⎩⎪⎨⎧==∑∑j jj ij ii W W P W 1,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=+=++=1323221313121321233123211W W W W W W W W W W W W 解方程组求得W=2-2求平稳概率符号条件概率状态转移概率解方程组得到 W=2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解: (1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P Xii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-4(4)2.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

信息理论与编码课后答案第2章

信息理论与编码课后答案第2章

第二章 信息的度量习题参考答案不确定性与信息(2.3)一副充分洗乱的牌(含52张),试问: (1)任一特定排列所给出的不确定性是多少?(2)随机抽取13张牌,13张牌的点数互不相同时的不确定性是多少? 解:(1)一副充分洗乱的扑克牌,共有52张,这52张牌可以按不同的一定顺序排列,可能有的不同排列状态数就是全排列种数,为6752528.06610P =≈⨯!因为扑克牌充分洗乱,所以任一特定排列出现的概率是相等的。

设事件A 为任一特定排列,则其发生概率为 ()6811.241052P A -=≈⨯!可得,任一特定排列的不确定性为()()22log log 52225.58I A P A =-=≈!比特 (2)设事件B 为从中抽取13张牌,所给出的点数都不同。

扑克牌52张中抽取13张,不考虑其排列顺序,共有1352C 种可能的组合,各种组合都是等概率发生的。

13张牌中所有的点数都不相同(不考虑其顺序)就是13张牌中每张牌有4种花色,所以可能出现的状态数为413。

所以()131341352441339 1.05681052P B C -⨯!!==≈⨯!则事件B 发生所得到的信息量为()()13213524log log 13.208I B P B C =-=-≈ 比特2.4同时扔出两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“2和6 同时出现”这事件的自信息量。

(2)“两个3同时出现”这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:同时扔两个正常的骰子,可能呈现的状态数有36种,因为两骰子是独立的,又各面呈现的概率为61,所以36种中任一状态出现的概率相等,为361。

(1) 设“2和6同时出现”这事件为A 。

在这36种状态中,2和6同时出现有两种情况,即2,6和2,6。

信息论与编码第2章习题解答

信息论与编码第2章习题解答

信息论与编码第2章习题解答2.1设有12枚同值硬币,其中⼀枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现⽤⽐较天平左右两边轻重的⽅法来测量(因⽆砝码)。

为了在天平上称出哪⼀枚是假币,试问⾄少必须称多少次?解:分三组,每组4个,任意取两组称。

会有两种情况,平衡,或不平衡。

(1) 平衡:明确假币在其余的4个⾥⾯。

从这4个⾥⾯任意取3个,并从其余8个好的⾥⾯也取3个称。

⼜有两种情况:平衡或不平衡。

a )平衡:称⼀下那个剩下的就⾏了。

b )不平衡:我们⾄少知道那组假币是轻还是重。

从这三个有假币的组⾥任意选两个称⼀下,⼜有两种情况:平衡与不平衡,不过我们已经知道假币的轻重情况了,⾃然的,不平衡直接就知道谁是假币;平衡的话,剩下的呢个⾃然是假币,并且我们也知道他是轻还是重。

(2) 不平衡:假定已经确定该组⾥有假币时候:推论1:在知道该组是轻还是重的时候,只称⼀次,能找出假币的话,那么这组的个数不超过3。

我们知道,只要我们知道了该组(3个)有假币,并且知道轻重,只要称⼀次就可以找出来假币了。

从不平衡的两组中,⽐如轻的⼀组⾥分为3和1表⽰为“轻(3)”和“轻(1)”,同样重的⼀组也是分成3和1标⽰为“重(3)”和“重(1)”。

在从另外4个剩下的,也就是好的⼀组⾥取3个表⽰为“准(3)”。

交叉组合为:轻(3) + 重(1)?=======?轻(1) + 准(3)来称⼀下。

⼜会有3种情况:(1)左⾯轻:这说明假币⼀定在第⼀次称的时候的轻的⼀组,因为“重(1)”也出现在现在轻的⼀边,我们已经知道,假币是轻的。

那么假币在轻(3)⾥⾯,根据推论1,再称⼀次就可以了。

(2)右⾯轻:这⾥有两种可能:“重(1)”是假币,它是重的,或者“轻(1)”是假币,它是轻的。

这两种情况,任意取这两个中的⼀个和⼀个真币称⼀下即可。

(3)平衡:假币在“重(3)”⾥⾯,⽽且是重的。

根据推论也只要称⼀次即可。

2.2 同时扔⼀对骰⼦,当得知“两骰⼦⾯朝上点数之和为2”或“⾯朝上点数之和为8”或“骰⼦⾯朝上之和是3和4”时,试问这三种情况分别获得多少信息量?解:设“两骰⼦⾯朝上点数之和为2”为事件A ,则在可能出现的36种可能中,只能个骰⼦都为1,这⼀种结果。

信息论与编码理论习题答案

信息论与编码理论习题答案

第二章 信息量和熵2.2八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率.解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s2。

3 掷一对无偏骰子,告诉你得到的总的点数为:(a ) 7; (b) 12。

问各得到多少信息量.解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log =2。

585 bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log =5。

17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a ) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13。

208 bit2.9随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6 =3。

信息论与编码第二章习题参考答案

信息论与编码第二章习题参考答案

2.1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“3和5同时出现”事件的自信息量; (2)“两个1同时出现”事件的自信息量;(3)两个点数的各种组合(无序对)的熵或平均信息量; (4)两个点数之和(即2,3,…,12构成的子集)的熵;(5)两个点数中至少有一个是1的自信息。

解:(1)一个骰子点数记为X ,另一个骰子的点数记做Y ,X 、Y 之间相互独立,且都服从等概率分布,即同理一个骰子点数为3,另一个骰子点数为5属于组合问题,对应的概率为181616161613Y Py 5X Px 5Y Py 3X Px P 1=⨯+⨯===+===)()()()(对应的信息量为比特)()(17.4181-lb P -I 11===lb(2)两个骰子点数同时为1的概率为)()(3611Y Py 1X Px P 2==== 对应的信息量为比特)()(17.5361-lb P -I 22===lb(3)各种组合及其对应的概率如下,6,5,4,3,2,1Y X 3616161Y X P ===⨯==)(共6种可能18161612Y X P =⨯⨯=≠)( 共有15种可能因此对应的熵或者平均自信息量为34.418118115-3613616-H 1=⨯⨯⨯⨯=)()(lb lb 比特/符号 (4)令Z=X+Y ,可以计算出Z 对应的概率分布如下对应的熵为符号比特)()()()()()()(/1.914366366-3653652-3643642-3633632-3633632-3623622-361361-2H 1=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=lb lb lb lb lb lb lb (5)X 、Y 相互独立,所以联合熵为比特)()(597.06162Y X,I =⨯=lb2.2 设在一只布袋中装有100个大小、手感完全相同的球,每个球上涂有一种颜色。

100个球的颜色有下列3种情况:(1)红色球和白色球各50个; (2)红色球99个,白色球1个; (3)红、黄、蓝、白色球各25个。

信息论与编码第二章答案

信息论与编码第二章答案

第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。

2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。

2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。

答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。

从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。

2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。

答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。

信息论与编码理论习题答案

信息论与编码理论习题答案
= 3、3 设有一离散无记忆信源,U=,其熵为。考察其长为得输出序列,当时满
足下式
(a)在=0、05,=0、1 下求 (b)在=,=下求 (c)令就是序列得集合,其中
试求L=时情况(a)(b)下,T 中元素个数得上下限. 解:===0、81 bit
= ==—
= =0、471 则根据契比雪夫大数定理
0、2
001
100
a4
0、1
0001
1000
(a) 各码就是否满足异字头条件?就是否为唯一可译码?
(b) 当收到 1 时得到多少关于字母 a 得信息?
(c) 当收到 1 时得到多少关于信源得平均信息?
2、14 对于任意概率事件集 X,Y,Z,证明下述关系式成立 (a)+,给出等号成立得条件 (b)=+ (c)
证明:(b) =-
==—-
=+ (c) =-
=[—] [-]
=—
= 当=,即X给定条件下,Y 与 Z 相互独立时等号成立 (a) 上式(c)左右两边加上,可得 ++ 于就是+ 2、28 令概率空间,令 Y 就是连续随机变量。已知条件概率密度为 ,求: (a)Y 得概率密度 (b) (c) 若对 Y 做如下硬判决
求,并对结果进行解释. 解:(a) 由已知,可得
= =
=+
= (b) ==2、5 bit
=
= =2 bit =-=0、5 bit (c) 由可得到V得分布律

—1
p
1/4
再由可知
V
-1
p(V|x=-1)
1/2
p(V|x=1)
0
bit
=1 bit == 0、5 bit
0 1/2
0 1/2 1/2

信息论与编码第2章习题解答

信息论与编码第2章习题解答
在已知第一位数字下,第二位数字携带信息为
H (Y | X ) = 0.75 H ( 0.1,0 .9 ) + 0.25 H (0.5,0 .5)
=0.602 bit 在已知前二位数字下,第三位数字携带信息为:
H (Z | X , Y ) = H (Z | Y ) = 0.2 H (1) + 0.8 H (0 .4,0.6) = 0.8 H (0.4,0.6)
P( z1 x1 ) = 0.46 , P( z 2 x1 ) = 0.54 P( z1 x 2 ) = 0.7 , P( z 2 x 2 ) = 0.3
(a)
I ( X ; Y ) = H (Y ) − H (Y X ) = H (0.2,0.8) − 0.75 H (0.1,0 .9 ) − 0.25 H (0.5,0 .5 )
2 人拒绝回答。现随机地从 A 村和 B 村抽取人,p 为抽到 A 村人的概 10
率,1– p 为抽到 B 村人的概率,问通过测试某人说话的状态平均能获得多少关于该 人属于哪个村的信息?通过改变 p,求出该信息的最大值。 [解] 用 X 表示随机抽取人所属的村别,Y 表示说话的状态,则 X 和 Y 之间的关系图如下 所示。 X
p {Z = z k | X = xi} = p {Y = zk − xi | X = xi}
H ( Z | X = xi ) = H (Y | X = xi )
X +Y =Z
所以对给定 X = x i 有 所以
H (Z | X ) = H (Y | X )
因为 X , Y 独立,所以
H (X , Y , Z ) = H ( Z ) + H ( X , Y | Z ) = H ( X , Y ) + H ( Z | X , Y ) = H (X , Y )

信息论与编码-曹雪虹-课后习题答案

信息论与编码-曹雪虹-课后习题答案

《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。

信息论与编码习题与答案第二章

信息论与编码习题与答案第二章

第一章信息、消息、信号的定义?三者的关系? 通信系统的模型?各个主要功能模块及作用? 第二章信源的分类?自信息量、条件自信息量、平均自信息量、信源熵、不确定度、条件熵、疑义度、噪声熵、联合熵、互信息量、条件互信息量、平均互信息量以及相对熵的概念?计算方法? 冗余度?具有概率为)(x i p 的符号x i 自信息量:)(log )(x x i i p I -= 条件自信息量:)(log )(y x y x iiiip I -=平均自信息量、平均不确定度、信源熵:∑-=ii i x x p p X H )(log )()(条件熵:)(log ),()(),()(y x y x y x y x jijijijijiji p p I p Y X H ∑∑-==联合熵:),(log ),(),(),()(y x y x y x y x ji jiji ji jiji p p I p Y X H ∑∑-==互信息:)()(log)()()()(log),();(y x yx yx y x yy x jiji jiji jijjiji p p p p p p p Y X I ∑∑==熵的基本性质:非负性、对称性、确定性2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下:11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 6162 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)两个点数求和的概率分布如下:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5){(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),(1,1)}bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得bit x I bit x I bit x I 3)4(,2)3(,2)2(===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++=平均每个符号携带的信息量为87.811.9545=bit/符号 2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

信息论与编码课后习题答案

信息论与编码课后习题答案

信息论与编码课后习题答案第二章2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯ symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2.42.12 两个实验X 和Y ,X={x 1 x 2 x 3},Y={y 1 y 2 y 3},l 联合概率(),i j ij r x y r =为1112132122233132337/241/2401/241/41/2401/247/24r r r r r r rr r ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(1) 如果有人告诉你X 和Y 的实验结果,你得到的平均信息量是多少?(2) 如果有人告诉你Y 的实验结果,你得到的平均信息量是多少?(3) 在已知Y 实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少?解:联合概率(,)i j p x y 为 22221(,)(,)log (,)724112log 4log 24log 4247244i j i j ijH X Y p x y p x y ==⨯+⨯+∑=2.3bit/符号X 概率分布 21()3log 3 1.583H Y =⨯=bit/符号(|)(,)() 2.3 1.58H X Y H X Y H Y =-=- Y 概率分布是 =0.72bit/符号 Y y1 y2 y3 P8/248/248/242.15P(j/i)=2.16 黑白传真机的消息元只有黑色和白色两种,即X={黑,白},一般气象图上,黑色的Y X y1y 2 y 3 x 1 7/24 1/24 0 x 2 1/24 1/4 1/24 x 31/247/24X x 1 x 2 x 3 P8/248/248/24出现概率p(黑)=0.3,白色出现的概率p(白)=0.7。

信息论与编码第二章答案解析

信息论与编码第二章答案解析

2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。

画出状态图并求出各符号稳态概率。

解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。

解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。

0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量; (2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵;(5)、两个点数中至少有一个是1的自信息量。

信息论与编码习题参考答案

信息论与编码习题参考答案

第二章习题参考答案2-1解:同时掷两个正常的骰子,这两个事件是相互独立的,所以两骰子面朝上点数的状态共有6×6=36种,其中任一状态的分布都是等概的,出现的概率为1/36。

(1)设“3和5同时出现”为事件A ,则A 的发生有两种情况:甲3乙5,甲5乙3。

因此事件A 发生的概率为p(A)=(1/36)*2=1/18 故事件A 的自信息量为I(A)=-log 2p(A)=log 218=4.17 bit(2)设“两个1同时出现”为事件B ,则B 的发生只有一种情况:甲1乙1。

因此事件B 发生的概率为p(B)=1/36 故事件B 的自信息量为I(B)=-log 2p(B)=log 236=5.17 bit (3) 两个点数的排列如下:因为各种组合无序,所以共有21种组合: 其中11,22,33,44,55,66的概率是3616161=⨯其他15个组合的概率是18161612=⨯⨯ symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)“两个点数中至少有一个是1”的组合数共有11种。

bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2解:(1)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121)(21x x x p X i 比特 12log *21*2)(log )()(2212==-=∑=i i i x p x p X H(2)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡100110099)(21x x x p X i 比特 08.0100log *100199100log *10099)(log )()(22212=+=-=∑=i i i x p x p X H (3)四种球的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡41414141)(4321x x x x x p X i ,42211()()log ()4**log 4 2 4i i i H X p x p x ==-==∑比特2-5解:骰子一共有六面,某一骰子扔得某一点数面朝上的概率是相等的,均为1/6。

信息论与编码理论第二章习题答案(王育民)

信息论与编码理论第二章习题答案(王育民)

部分答案,仅供参考。

2.1信息速率是指平均每秒传输的信息量点和划出现的信息量分别为3log ,23log ,一秒钟点和划出现的次数平均为415314.0322.01=⨯+⨯一秒钟点和划分别出现的次数平均为45.410那么根据两者出现的次数,可以计算一秒钟其信息量平均为253log 4153log 4523log 410-=+2.3 解:(a)骰子A 和B ,掷出7点有以下6种可能:A=1,B=6; A=2,B=5; A=3,B=4; A=4,B=3; A=5,B=2; A=6,B=1 概率为6/36=1/6,所以信息量-log(1/6)=1+log3≈2.58 bit(b) 骰子A 和B ,掷出12点只有1种可能: A=6,B=6概率为1/36,所以信息量-log(1/36)=2+log9≈5.17 bit2.5解:出现各点数的概率和信息量:1点:1/21,log21≈4.39 bit ; 2点:2/21,log21-1≈3.39 bit ; 3点:1/7,log7≈2.81bit ; 4点:4/21,log21-2≈2.39bit ; 5点:5/21,log (21/5)≈2.07bit ; 6点:2/7,log(7/2)≈1.81bit 平均信息量:(1/21)×4.39+(2/21)×3.39+(1/7)×2.81+(4/21)×2.39+(5/21)×2.07+(2/7)×1.81≈2.4bit2.7解:X=1:考生被录取; X=0:考生未被录取; Y=1:考生来自本市;Y=0:考生来自外地; Z=1: 考生学过英语;Z=0:考生未学过英语P(X=1)=1/4, P(X=0)=3/4; P(Y=1/ X=1)=1/2; P(Y=1/ X=0)=1/10;P(Z=1/ Y=1)=1, P(Z=1 / X=0, Y=0)=0.4, P(Z=1/ X=1, Y=0)=0.4, P(Z=1/Y=0)=0.4 (a) P(X=0,Y=1)=P(Y=1/X=0)P(X=0)=0.075, P(X=1,Y=1)= P(Y=1/X=1)P(X=1)=0.125P(Y=1)= P(X=0,Y=1)+ P(X=1,Y=1)=0.2P(X=0/Y=1)=P(X=0,Y=1)/P(Y=1)=0.375, P(X=1/Y=1)=P(X=1,Y=1)/P(Y=1)=0.625 I (X ;Y=1)=∑∑=====xx)P()1Y /(P log)1Y /(P )1Y (I )1Y /(P x x x x;x=1)P(X )1Y /1X (P log)1Y /1X (P 0)P(X )1Y /0X (P log)1Y /0X (P =====+======0.375log(0.375/0.75)+0.625log(0.625/0.25)=(5/8)log5-1≈0.45bit(b) 由于P(Z=1/ Y=1)=1, 所以 P (Y=1,Z=1/X=1)= P (Y=1/X=1)=0.5 P (Y=1,Z=1/X=0)= P (Y=1/X=0)=0.1那么P (Z=1/X=1)= P (Z=1,Y=1/X=1)+ P (Z=1,Y=0/X=1)=0.5+ P (Z=1/Y=0,X=1)P (Y=0/X=1)=0.5+0.5*0.4=0.7P(Z=1/X=0)= P (Z=1,Y=1/X=0)+ P (Z=1,Y=0/X=0)=0.1+P(Z=1/Y=0,X=0)P(Y=0/X=0)=0.1+0.9*0.4=0.46P (Z=1,X=1)= P (Z=1/X=1)*P(X=1)=0.7*0.25=0.175 P (Z=1,X=0)= P (Z=1/X=0)*P(X=0)= 0.46*0.75=0.345 P(Z=1) = P(Z=1,X=1)+ P(Z=1,X=0) = 0.52 P(X=0/Z=1)=0.345/0.52=69/104 P(X=1/Z=1)=35/104I (X ;Z=1)=∑∑=====xx )P()1Z /(P log )1Z /(P )1Z (I )1Z /(P x x x x;x=1)P(X )1Z /1X (P log )1Z /1X (P 0)P(X )1Z /0X (P log )1Z /0X (P =====+======(69/104)log(23/26)+( 35/104)log(35/26) ≈0.027bit(c)H (X )=0.25*log(1/0.25)+0.75*log(1/0.75)=2-(3/4)log3=0.811bit H(Y/X)=-P(X=1,Y=1)logP(Y=1/X=1) -P(X=1,Y=0)logP(Y=0/X=1)-P(X=0,Y=1)logP(Y=1/X=0) -P(X=0,Y=0)logP(Y=0/X=0)=-0.125*log0.5-0.125*log0.5-0.075*log0.1-0.675*log0.9=1/4+(3/40)log10-(27/40)log(9/10)≈0.603bitH(XY)=H(X)+H(Y/X)=9/4+(3/4)log10-(21/10)log3=1.414bitP(X=0,Y=0,Z=0)= P(Z=0 / X=0, Y=0)* P( X=0, Y=0)=(1-0.4)*(0.75-0.075)=0.405 P(X=0,Y=0,Z=1)= P(Z=1 / X=0, Y=0)* P( X=0, Y=0)=0.4*0.675=0.27P(X=1,Y=0,Z=1)= P(Z=1/ X=1,Y=0)* P(X=1,Y=0)=0.4*(0.25-0.125)=0.05 P(X=1,Y=0,Z=0)= P(Z=0/ X=1,Y=0)* P(X=1,Y=0)=0.6*0.125=0.075 P(X=1,Y=1,Z=1)=P(X=1,Z=1)- P(X=1,Y=0,Z=1)=0.175-0.05=0.125 P(X=1,Y=1,Z=0)=0 P(X=0,Y=1,Z=0)=0P(X=0,Y=1,Z=1)= P(X=0,Z=1)- P(X=0,Y=0,Z=1)= 0.345-0.27=0.075H(XYZ)=-0.405*log0.405-0.27*log0.27-0.05*log0.05-0.075*log0.075-0.125*log0.125-0.075*log 0.075=(113/100)+(31/20)log10-(129/50)log3 =0.528+0.51+0.216+0.28+0.375+0.28=2.189 bitH(Z/XY)=H(XYZ)-H(XY)= -28/25+(4/5)log10-12/25log3 =0.775bit2.9 解:A ,B ,C 分别表示三个筛子掷的点数。

《信息论与编码理论》(王育民李晖梁传甲)课后习题答案高等教育出版社

《信息论与编码理论》(王育民李晖梁传甲)课后习题答案高等教育出版社

信息论与编码理论习题解第二章 -信息量和熵2.1 解: 平均每个符号长为 :20.2 10.4 4 秒3315每个符号的熵为 2log31 log 3 0.9183 比特 /符号 32 3所以信息速率为 0.9183 15 3.444 比特 /秒42.2 解: 同步信号均相同不含信息,其余认为等概 ,每个码字的信息量为 3*2=6 比特;所以信息速率为 6 10006000 比特 /秒2.3 解:(a) 一对骰子总点数为 7 的概率是 636所以得到的信息量为log 2( 6) 2.585 比特36(b)一对骰子总点数为 12 的概率是 136所以得到的信息量为log 21 比特5.17362.4 解: (a)任一特定排列的概率为1,所以给出的信息量为52!1log252 !225.58比特(b) 从中任取 13 张牌 ,所给出的点数都不相同的概率为13! 413413A 5213C 135213所以得到的信息量为 log 2C 5213.21 比特 .4132.5 解:易证每次出现 i 点的概率为i,所以21I (x i )log 2i, i 1,2,3,4,5,6 21I (x1) 4.392 比特I (x2) 3.392 比特I (x3) 2.807 比特I (x4) 2.392比特I (x5) 2.070 比特I (x6) 1.807 比特6i log2i比特H(X)212.398i 1212.6 解: 可能有的排列总数为12!277203! 4! 5!没有两棵梧桐树相邻的排列数可如下图求得,Y X Y X Y X Y X Y X Y X Y X Y图中 X 表示白杨或白桦,它有73种排法, Y 表示梧桐树可以栽种的位置,它有8种排法,所以共有8 *7=1960种排法保证没有553两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为 log2 27720log 2 1960 =3.822比特2.7 解: X=0 表示未录取, X=1 表示录取;Y=0 表示本市, Y=1 表示外地;Z=0 表示学过英语, Z=1 表示未学过英语,由此得p( x0) 3 ,p(x1)4 p( y0)p( x 0) p( y 1 1 3 142 410 p( y 1)1 1 4 ,5 5p( z 0)p( y 0) p(z 14405 5 100 p( z 1)1 13 12 ,25 25(a) p( x0 y 0) p( yp( x1 y 0) p( y1 , 40 x 0)p( x 1) p( y 0 x 1)1 , 50 y 0) p( y 1) p( z 0 y 1)13 , 250 x 0) p( x 0) / p( y0)13 1310/5 84 0 x 1) p( x 1) / p( y0) 1 1 / 152 4 58I ( X ; y 0)p(x0 y p(x 0 y 0) p( x 1 y 0)0) log 2p(x 1 y 0) log 2p( x 0)p( x 1)3 log 2 35log 2 58 8 8 3 8 14 40.4512比特(b) p( x0 z 0)( p( z 0 y 0, x 0) p( y 0 x 0) p( z 0 y 1, x 0) p( y 1x 0)) p(x0) / p( z 0)(19 4 ) 3/1369 10 10 10 4 25 104p( x 1z 0)( p( z 0 y 0, x 1) p( y 0 x 1) p(z 0 y1, x 1) p( y 1 x 1)) p( x1) / p(z 0)(11 2) 1/13 3522 5 4 25104I ( X ; z 0)p( x 0 zp( x 0 z 0)p( x p(x 1 z 0)0) log 21z 0) log 21)p( x 0)p( x6969log 2104104343510435log 21041 40.02698 比特(c) H ( X )3 log 24 1 log 2 40.8113 比特4 3 4H(Y X)p( x 0) p( y 0 x 0) log 2 p( y 0 x 0) p( x 0) p( y 1 x 0) log 2 p( y 1x 0)p( x 1) p( y 0 x1) log 2 p( y 0 x 1)p( x 1) p( y 1 x1) log 2 p( y 1 x1)3 1log 2 10 3 9log 2 10 1 1 log 2 2 11log 2 2 410410 9 4 2 4 20.6017比特2.8 解:令X A,B,Y T,F,R ,则P(T)P(T A)P(A)P(T B)P(B)0.5 p0.3(1p)0.3 0.2 p同理P(F )0.50.2 p,P(R)0.2I ( p) I ( X ; Y)H (Y)H(Y X)(0.30.2p) log2 (0.30.2 p)(0.50.2p) log2 (0.50.2 p)0.2log 2 0.2(0.5 p log2 20.3 plog 21030.2 p log2 50.3(1p) log2103 0.5(1 p) log2 20.2(1p) log2 5)0.3log 2 0.30.5log 2 0.5(0.30.2p) log2 (0.30.2 p)(0.50.2 p) log2 (0.5 0.2 p)令I '( p)0.2 log2(0.50.2 p)0,得p0.50.30.2 pI ( p)max I ( p) p0 .50.03645比特2.9 & 2.12解:令 X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= log26比特H(X)= H(X 1) = log26=2.585 比特H(Y)= H(X 2+X 3)=2( 1log 2 362log 2363log 2364log 2365log 236 )1log 2 6363623633643656 = 3.2744 比特H(Z)= H(X 1+X 2+X 3)=2( 1 log 2 216 3 log 2 216 6log 2 216 10 log 2 216 15 log 2 216216 216 3 216 6 216 10 216 15 21 216 25 216 27 216 )log 2 21 log 2 log 2 27216 216 25 216= 3.5993 比特所以H(Z/Y)= H(X 3)= 2.585 比特H(Z/X) = H(X 2+X 3)= 3.2744 比特H(X/Y)=H(X)-H(Y)+H(Y/X)= 2.585-3.2744+2.585 =1.8955 比特H(Z/XY)=H(Z/Y)= 2.585 比特 H(XZ/Y)=H(X/Y)+H(Z/XY)=1.8955+2.585=4.4805 比特I(Y;Z)=H(Z)-H(Z/Y)=H(Z)- H(X 3)= 3.5993-2.585 =1.0143 比特I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744=0.3249 比特I(XY ;Z)=H(Z)-H(Z/XY)=H(Z)-H(Z/Y)=1.0143 比特I(Y;Z/X)=H(Z/X)-H(Z/XY)=H(X 2+X 3)-H(X3) =3.2744-2.585=0.6894 比特I(X;Z/Y)=H(Z/Y)-H(Z/XY)=H(Z/Y)-H(Z/Y)=02.10 解:设系统输出10 个数字 X 等概 ,接收数字为 Y,9191显然 w( j )Q(i ) p( j i )p( j i )i010 i 110H(Y)=log10H(YX)p( x, y) log 2 p( y x)p( x, y) log2 p( y x)y x 偶y x 奇0p( x) p( x x) log 2 p( x x)p(x) p( y x) log 2 p( y x) i奇y x,奇 x奇511log2 2 5 411log2 81021081比特所以I(X;Y)=log 2 10 1 2.3219比特2.11 解:(a)接收前一个数字为0 的概率81w( 0)q(u i ) p( 0 u i )2i 0I (u1 ;0)log2p(0 u1)1p(1 p) bitslog 21 1 log 2w(0)28(b ) 同理w(00)q(u ) p(00 u ) 41iI (u 1;00)p(00u 1)log 2 (1p)22 2 log 2 (1 p) bitslog 2 w(00)14(c ) 同理 w(000)8q(u i ) p(000 u i )81i 0I (u 1;000) log 2 p(000u 1 ) log 2 (1 p)33 3log 2 (1p)bitsw(000)18(d ) 同理 w(0000 )8q(u i ) p(0000 u i )81((1p)66 p 2 (1 p)2p 4 )i 0p(0000u 1 )(1 p)4I (u 1;0000)log 2w(0000)log 281((1 p)6 6 p 2 (1p) 2p 4 )log 2 8(1 p) 4bits(1 p) 6 6 p 2 (1 p) 2p 42.12 解:见 2.92.13 解:(b)H(YZ/ X)xyzxyzxyzH(Y/ X)1p( xyz)logp( yz / x)1p( xyz) logp( y / x) p(z / xy)11p( xyz) logp(xyz)logp( y / x)x yzp( z / xy)H(Z/ XY)(c)H (Z / XY )p(xy)p( z / xy) log1xyzp(xy)xyzH(Z / X)p(z / xy)1p( z/ xy) log (由第二基本不等式) p(z / x)或H(Z/XY)H(Z/X)p(xy)1p( z / xy) logxyzp(z / xy)p( xy)p( z/ xy) log1p( z / x)xyzp( xy)p( z/ xy) logp(z / x)(由第一基xyzp( z / xy )p( xy)p(z / xy) log e( p(z / x)1)xyzp(z / xy)本不等式)所以H(Z/XY) H(Z/X)(a)H(Y/ X) H(Z / X)H(Y/ X) H(Z/XY) H(YZ/X)等号成立的条件为 p(z / xy) p( z / x) ,对所有 xX , y Y, z Z ,即在给定 X条件下 Y 与 Z 相互独立。

信息论与编码第二章习题及答案(清华大学出版社)

信息论与编码第二章习题及答案(清华大学出版社)

2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。

画出状态图并求出各符号稳态概率。

解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:12S112 13 13S2 23 S3 令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W=121W +233W , 3W =232W 且:1W +2W +3W =1∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。

解:状态转移概率矩阵为:0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。

1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。

信息论与编码第2章答案

信息论与编码第2章答案

《信息论与编码》-雪虹-课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I (X ;Y=1)= P(x/Y 1)I(x;Y 1)x P(x/Y 1)logP(x/Y 1)P(x)= P(X 0/Y 1)log P(X 0/Y 1)P(X 0)P(X 1/Y 1)logP(X 1/Y 1)P(X 1)部分答案,仅供参考。

信息速率是指平均每秒传输的信息量点和划出现的信息量分别为log3Jog3,2’一秒钟点和划出现的次数平均为 1 152 1 ~40.20.4 -3 3一秒钟点和划分别出现的次数平均为巴54 4那么根据两者出现的次数,可以计算一秒钟其信息量平均为10 log 3 5 竺 54 2 4 4 2解:⑻骰子A和B,掷出7点有以下6种可能:A=1,B=6; A=2,B=5; A=3,B=4; A=4,B=3; A=5,B=2; A=6,B=1概率为6/36=1/6,所以信息量-log(1/6)=1+log3 ~ bit(b)骰子A和B,掷出12点只有1种可能:A=6,B=6概率为1/36,所以信息量-log(1/36)=2+log9 ~ bit解:出现各点数的概率和信息量:1 点:1/21 , log21 〜bit ;2 点:2/21 , log21-1 〜bit ;3 点:1/7 , log74 点:4/21 , log21-25 点:5/21 , log (21/5 )~;6 点:2/7 , log(7/2)〜平均信息量:(1/21) X +(2/21) X +(1/7) X +(4/21) X +(5/21) X +(2/7)解:X=1:考生被录取;X=0考生未被录取;Y=1:考生来自本市;Y=0考生来自外地;Z=1:考生学过英语;z=o:考生未学过英语P(X=1)=1/4, P( X=q=3/4; P( Y=1/ X=1)=1/2 ;P( Y=1/ X=0)=1/10 ;P(Z=1/ Y=1 )=1, P( Z=1/ X=0,Y=0 )=, P( Z=1/ X=1, Y=0 )=, P(Z=1/Y=0)=(a)P(X=0,Y=1)=P(Y=1/X=0)P(X=0)=, P(X=1,Y=1)= P(Y=1/X=1)P(X=1)=P(Y=1)= P(X=0,Y=1)+ P(X=1,Y=1)=P(X=0/Y=1)=P(X=0,Y=1)/P(Y=1)=, P(X=1/Y=1)=P(X=1,Y=1)/P(Y=1)==+=(5/8)log5-1 ~(b) 由于 P(Z=1/ Y=1 )=1, 所以 P ( Y=1, Z=1/X=1) = P ( Y=1/X=1)= P (Y=1, Z=1/X=0) = P (Y=1/X=0)=那^ P( Z=1/X=1 ) = P( Z=1,Y=1/X=1 ) + P( Z=1,Y=0/X=1 ) =+ P( Z=1/Y=0 , X=1) P( Y=0/X=1) =+*=P(Z=1/X=0)= P (Z=1,Y=1/X=0 ) + P (Z=1,Y=0/X=0 ) =+P(Z=1/Y=0 , X=0)P(Y=0/X=0)=+*= P (Z=1,X=1 ) = P (Z=1/X=1 ) *P(X=1)=*= P (Z=1,X=0 ) = P (Z=1/X=0 ) *P(X=0)= *= P(Z=1) = P( Z=1,X=1)+ P( Z=1,X=0)= P(X=0/Z=1)==69/104 P(X=1/Z=1)=35/104l (X ;Z =1)=P(x/Z 1)I(x;Z 1)xx =P(X 0/Z 1)= P(X 0/Z 1)logP(X P(X 0)'=(69/104)log(23/26)+( 35/104)log(35/26)(c) H (X ) =*log(1/+*log(1/=2-(3/4)log3=H(Y/X)=-P(X=1,Y=1)logP(Y=1/X=1) -P(X=1,Y=0)logP(Y=0/X=1)-P(X=0,Y=1)logP(Y=1/X=0) -P(X=0,Y=0)logP(Y=0/X=0)=* H(XY)=H(X)+H(Y/X)=9/4+(3/4)log10-(21/10)log3=P(X=0,Y=0,Z=0)= P(Z=0/ X=0, Y=0* P( X=0, Y=C )=* P(X=0,Y=0,Z=1)= P(Z=1 / X=0, Y=0* P( X=C, Y=C )=*= P(X=1,Y=C,Z=1)= P(Z=1/ X=1,Y=C)*P(X=1,Y=C)=*P(X=1,Y=C,Z=C)=P(Z=C/X=1,Y=C)* P(X=1,Y=C)=*=P(X=1,Y=1,Z=1)=P(X=1,Z=1)- P(X=1,Y=C,Z=1)= P(X=1,Y=1,Z=C)=C P(X=C,Y=1,Z=C)=CP(X=C,Y=1,Z=1)= P(X=C,Z=1)- P(X=C,Y=C,Z=1)= H(XYZ)=* =+++++=bitH(Z/XY)=H(XYZ)-H(XY)= -28/25+(4/5)log10-12/25log3 =解:A , B, C 分别表示三个筛子掷的点数。

X=A, Y=A+B, Z=A+B+C由于 P(A+B+C/ A+B)=P(C/A+B)=P(C) 所以 H(Z/Y)=H(A+B+C/ A+B)=H (C ) =log6 =P(x/Z 1)P(x/Z 1)logP(x)P(X 1/Z 1)1/Z 1)log —361/36P(A=a,Y=y)=1/36H(X/Y)=H(A/Y)=(1/36)[(-1*log1-2*log(1/2)-3*log(1/3)-4*log(1/4)-5*log(1/5) )*2- 6*log(1/6)]=由于P(A+B+C/ A+B,A)=P(C/A+B,A)=P(C)H(Z/XY)=H(C) =log6 =由于P(A=x,A+B+C=z/A+B=y)=P(A= x,C=z-y / A+B= y)=P(A= x/A+B=y)P(C= z-y/A+B=y)=P(A= x / A+B= y)P(C=z-y )=P(A/Y)P(C)P(A/Y)上面已经给出。

2161/216P(XYZ)=1/216H(XZ/Y)=(1/216)[(-6*log(1/6)-12*log(1/12)-18*log(1/18)-24*log(1/24)-30*log(1/30))*2-36*log(1/36)]=(1/36)*[(log6+2log12+3log18+4log24+5log30)*2+6log36]= bit由于P(Z/X)=P(B+C/A)=P(B+C)H(Z/X) p(xz)log p(z/x)xyzp(a) p(a b c/ a)log p(a b c/a)abcp(a) p(b c)log p(b c) H (B C)a bc= (1/36)*{[log36+2log(36/2)+3log(36/3)+ 4log(36/4)+ 5log(36/5)]*2+6log(36/6)}bit解:P(0/0)=P(1/1)=1- p, P(1/0)=P(0/1)= p(a)F(u l)=1/8P(u l , O)=R u l) x P(0/ u l)=(1/8) x (1- p)接收的第一个数字为0的概率:P(0)= R u l) x R0/ u l)+ P(u2) x P(0/ u2)+ …….P(u8) x P(0/ u8)=4X (1/8) x (1- p)+ 4 x (1/8) x p=1/2I( u l; 0)=log[ P(u l , 0)/P(0)P( u l)]=1+log(1- p)(b)Ru l , 00)= P( u l) x P(00/ u l)=(1/8) x (1- p)2P(00)= P( u l) x F(00/ u l)+ P(u2) x P(00/ u2)+ …….P(u8) x P(00/ u8)2 2=2 x (1/8) x (1- p) +4x (1/8) x p (1- p)+ 2 x (1/8) x p=1/4I( u l; 00)=log[ P(u l , 00)/P(00)P( u l)]= 2+2log(1- p)(c) Ru l , 000)= P( u l) x P(000/ u l)=(1/8) x (1- p)P(000)= P(u l) x P(000/ u l)+ P(u2) x P(000/ u2)+ …….P(u8) x R000/ u8)3 2 2 3=(1/8) x (1- p) +3x (1/8) x p (1- p) +3x (1/8) x p (1- p) +(1/8) x p=1/8I( u l; 000)=log[ P(u l , 000)/P(000)P( u l)]= 3+3log(1- p)(d) Ru l , 0000)= Ru l) x R0000/ u l)=(1/8) x (1- p)4P(0000)= Rul) x R0000/ u l)+ P(u2) x R0000/ u2)+ …….P(u8) x P(0000/ u8)4 2 2 4=(1/8) x (1- p) +6x (1/8) x p (1- p) + (1/8) x pI( u l; 0000)=log[ P(u l , 0000)/P(0000)P( u l)]=(1 P)3log{2 2p}p)6p(1 p)解:l(X;Z)= H(Z)-H(Z/X)I(XY ;Z)=H(Z)-H(Z/XY)I(Y;Z/X)=I(XY;Z)-I(X;Z)I(X;Z/Y)= I(XZ;Y)-I(Y;Z)= H(XZ)-H(XZ/Y) -I(Y;Z) = H(X)+H(Z/X) -H(XZ/Y) -I(Y;Z)以上可以根据的结果求出解:考虑到约束条件o q(x) 1, o xq(x)采用拉格朗日乘子法证明:⑻ Q(x) Q i(x) (1 )Q2(X) (1所以Q(x)为概率分布。

(b)即证明熵的凸性。

H(U)1 (1 )H(U)11 H(U)Q1(x)logQOQ(x) Q1(x)log (1Qdx)^e Q1(x)[叢(1 )Q2(x)log 厂(、Q2 (x))Q2(x)logQ(x)Q2(X)1]loge(1 )Q2(X)[Q X)1]Q2(X)(Q1(x) (1 )Q2(x))logQ(x)当且仅当将q(x) 1mq(x)a 1x2)0 q(x)log q(x)dx』°1X 2——dx (q(x)log eq(x)xq(x)dx1m 2) loge0 q(x)dx 1]1X 2q呎(x) 1]dx 1x2带入实现最大微分熵的分布2时,等式成立。

相关文档
最新文档