原子物理学第一章习题参考答案
原子物理学杨福家1-6章 课后习题答案(2020年7月整理).pdf
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e −'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=−θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θasin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版
原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。
也就是说,当α粒子和自由电子对头碰时,θ取得极大值。
此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。
原子物理学课后习题答案
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理学课后答案
原⼦物理学课后答案原⼦物理学习题解答第⼀章原⼦的基本状况1.1若卢瑟福散射⽤的粒⼦是放射性物质镭放射的,其动能为电⼦伏特。
散射物质是原⼦序数的⾦箔。
试问散射⾓所对应的瞄准距离多⼤?解:根据卢瑟福散射公式:得到:⽶式中是粒⼦的功能。
1.2已知散射⾓为的粒⼦与散射核的最短距离为,试问上题粒⼦与散射的⾦原⼦核之间的最短距离多⼤?解:将1.1题中各量代⼊的表达式,得:⽶1.3若⽤动能为1兆电⼦伏特的质⼦射向⾦箔。
问质⼦与⾦箔。
问质⼦与⾦箔原⼦核可能达到的最⼩距离多⼤?⼜问如果⽤同样能量的氘核(氘核带⼀个电荷⽽质量是质⼦的两倍,是氢的⼀种同位素的原⼦核)代替质⼦,其与⾦箔原⼦核的最⼩距离多⼤?解:当⼊射粒⼦与靶核对⼼碰撞时,散射⾓为。
当⼊射粒⼦的动能全部转化为两粒⼦间的势能时,两粒⼦间的作⽤距离最⼩。
根据上⾯的分析可得:故有:⽶由上式看出:与⼊射粒⼦的质量⽆关,所以当⽤相同能量质量和相同电量得到核代替质⼦时,其与靶核的作⽤的最⼩距离仍为⽶。
1.4钋放射的⼀种粒⼦的速度为⽶/秒,正⾯垂直⼊射于厚度为⽶、密度为的⾦箔。
试求所有散射在的粒⼦占全部⼊射粒⼦数的百分⽐。
已知⾦的原⼦量为。
解:散射⾓在之间的粒⼦数与⼊射到箔上的总粒⼦数n的⽐是:其中单位体积中的⾦原⼦数:⽽散射⾓⼤于的粒⼦数为:所以有:等式右边的积分:故即速度为的粒⼦在⾦箔上散射,散射⾓⼤于以上的粒⼦数⼤约是。
1.5粒⼦散射实验的数据在散射⾓很⼩时与理论值差得较远,时什么原因?答:粒⼦散射的理论值是在“⼀次散射“的假定下得出的。
⽽粒⼦通过⾦属箔,经过好多原⼦核的附近,实际上经过多次散射。
⾄于实际观察到较⼩的⾓,那是多次⼩⾓散射合成的结果。
既然都是⼩⾓散射,哪⼀个也不能忽略,⼀次散射的理论就不适⽤。
所以,粒⼦散射的实验数据在散射⾓很⼩时与理论值差得较远。
1.6已知粒⼦质量⽐电⼦质量⼤7300倍。
试利⽤中性粒⼦碰撞来证明:粒⼦散射“受电⼦的影响是微不⾜道的”。
原子物理学 褚圣麟 第一章习题解答
即 α 粒子散射“受电子的影响是微不足道的”。 1.7 能量为 3.5 兆电子伏特的细 α 粒子束射到单位面积上质量为
9
由上式看出: rmin 与入射粒子的质量无关,所以当用相同能量和相同电荷的氘核 代替质子时,其与靶核作用的最小距离仍为 1.14 × 10−13 m。 1.4 钋放射的一种 α 粒子的速度为 1.597 × 107 米/秒, 正面垂直入射于厚度为
10−7 米、密度为 1.932 × 10 4 公斤 / 米3 的金箔。试求所有散射在 θ > 90ο 的 α 粒子占
ο
0
K α b Ze2
Ze 2 ctg θ 79 × (1.60 × 10 − 19 ) 2 ctg 150 9 2 2 b= = 9 × 10 × = 3.97 × 10 − 1 5 m 6 − 19 4πε 0 K α 7.68 × 10 × 1.6 × 10
2 式中 Kα = 1 是 α 粒子的功能。 2 Mv
2 1 1 1 2 ' 2 Mv α = Mv α + mv e' 2 2 2
(1) (2)
由(1)得:
G G m G' 1 G' vα − vα' = ve = ve M 7300
2 ' vα = vα + 2
……
(3)
由(2)得:
m '2 ve M
(4)
将(3)式代入(4)式,得:
K K 2 ' 2 vα = vα + 7300 ( v α − v α' ) 2
原子物理学(褚圣麟)完整答案
F 2Ze 2 / 4 R2和F0 2Ze 2r/ 4 R 3 。可见,原0 子表面处粒子所受的斥力最大,越
靠近原子的中心粒子所受的斥力越小,而且瞄准距离越小,使粒子发生散射最强的垂 直入射方向的分力越小。我们考虑粒子散射最强的情形。设粒子擦原子表面而过。此时受
力为F 2Ze 2 / 4 R2 。可0 以认为粒子只在原子大小的范围内受到原子中正电荷的作
Z2
Li
Z
2 H
9
c) 第一激发能之比:
E
2 He
E He
1
E2H E 1 H
22 E1 22
E
1
12 22
E1 E
22
12 12 1 12
4
E
2 Li
E Li
1
E2H E 1 H
22 E1 32
E
1
12 22
E1 E
32
12 12 1 12
9
d) 氢原子和类氢离子的广义巴耳末公式:
{ v~ Z R (2
达到的最小距离多大又问如果用同样能量的氘核(氘核带一个 e电荷而质量是质子的 两倍,
是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大
解:当入射粒子与靶核对心碰撞时,散射角为180 。当入射粒子的动能全部转化为两
粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得:
1 Mv2 K 2
解:设 粒子和铅原子对心碰撞,则 粒子到达原子边界而不进入原子内部时的能量有 下式 决定:
1 Mv2 2
2Ze 2 / 4 R 10016 焦耳 103电子伏特
由此可见,具有106 电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子
原子物理学杨福家1_6章_课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则 sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8) (2)若cos(θ+2φ)=0 ,则 θ=90º-2φ(9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin注意到即单位体积内的粒子数 为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理学课后答案
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K M vctgb b Z eZ eαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Z e ctgctgb K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K M v α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为222121()(1)4s inm Z e r M vθπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2m in 22121()(1)4sinZ e r M vθπε=+1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220m in124pZ eM vKr πε==,故有:2m in 04pZ er Kπε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:m in r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理学课后习题答案
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
《原子物理学》第一章习题解答
1第一章习题解答1-1 速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角为104- rad 。
证:α粒子在实验系及在质心系下的关系有:粒子在实验系及在质心系下的关系有:a a c c v v v += 由此可得:由此可得:îíì+=+=c c c L cc c L v v v v v v q q q q a aa a cos cos cos cos ①由②解得:由②解得:uC CL +=q qq cos sin tan 其中u=a c c v v ②()c e vm m v m +=aa 00v m m m v ec +=\a a③ ∵ ce c c e v v v v v -=-=a a a ,与坐标系的选择无关,与坐标系的选择无关∴ce c v v v -=a 0 ④又 ∵ 0=+ce e v m v m aa∴0v m m v ece a-= 代入④式,可得:代入④式,可得:0v m m m v e ec aa +=由此可以得到:ec m m v v a a = 代入②式中,可以得到:代入②式中,可以得到:rad m m m m ecec L 410cos sin tan -»£+=aa q q q 证毕。
证毕。
a c vce ve v c va v1-2 (1)(1)动能为动能为5.00Mev 的α粒子被金核以9090°散射时,它的瞄准距离(碰撞参°散射时,它的瞄准距离(碰撞参数)为多大?数)为多大?(2)如果金箔厚1.01.0µµm ,则上述入射α粒子束以大于9090°散射°散射(称为背散射)的粒子数是全部入射例子的百分之几?的粒子数是全部入射例子的百分之几? 解:(1)由库仑散射公式可得(1)由库仑散射公式可得: :b =2a cot 2q =21E e Z Z 02214pe cot 2q =21´E Z Z 21´24pee cot 4p =21´5792´´1.44´1=22.752 fm(2)在大于9090°的情况下,相对粒子数为°的情况下,相对粒子数为°的情况下,相对粒子数为: :òN dN '=nt(E Z Z 421´024pe e )2òW 2sin4q d =t N M A A r (E Z Z 421´024pe e )2q q qp ppdò242sin sin 2 =9.4´105-1-3 试问:4.5Mev 的α粒子与金核对心碰撞的最小距离是多少?若把金核改为7Li 核,则结果如何?核,则结果如何?解:α粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为:粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为:r m =a=Ee Z Z 02214pe =EZZ 21´24pe e =1.44´105-´5792´»50.56 fmα粒子与7Li 核对心碰撞时,我们可以在质心系下考虑,我们可以在质心系下考虑,此时此时α粒子与金核相对于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:221v ECm ==m r e Z Z 02214pe +0=L Li LiE m m m +a 其中L E =21mv 2为入射粒子实验室动能,由此可以得到为入射粒子实验室动能,由此可以得到m r =024pe e LE Z Z 21LiLim mm +a=3.02 fm1-4 (1)假定金核的半径为7.0fm 试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm. 解:仍然在质心系下考虑粒子的运动,由1仍然在质心系下考虑粒子的运动,由1--3题可知:EC =mr e Z Z 02214pe (1)(1)对金核可视为静止,对金核可视为静止,实验系动能与质心系动能相等,由此得到由此得到 E=E=E=16.25Mev 16.25Mev (2)(2)对铝核,E=对铝核,E=对铝核,E=1.441.44´AlAlp m m m +´413=4.85Mev1-5 动能为动能为1.0Mev 的窄质子束垂直地射在质量厚度为1.5mg/cm 2的金箔上,计数器纪录以6060°角散射的质子,计数器圆形输入孔的面积为°角散射的质子,计数器圆形输入孔的面积为1.5cm 1.5cm²,离金箔散²,离金箔散射区的距离为10cm 10cm,输入孔对着且垂直于射到它上面的质子。
(整理)原子物理学杨福家1-6章 课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
《原子物理学》第一章习题解答
第一章习题解答1-1 速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角为104- rad 。
证:α粒子在实验系及在质心系下的关系有:ααc c v v v +=由此可得:⎩⎨⎧+=+=c c c L c c c L v v v v v v θθθθααααcos cos cos cos ①由②解得:uC CL +=θθθcos sin tan 其中u=αc c v v ②()c e v m m v m +=αα0 0v m m m v ec +=∴αα③∵ ce c c e v v v v v -=-=ααα,与坐标系的选择无关∴ce c v v v -=α0 ④又 ∵ 0=+ce e v m v m αα∴0v m m v ece α-= 代入④式,可得:0v m m m v e ec αα+=由此可以得到:ec m m v v αα=代入②式中,可以得到: rad m m m m ec ec L 410cos sin tan -≈≤+=ααθθθ 证毕。
1-2 (1)动能为5.00Mev 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0µm ,则上述入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射例子的百分之几? 解:(1)由库仑散射公式可得:b =2a cot 2θ=21E e Z Z 02214πεcot 2θ=21⨯E Z Z 21⨯24πεe cot 4π =21⨯5792⨯⨯1.44⨯1=22.752 fm(2)在大于90°的情况下,相对粒子数为:⎰N dN '=nt(E Z Z 421⨯24πεe )2⎰Ω2sin4θd =t N M A A ρ(E Z Z 421⨯024πεe )2θθθπππd ⎰242sinsin 2=9.4⨯105-1-3 试问:4.5Mev 的α粒子与金核对心碰撞的最小距离是多少?若把金核改为7Li 核,则结果如何?解:α粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为:r m =a=E e Z Z 02214πε=E Z Z 21⨯24πεe =1.44⨯105-⨯5792⨯≈50.56 fmα粒子与7Li 核对心碰撞时,我们可以在质心系下考虑,此时α粒子与金核相对于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:221v E C μ==mr e Z Z 02214πε+0=L Li Li E m m m +α其中L E =21mv 2为入射粒子实验室动能,由此可以得到m r =024πεe LE Z Z 21Li Lim m m +α=3.02 fm1-4 (1)假定金核的半径为7.0fm 试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm. 解:仍然在质心系下考虑粒子的运动,由1-3题可知:EC =mr e Z Z 02214πε(1)对金核可视为静止,实验系动能与质心系动能相等,由此得到 E=16.25Mev(2)对铝核,E=1.44⨯Al Al p m m m +⨯413=4.85Mev1-5 动能为1.0Mev 的窄质子束垂直地射在质量厚度为1.5mg/cm 2的金箔上,计数器纪录以60°角散射的质子,计数器圆形输入孔的面积为1.5cm ²,离金箔散射区的距离为10cm ,输入孔对着且垂直于射到它上面的质子。
原子物理学习题解答
原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
已知金的原子量为197。
解:散射角在d θθθ+ 之间的α粒子数dn 与入射到箔上的总粒子数n 的比是:dnNtd nσ=其中单位体积中的金原子数:0//Au Au Nm N A ρρ==而散射角大于090的粒子数为:2'dndn nNt d ππσ=⎰=⎰所以有:2'dn Nt d nππσ=⎰22218002903cos122()()4sin 2AuN Ze t d A Mu οοθρπθθπε=⋅⋅⎰ 等式右边的积分:180180909033cos sin 2221sin sin 22d I d οοοοθθθθθ=⎰=⎰=故'22202012()()4Au N dn Ze t n A Mu ρππε=⋅⋅ 648.5108.510--≈⨯=⨯即速度为71.59710/⨯米秒的α粒子在金箔上散射,散射角大于90ο以上的粒子数大约是4008.510-⨯。
原子物理学杨福家1-6章-课后习题标准答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题参考答案速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα(1) ϕθααcos cos v m V M V M e +'=(2) ϕθαsin sin 0v m V M e -'=(3)作运算:(2)×sinθ±(3)×cosθ,得)sin(sin ϕθθα+=VM v m e (4))sin(sin ϕθϕαα+='VM V M(5)再将(4)、(5)二式与(1)式联立,消去V’与V ,)(sin sin )(sin sin 22222222ϕθθϕθϕααα+++=V m M V M V M e化简上式,得θϕϕθα222sin sin )(sin em M +=+(6)若记αμM m e=,可将(6)式改写为θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有)](2sin 2sin [)]sin(2[sin ϕθϕμϕθμθϕθ++-=+-d d令0=ϕθd d ,则sin2(θ+φ)-sin2φ=0即2cos(θ+2φ)sinθ=0(1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90º-2φ(9) 将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-由此可得183641⨯===αμθM m e sinθ≈10-4弧度(极大)此题得证.(1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几解:(1)依2cot2θa b =和E e Z Z a 02214πε≡金的原子序数Z 2=79 )(10752.2245cot 00.544.1792cot 42211502m E e Z b o -⨯=⨯=⋅=θπε答:散射角为90º所对所对应的瞄准距离为.(2) 要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n ,问题不知道nA ,但可从密度与原子量关系找出注意推导出n 值.AN A N A V V V N V N n ρρ==⋅==)(1mol A A 总分子数,其他值从书中参考列表中找.从书后物质密度表和原子量表中查出Z Au =79,A Au =197,ρAu =×104kg/m 3依:θθπθd a ntNN d si n 22si n16='2162422θθθπππsi n si n d a nt N N d ⎰=')2(sin 22sin 2)2(22cos 2sin 2sin θθθθθθθd d d == θθθθππεππd E Z nt ⎰⨯=242222sin 162cos 2sin 2)2(2)4e (θθθππεππd E Z nt ⎰⨯=232222sin 162cos2)2(2)4e (⎰⨯⨯=ππθθθπε242222sin 16)2sin (2sin4)(2π)4e (d E2Z nt注意到:AN A N A V V V N VN n ρρ==⋅==)(1mol A A 总分子数即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数.222)2(4 )4e nt(E Z ⨯ππε是常数其值为5-2215-2376-10486.9)5.00792(4π)10(1.44197106.22101.88101.0⨯=⨯⨯⨯⨯⨯⨯⨯⨯⎰⎰===ππππθθθθθ232312sin )2sin (22sin 2cosd d I最后结果为:dN’/N=×10-5说明大角度散射几率十分小.1-3试问的α粒子与金核对心碰撞时的最小距离是多少若把金核改为7Li 核,则结果如何 要点分析:计算简单,重点考虑结果给我们什么启示,影响靶核大小估计的因素.解:对心碰撞时⎥⎦⎤⎢⎣⎡+=2csc 12θa r m ,︒=180θ时,()a ar m =︒+=90csc 12离金核最小距离fm56.505.444.179240221=⨯⨯===E e Z Z a r m πε若金核改为7Li 核,m<<M 则不能满足,必须考虑靶核的反冲在散射因子E e Z Z a 02214πε=中,应把E 理解为质心系能E CLC E M m MV M m mM E +=+=221离7Li 核最小距离。
结果说明:靶原子序数越小,入射粒子能量越大,越容易估算准核的半径.反之易反.1-4 ⑴ 假定金核半径为,试问入射质子需要多少能量才能在对头碰撞时刚好到达金核的表面⑵若金核改为铝时质子在对头碰撞时刚好到达铝核的表面,那么入射质子的能量应为多少设铝核的半径为.要点分析:注意对头碰撞时,应考虑靶核质量大小,靶核很重时,m<<M 可直接用公式计算;靶核较轻时,m<<M 不满足,应考虑靶核的反冲,用相对运动的质心系来解.79A Au =196;13A Al =27解:⑴若入射粒子的质量与原子核的质量满足m<<M ,则入射粒子与原子核之间能达到的最近距离为⎥⎦⎤⎢⎣⎡+=2csc 12θa r m ,︒=180θ时,()a ar m =︒+=90csc 12即m m r Z Z e E r e Z Z 2102022144πεπε=∴= 即:1791.44fmMeV 16.25MeV 7.0fm E ⨯=⨯=⑵若金核改为铝核,m<<M 则不能满足,必须考虑靶核的反冲在散射因子E e Z Z a 02214πε=中,应把E 理解为质心系能E CL C E Mm M V M m mM E +=+=221M M m e Z Z E e Z Z a C c+•==∴0221022144πεπε mc r a ≈E=说明靶核越轻、Z 越小,入射粒子达到靶核表面需要能量越小.1-5动能为的窄质子束垂直地射在质量厚度为cm 2的金箔上,记数器的记录以60°角散射的质子.计数器圆形输入孔的面积为1.5cm 2,离金箔散射区的距离为10cm ,输入孔对着且垂直于射到它上面的质子,试问:散射到计数器输入孔的质子数与入射到金箔的质子数之比为多少(质量厚度ρm 定义为单位面积的质量ρm=ρt,则ρ=ρm/t 其中ρ为质量密度,t 为靶厚).要点分析:没给直接给nt.设置的难点是给出了质量厚度,计算时需把它转换成原子体密度n 和厚度t.需推导其关系.解:输入圆孔相对于金箔的立体角为222105.1105.1-⨯===Ωr s dA Au =197 θ=60º注意密度为单位体积的质量mV ρ=,单位体积内的粒子数为1A Am n N N V A A ρ== A N A n ρ=A mN tAn ρ=AmN Ant ρ=依公式2sin 16'42θαΩ=d ntNdN6422152342109.8)21(105.116)1044.179(10022.61975.12sin 16'---⨯=⨯⨯⨯⨯⨯⨯⨯=Ω=θαd nt N dN1-6一束α粒子垂直射至一重金属箔上,试求α粒子被金属箔散射后,散射角大于60°的α粒子与散射角大于90°的粒子数之比. 要点分析:此题无难点,只是简单积分运算. 解:依据散射公式2216216'4242θθθπαθαsi nsi n si nd ntNd ntN dN =Ω=⎰=⎰=⎰2121212)2(41622216'3242θθθθθθθθπαθθθπαsin sinsin sin d ntN d tN n dN因为232sin 1212sin )2sin (180602180603=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎰θθθd同理算出212sin 1212sin )2sin (180902180903=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎰θθθd 可知31/23/2''9060==>>dN dN补:求积分式⎰21224θθθθθπsin sin d 的积分结果解:积分式的积分结果⎰⎰⎰==2121212sin 2cos 2sin222sin sin 22sin sin 2444θθθθθθθθθθπθθθπθθθπd d d=212121212sin 142sin 12182sin )2(sin 242sin 2cos 42233θθθθθθθθθπθπθθπθθθπ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎰⎰d d结果:21212sin 142sin sin 224θθθθθπθθθπ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎰d还有另外一种求解方法.1-7单能的窄α粒子束垂直地射到质量厚度为cm 2的钽箔上,这时以散射角θ0>20˚散射的相对粒子数(散射粒子数与入射数之比)为×10-3.试计算:散射角θ=60°角相对应的微分散射截面Ωd d σ.要点分析:重点考虑质量厚度与nt 关系.解:ρm =cm22102.0->⨯='︒NN d θA Ta =181;Z Ta =73;θ=60ºAN A n ρ=AmN tA n ρ=AmN Ant ρ=依微分截面公式21642θασsin 1=Ωd d知该题重点要求出a 2/16。
由公式34180202234180202104.32sin sin 216106.0221812.02sin 16'-⨯=⨯⨯⨯⨯=Ω=⎰⎰θθθπθαd a d nt N dN 3180202221418020223104.32sin 1)4(161065.62sin sin 216106.0221812.0-⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯⨯⨯=⨯⨯⨯⨯⎰θπθθθπad a3221104.3(-22.13))4(16106.65-⨯=⨯-⨯⨯⨯πa 所以262102.3316-⨯=a274264210456.1260sin 11033.22sin 116--⨯=⨯⨯==Ωθασd d1-8(1)质量为m1的入射粒子被质量为m2(m2<<m1)的静止靶核弹性散射,试证明:入射粒子在实验室坐标系中的最大可能偏转角θ由下式决定.12sin m m =θ(2)假如粒子在原来静止的氢核上散射,试问:它在实验室坐标系中最大的散射角为多大要点分析:同第一题结果类似. 证明:222121212121v m V m V m +'=(1)ϕθcos cos 211v m V m V m +'=(2) ϕθsin sin 021v m V m -'=(3)作运算:(2)×sinθ±(3)×cosθ,得)sin(sin 12ϕθθ+=Vm v m (4) )sin(sin 11ϕθϕ+='Vm V m (5)再将(4)、(5)二式与(1)式联立,消去V’与v ,得)(sin sin )(sin sin 222221222121ϕθθϕθϕ+++=Vm m V m V m化简上式,得θϕϕθ21222sin sin )(sin m m +=+ (6)若记12m m =μ,可将(6)式改写为θϕμϕθμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有)](2sin 2sin [)]sin(2[sin ϕθϕμϕθμθϕθ++-=+-d d令0=ϕθd d ,则 sin2(θ+φ)-sin2φ=0,即2cos(θ+2φ)sinθ=0(1)若sinθ=0,则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90º-2φ(9)将(9)式代入(7)式,有)(sin sin )(90sin 222θϕμϕμ+=-︒由此可得12sin m m==μθ 若m 2=m 1则有︒====90,1sin 12θμθm m此题得证.1-9动能为的窄质子束垂直地射到质量厚度(ρt)为cm2的金箔上,若金箔中含有百分之三十的银,试求散射角大于30°的相对质子数为多少要点分析:此题靶为一个复合材料靶,比例按照质量比计算.关键找出靶的厚度t.然后计算出金原子数和银原子数,即可积分计算. 从书后表可知:Z Au =79,A Au =197,ρAu =×104kg/m 3;Z Ag =47,A Ag =108,ρAg =×104kg/m 3. 解:先求金箔的厚度tρt=ρAu +ρAg )t=cm 2(此种处理科学否)是原子数之比,还是质量之比还是μm 0.916101.050.3101.8880.7101.50.30.7101.54422=⨯⨯+⨯⨯⨯=+⨯=--m t Ag Au ρρ这种金箔中所含金原子数与银原子数分别为AAuAu N A tρ和AAgAg N A tρ再计算质子被金原子与银原子散射到θ>30°范围内的相对数目.被金原子散射的相对数目为:︒︒︒︒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=='=⎰⎰18030222221u u 4218030Au Au2sin 121244.1Z Z 2sin d sin 216d θπρθθθπαηA A A N A t nt N N 式中,N 为入射质子总数,dN Au ’为被金原子散射到θ>30°范围内的质子数.同理可得质子被银原子散射的相对数目为:︒︒︒︒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=='=⎰⎰180302223214218030Ag Ag 2sin 121244.1Z Z 2sin d sin 216d θπρθθθπαηA Ag Ag N A t nt N N 被散射的相对质子总数为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯+⨯=+=--2180sin1230sin 14)1044.1(4)1044.1(2222523212252221E Z Z N A t E Z Z N A t AAg Ag A Au Au AgAu πρπρηηη 将已知数据代入:N A =×1023,E=,t=μm,Z Au =79,A Au =197,ρAu =×103kg/m 3,Z Ag =47,A Ag =108,ρAg =×103kg/m 3η≈×10-5 结果讨论:此题是一个公式活用问题.只要稍作变换,很容易解决.我们需要这样灵活运用能力.1-10由加速器产生的能量为、束流为的质子束,垂直地射到厚为μm 的金箔上,试求5min 内被金箔散射到下列角间隔内的质子数.金的密度(ρ=×104kg/m3)[1]59°~61°;[2]θ>θ0=60°[3]θ<θ0=10°要点分析:解决粒子流强度和入射粒子数的关系.注意:第三问,因卢瑟福公式不适用于小角(如0º)散射,故可先计算质子被散射到大角度范围内的粒子数,再用总入射粒子数去减,即为所得.解:设j 为单位时间内入射的粒子数,I 为粒子流强度,因I=je ,j=I/e ,时间T=5min 内单位面积上入射的质子的总数为N 个:912195.0105609.36101.60217710IT N jT e --⨯⨯⨯====⨯⨯再由卢瑟福公式,单位时间内,被一个靶原子沿θ方向,射到dΩ立体角内的质子数为:21642θαsi n A d NN d Ω='单位时间内,被所有靶原子沿θ方向,射到dΩ立体角内的质子数为2sin162sin164242θαθαΩ=Ω='d ntNnAt A d NN d2224442sin 16sin16sin16sin 222a d a d a d dn NnAt jTnt jTntA πθθθθθΩΩ===式中,n 为单位体积的粒子数,它与密度的关系为:AN An ρ=所以,上式可写为2224442sin 16sin16sin16sin 222A a d a d a d dn NnAt jTnt jTN tAA ρπθθθθθΩΩ===[1]()2221112122442224236123032sin 2sin 1616sin sin 221416sin 2791.441.8810 6.021011.21.5109.361010196104sin A A A a d a d dn jTN tjT N t AA a N Ttj A θθθθθθθθρπθθρπθθθθρπθ--==⎡⎤⎢⎥⎛⎫=⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫⨯⎢⎥ ⎪⨯⨯⨯⎝⎭⎢⎥=-⨯⨯⨯⨯⨯⨯⨯⎢⎥⨯⎢⎥⎣⎦⎰⎰⎰612599925.71910(0.228) 1.310θ︒︒⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=-⨯⨯-=⨯[2]仍然像上式一样积分,积分区间为60°-180°,然后用总数减去所积值.即θ>θ0=60°的值.21180999102260115.71910 5.71910 5.719103 1.715110sin sin 22θθθθ︒︒⎡⎤⎡⎤⎢⎥⎢⎥-⨯⨯=-⨯⨯=⨯⨯=⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦[3]由于0°的值为无穷大,无法计算,所以将作以变换.仍然像上式一样积分,积分区间为10°-180°,然后用总数减去所积值,即θ<θ0=10°的值.21180999112210115.71910 5.71910 5.7191032.16 1.8410sin sin 22θθθθ︒︒⎡⎤⎡⎤⎢⎥⎢⎥-⨯⨯=-⨯⨯=⨯⨯=⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦总数为××1011=×1012(个)。