水质分析实验报告
水质分析实验报告
水质分析实验报告实验目的:本实验旨在通过对水质的分析,了解水质的基本特征和污染情况,为环境保护和水质治理提供科学依据。
实验原理:水质分析是通过对水样中各种物质的含量、性质和分布进行测定和分析,从而揭示水质的综合特征和污染状况。
水质分析的主要内容包括物理性质、化学成分、微生物和有机物等方面。
实验步骤:1.采集水样,在实验前,需准备好采样瓶和采样器具,到水源地点采集水样,并尽快送至实验室进行分析。
2.测定水样的物理性质,包括水温、pH值、浊度等指标的测定。
3.测定水样的化学成分,包括溶解氧、氨氮、亚硝酸盐、硝酸盐、总磷等指标的测定。
4.测定水样的微生物和有机物,包括细菌总数、大肠菌群、叶绿素等指标的测定。
5.对实验数据进行分析和比对,将实验测定结果与相关标准进行对比分析,评估水质的优劣和污染程度。
实验结果与分析:根据实验数据的分析,我们发现所采集的水样中,溶解氧、氨氮、亚硝酸盐、硝酸盐、总磷等指标的浓度均超出了相关标准限值,说明水质存在一定程度的污染。
此外,微生物和有机物的含量也较高,说明水质存在一定程度的生物污染和有机物污染。
实验结论:通过本次水质分析实验,我们得出了以下结论:1.所采集的水样存在一定程度的化学污染,主要表现为氨氮、亚硝酸盐、硝酸盐、总磷等指标超标。
2.水样中微生物和有机物含量较高,存在一定程度的生物污染和有机物污染。
3.水质的总体状况较差,需要采取相应的措施进行治理和改善。
实验建议:针对水质分析实验结果,我们提出以下建议:1.加强水源地的保护和管理,减少化学物质的排放和污染。
2.加强水处理工艺,提高水质的净化和过滤效果。
3.加强对水质的监测和评估,及时发现和解决水质问题。
总结:水质分析实验是对水质进行科学评估和监测的重要手段,通过本次实验,我们深入了解了水质的基本特征和污染情况,并针对实验结果提出了相应的建议。
希望通过我们的努力,能够为环境保护和水质治理做出一定的贡献。
水质分析实验报告
水质分析实验报告
实验目的:分析水样的水质指标,了解水质状况。
实验原理:本实验主要采用了物理和化学方法进行水质分析。
物理方法包括检测水样的温度、pH值和浊度;化学方法包括检测水样的溶解氧、氨氮、总磷和总氮。
实验步骤:
1.取一定量的水样,首先检测水样的温度。
使用温度计将温度测量结果记录下来。
2.检测水样的pH值。
使用pH计将pH值测量结果记录下来。
3.检测水样的浊度。
使用浊度计将浊度测量结果记录下来。
4.检测水样的溶解氧。
使用溶解氧仪将溶解氧浓度测量结果记录下来。
5.检测水样的氨氮。
使用氨氮试剂盒将氨氮浓度测量结果记录下来。
6.检测水样的总磷。
使用总磷试剂盒将总磷浓度测量结果记录下来。
7.检测水样的总氮。
使用总氮试剂盒将总氮浓度测量结果记录下来。
实验结果及分析:根据所测得的数据,根据水质标准或相关指标,对水质进行评价。
根据水质评价结果,结合可能的原因,分析水样的水质状况,得出结论。
实验结论:通过对水样的水质指标进行分析,得出结论,评价水样的水质状况。
根据实验结果,提出相应的改善建议,以改善水质。
注意事项:在实验过程中,要注意操作方法的准确性,避免误差;同时,实验前后要做田间调查,了解水样的来源,以保证实验结果的真实可信。
同时,实验过程中应注意安全,遵守实验室的操作规程。
水质的实验报告
实验报告:水质净化与检测一、实验目的1. 掌握水质净化的基本原理和方法;2. 熟悉水质检测的基本步骤和仪器;3. 了解水质指标的含义和检测方法;4. 分析水质净化效果,为我国水质治理提供参考。
二、实验原理1. 水质净化原理:通过物理、化学、生物等方法去除或转化水中的污染物,使水质达到一定的标准。
2. 水质检测原理:利用化学、物理和生物等方法,对水质中的各项指标进行定量或定性分析。
三、实验仪器与试剂1. 仪器:分光光度计、pH计、电导率仪、浊度仪、滴定仪、水样采集器、玻璃仪器等。
2. 试剂:重铬酸钾、硫酸亚铁铵、硫酸银、纳氏试剂、钼酸铵、抗坏血酸、硫酸溶液、硝酸铋溶液、磷标准贮备溶液、磷标准使用溶液等。
四、实验步骤1. 水质净化实验(1)准备实验材料:活性炭、絮凝剂、微生物菌剂等。
(2)取一定量的水样,按照一定比例加入活性炭、絮凝剂、微生物菌剂等,搅拌均匀。
(3)静置一段时间,观察水质变化。
(4)取出上层清水,测定各项水质指标,如COD、SS、NH3-N、PO43-等。
2. 水质检测实验(1)COD检测:采用重铬酸钾法测定水样中的化学需氧量。
(2)SS检测:采用滤膜法测定水样中的悬浮物。
(3)NH3-N检测:采用纳氏试剂分光光度法测定水样中的氨氮。
(4)PO43-检测:采用钼酸铵分光光度法测定水样中的总磷。
五、实验结果与分析1. 水质净化效果分析(1)COD:实验组COD值明显低于对照组,说明水质净化效果显著。
(2)SS:实验组SS值明显低于对照组,说明水质净化效果显著。
(3)NH3-N:实验组NH3-N值明显低于对照组,说明水质净化效果显著。
(4)PO43-:实验组PO43-值明显低于对照组,说明水质净化效果显著。
2. 水质检测结果分析(1)COD:实验组COD值低于国家标准,水质达标。
(2)SS:实验组SS值低于国家标准,水质达标。
(3)NH3-N:实验组NH3-N值低于国家标准,水质达标。
(4)PO43-:实验组PO43-值低于国家标准,水质达标。
水质实验报告
水质实验报告1. 引言在日常生活中,水是人们不可或缺的重要资源。
然而,由于工业污染、农业活动和人类行为等原因,水质受到了日益严重的污染。
为了保障人类健康和生态环境的可持续发展,进行水质实验是十分必要的。
本实验旨在通过对水样进行综合分析,评估水的质量状况,并提出相应的改善建议。
2. 实验方法2.1 采样在实验过程中,我们选取了不同来源的水样进行测试,包括自来水、河水和地下水。
在采样时,我们使用无菌瓶进行采集,并确保样品代表性。
2.2 直接测定指标针对样品的色度、浑浊度和pH值等指标,我们采用了直接测定的方法。
其中,色度使用比色法测定,浑浊度通过比色法测定。
pH值则利用酸碱指示剂和pH计进行测定。
2.3 化学分析指标对于水中重金属离子、硝酸盐和氨氮等化学指标,我们采用了标准的化学分析方法。
其中,重金属离子通过原子吸收光谱仪进行测定,硝酸盐使用紫外分光光度计进行测定,氨氮则通过碱性高氯酸钾紫外消光法进行测定。
3. 实验结果与分析3.1 直接测定指标结果根据实验数据,我们得出了不同水样的色度、浑浊度和pH值等结果。
其中,自来水的色度为X单位,浑浊度为Y单位,pH值为Z;河水的色度为X单位,浑浊度为Y单位,pH值为Z;地下水的色度为X单位,浑浊度为Y单位,pH值为Z。
通过对比分析,发现自来水的水质最好,地下水次之,河水水质较差。
3.2 化学分析指标结果实验数据显示,不同水样的重金属离子、硝酸盐和氨氮等化学指标的浓度存在差异。
具体数据如下:重金属离子浓度为X单位,硝酸盐浓度为Y单位,氨氮浓度为Z。
通过比较分析,发现自来水的化学指标都处于合理范围内,地下水相对也较好,而河水的化学指标则普遍超出标准限值,存在较大的污染问题。
4. 结论与建议4.1 结论综合分析实验结果,我们得出以下结论:a. 自来水的水质相对较好,符合生活用水标准,可直接饮用。
b. 地下水的水质较自来水略差,但仍可以作为生活用水,建议定期监测。
水质全分析实验报告
水质全分析实验报告1. 实验目的本实验旨在通过一系列实验步骤,对水质进行全面分析,包括测定水样的pH 值、溶解氧含量、浑浊度和硬度等指标,以评估水质的优劣。
2. 实验材料和仪器•水样:取自自然水源或市区自来水•酸碱指示剂•溶解氧测试仪•浊度计•硬度试剂盒3. 实验步骤3.1 测定pH值1.取一定量的水样,倒入pH试纸盒中。
2.根据试纸上的颜色变化与参考表对照,确定水样的pH值。
3.2 测定溶解氧含量1.使用溶解氧测试仪,将其探头浸入水样中。
2.根据仪器上的读数,获取水样中的溶解氧含量。
3.3 测定浑浊度1.取一定量的水样,倒入浊度计中。
2.根据浊度计的读数,获取水样的浑浊度。
3.4 测定硬度1.取一定量的水样,倒入硬度试剂盒中。
2.按照试剂盒说明书的指导,进行硬度测定,并记录结果。
4. 实验结果与分析4.1 pH值根据实验结果,我们可以得出水样的pH值为X。
pH值是衡量水样酸碱性的重要指标。
一般来说,pH值在7附近说明水样为中性,低于7则为酸性,高于7则为碱性。
对于饮用水来说,中性的pH值范围更为理想。
4.2 溶解氧含量根据实验结果,我们可以得出水样的溶解氧含量为X。
溶解氧是衡量水体中氧气溶解程度的指标,一般用于评估水体中生物生存的情况。
较高的溶解氧含量通常被认为是水质较好的一个指标。
4.3 浑浊度根据实验结果,我们可以得出水样的浑浊度为X。
浑浊度是描述水体中悬浮颗粒物浓度的指标,通常与水体的透明度相关。
较低的浑浊度说明水体中悬浮颗粒物相对较少,水质较为清澈。
4.4 硬度根据实验结果,我们可以得出水样的硬度为X。
硬度是描述水中钙、镁离子含量的指标,与水的硬度有关。
较高的硬度通常会对水质造成一定的影响,如导致水垢等问题。
5. 实验结论通过本次实验,我们对水样的pH值、溶解氧含量、浑浊度和硬度等指标进行了全面分析。
根据实验结果,我们可以对水样的水质进行初步评估。
然而,仅通过这几个指标是无法全面评估水质的,还需要考虑其他因素,如有害物质的含量等。
污水水质分析实验报告(3篇)
第1篇一、实验目的本次实验旨在通过一系列的化学和物理分析方法,对某地区生活污水的各项水质指标进行检测,了解其水质状况,为后续污水处理工艺的选择和优化提供依据。
二、实验原理污水水质分析主要包括物理性质分析、化学分析、生物分析等方面。
本实验主要采用化学分析方法,通过测定污水中COD、BOD5、SS、氨氮、总磷等指标,评估污水的污染程度。
三、实验材料与仪器1. 实验材料:生活污水样品氢氧化钠、硫酸、硫酸铜、重铬酸钾、碘化钾、淀粉溶液等化学试剂滤纸、玻璃棒、烧杯、锥形瓶、滴定管、比色皿等实验器材2. 实验仪器:pH计恒温水浴锅紫外可见分光光度计721分光光度计精密电子天平四、实验步骤1. 物理性质分析:pH值测定:用pH计测定污水样品的pH值。
悬浮物含量测定:将污水样品过滤,用滤纸称重,计算悬浮物含量。
2. 化学分析:化学需氧量(COD)测定:采用重铬酸钾法测定污水样品的COD。
生化需氧量(BOD5)测定:采用稀释与培养法测定污水样品的BOD5。
氨氮测定:采用纳氏试剂法测定污水样品的氨氮含量。
总磷测定:采用钼锑抗比色法测定污水样品的总磷含量。
3. 生物分析:微生物活性测定:采用BOD5测定方法,评估污水样品的微生物活性。
五、实验结果与分析1. 物理性质分析结果:pH值:某地区生活污水的pH值为6.5。
悬浮物含量:某地区生活污水的悬浮物含量为200 mg/L。
2. 化学分析结果:COD:某地区生活污水的COD值为300 mg/L。
BOD5:某地区生活污水的BOD5值为150 mg/L。
氨氮:某地区生活污水的氨氮含量为50 mg/L。
总磷:某地区生活污水的总磷含量为5 mg/L。
3. 生物分析结果:微生物活性:某地区生活污水的微生物活性较好,BOD5/COD值为0.5。
六、结论通过本次实验,我们了解了某地区生活污水的各项水质指标,发现其主要污染物为COD、BOD5、氨氮和总磷。
针对这些污染物,可以采取以下措施进行治理:物理处理:对污水进行预处理,如格栅除杂、沉淀等,去除悬浮物和部分有机物。
水质分析实验报告
水质分析实验报告水质分析实验报告一、引言水是人类生活中不可或缺的资源,而水质对人类健康和环境保护至关重要。
为了评估水质的安全性和适用性,我们进行了一系列水质分析实验。
本报告旨在总结实验结果,并对水质分析的重要性进行探讨。
二、实验目的本次实验的主要目的是评估水样中的各项指标,包括溶解氧、pH值、浑浊度、总硬度等。
通过分析这些指标,我们可以了解水的污染程度和适用性,为环境保护和人类健康提供科学依据。
三、实验方法1. 溶解氧测定我们使用溶解氧仪对水样中的溶解氧含量进行测定。
首先,将水样倒入溶解氧测定仪的测量室,并根据仪器操作手册进行操作。
最后,记录测定结果。
2. pH值测定我们使用pH计对水样的酸碱性进行测定。
将pH电极插入水样中,等待数分钟,直到pH计稳定。
然后,读取pH计显示的数值,并记录。
3. 浑浊度测定我们使用浑浊度计对水样的浑浊度进行测定。
将水样倒入浑浊度计的测量室,按照仪器操作手册进行操作,并记录测定结果。
4. 总硬度测定我们使用EDTA滴定法对水样的总硬度进行测定。
首先,将水样加入滴定瓶中,并加入指示剂。
然后,用EDTA溶液滴定至指示剂颜色变化,记录滴定所需的EDTA溶液体积。
四、实验结果根据实验数据,我们得到了以下结果:1. 溶解氧含量:水样A为8.2 mg/L,水样B为6.5 mg/L。
2. pH值:水样A为7.2,水样B为6.8。
3. 浑浊度:水样A为5 NTU,水样B为10 NTU。
4. 总硬度:水样A为120 mg/L,水样B为180 mg/L。
五、实验讨论根据实验结果,我们可以得出以下结论:1. 水样A的溶解氧含量高于水样B,说明水样A的氧气饱和度更高,更适合生物生活。
2. 水样A的pH值接近中性,而水样B的pH值稍微偏酸性,说明水样A的酸碱平衡更好。
3. 水样A的浑浊度低于水样B,说明水样A中的悬浮物较少,更清澈透明。
4. 水样A的总硬度低于水样B,说明水样A中的钙、镁等金属离子含量较低,更适合饮用。
最新水质分析实验报告
最新水质分析实验报告
一、实验目的
本实验旨在分析当前水体样本的水质状况,检测水中的主要污染物,
并评估其对生态环境及人类健康的潜在影响。
二、实验方法
1. 样品采集:在指定水域分不同深度采集水样,确保样本具有代表性。
2. 物理检测:测量水样的温度、pH值、电导率等基本物理参数。
3. 化学分析:通过分光光度法、滴定法等手段,检测水样中的化学需
氧量(COD)、生化需氧量(BOD)、重金属含量、氮磷含量等指标。
4. 微生物检测:采用平板计数法和PCR技术,分析水样中的细菌群落
结构及潜在病原微生物。
三、实验结果
1. 物理参数:水样温度为22℃,pH值为7.5,电导率为300μS/cm,
均在正常范围内。
2. 化学指标:COD为30mg/L,BOD为5mg/L,重金属含量符合国家排
放标准,但氮、磷含量略高,表明可能存在农业面源污染。
3. 微生物分析:水样中细菌总数为每毫升100CFU,未检测到致病菌。
四、结论与建议
根据实验结果,水体整体质量良好,但需关注氮、磷含量的上升趋势。
建议加强周边农业用水管理,减少化肥农药的使用,定期进行水质监测,以确保水资源的可持续利用。
同时,建议开展更深入的污染源追
踪研究,以便更有效地制定水环境保护措施。
水质质量评价实验报告(3篇)
第1篇一、实验目的1. 掌握水质监测的基本原理和方法。
2. 学会使用水质检测仪器,如分光光度计、火焰原子检测器等。
3. 了解不同水质指标的评价标准,对水质进行综合评价。
4. 培养学生的实验操作技能和数据分析能力。
二、实验原理水质质量评价实验主要通过测定水样中的各项理化指标,如pH值、溶解氧、化学需氧量(COD)、氨氮、重金属等,根据国家标准和评价方法对水质进行综合评价。
三、主要仪器和试剂1. 主要仪器:分光光度计、火焰原子检测器、原子荧光检测器、TOC分析仪、pH 计、溶解氧仪、电导率仪、浊度仪、重金属测定仪等。
2. 主要试剂:硫酸、氢氧化钠、氯化钠、重铬酸钾、高锰酸钾、硫酸铜、硝酸、盐酸等。
四、实验步骤1. 采样:在实验区域选取采样点,采集水样,确保样品具有代表性。
2. 样品预处理:对水样进行必要的预处理,如过滤、沉淀等。
3. 指标测定:- pH值:使用pH计测定水样的pH值。
- 溶解氧:使用溶解氧仪测定水样的溶解氧含量。
- 化学需氧量(COD):采用重铬酸钾法测定水样的COD。
- 氨氮:采用纳氏试剂法测定水样的氨氮含量。
- 重金属:采用原子吸收光谱法测定水样中的重金属含量。
4. 数据分析:根据测定结果,结合国家标准和评价方法,对水质进行综合评价。
五、实验现象1. pH值:水样的pH值在6.5~8.5范围内,表明水质较好。
2. 溶解氧:水样的溶解氧含量在5~10mg/L之间,表明水质较好。
3. 化学需氧量(COD):水样的COD值在20~30mg/L之间,表明水质较好。
4. 氨氮:水样的氨氮含量在0.5~1.5mg/L之间,表明水质较好。
5. 重金属:水样中的重金属含量均在国家标准范围内,表明水质较好。
六、实验结果与分析根据实验结果,本次水质监测指标均在国家标准范围内,表明实验区域水质较好。
以下是对各项指标的详细分析:1. pH值:水样的pH值在6.5~8.5范围内,符合我国地表水环境质量标准(GB 3838-2002)的要求,表明水质呈中性,有利于水生生物的生长。
水质检测实验报告
水质检测实验报告一、实验目的本实验旨在通过对水质的检测,评估水体的质量,了解水质的基本特征,并在此基础上掌握水质检测的基本方法和技巧。
二、实验原理1. pH值检测:pH值是反映水体酸碱性的指标,一般通过酸碱指示剂或pH计进行测试。
2. 溶解氧检测:溶解氧是衡量水中溶解氧含量的指标,可以通过溶解氧检测仪进行测量。
3. 总氮检测:总氮是水体中各种态氮的总和,可以通过采用紫外分光光度法进行检测。
4. 总磷检测:总磷是水体中各种态磷的总和,可以通过酸性高温消解和酶法测定总磷含量。
5. 氨氮检测:氨氮是水体中氨离子和氨基酸含量的指标,可以通过纳氏试剂法进行检测。
三、实验步骤1. 收集水样:从测试水体中取得适量的水样,并尽快进行检测以保证准确性。
2. pH值测定:将检测水样取出,加入适量的酸碱指示剂,或使用pH计进行测定,并记录结果。
3. 溶解氧测定:将水样倒入硝化瓶中,并按照仪器说明操作溶解氧检测仪,记录测得的溶解氧浓度。
4. 总氮测定:按照实验要求,使用紫外分光光度计测定水样中的总氮含量,并计算出溶液中氮的浓度。
5. 总磷测定:按照实验要求,使用酶法和酸性高温消解法测定水样中的总磷含量,并计算出溶液中磷的浓度。
6. 氨氮测定:按照实验要求,使用纳氏试剂法测定水样中的氨氮含量,并计算出溶液中氨氮的浓度。
四、实验结果与分析根据实验所得数据,我们可以得出以下结论:1. pH值:根据测定结果,水样的pH值为7.2,属于中性范围。
2. 溶解氧:测定结果显示水样中的溶解氧浓度为8.2 mg/L,处于较好的水质范围。
3. 总氮:实验测定结果显示水样中总氮含量为0.11 mg/L,符合水质标准。
4. 总磷:测定结果显示水样中总磷含量为0.02 mg/L,低于水质标准。
5. 氨氮:实验测定结果显示水样中氨氮含量为0.08 mg/L,符合水质标准。
根据以上结果分析,水体的pH值、溶解氧、总氮、总磷和氨氮等指标均符合水质标准要求,水质达到了规定的合格水平。
最新水质实验报告
最新水质实验报告
实验目的:
评估当前水源的水质状况,检测是否存在污染物质,确保水质符合饮
用水标准。
实验日期:
2023年4月15日
实验地点:
城市中央水库
实验方法:
采用标准水质检测方法,包括但不限于色度、浑浊度、pH值、溶解氧、生化需氧量(BOD)、化学需氧量(COD)、重金属含量(如铅、汞、镉)、细菌总数和特定病原体等指标进行检测。
实验结果:
1. 色度:水源无色透明,无可见悬浮物,符合《生活饮用水卫生标准》要求。
2. 浑浊度:平均值为10 NTU,低于标准限值20 NTU,表明水质清澈。
3. pH值:测量值为7.2,处于6.5-8.5的适宜范围内,表明水质中性
偏碱。
4. 溶解氧:平均值为9.5 mg/L,高于最低限值7 mg/L,有利于水生
生物的生存。
5. 生化需氧量(BOD):平均值为2 mg/L,低于标准限值3 mg/L,表
明有机物含量较低。
6. 化学需氧量(COD):平均值为15 mg/L,低于标准限值30 mg/L,
表明水质未受明显有机污染。
7. 重金属含量:铅、汞、镉等重金属含量均低于国家规定的限值,未检测到异常。
8. 细菌总数:检测结果显示细菌总数低于标准限值,未发现致病性细菌。
结论:
根据本次实验结果,城市中央水库的水质良好,各项指标均符合国家饮用水标准。
建议继续定期监测,确保水质安全。
同时,加强水源地保护,防止潜在的污染风险。
总氮水质实验报告(3篇)
第1篇一、实验目的1. 理解并掌握碱性过硫酸钾消解紫外分光光度法测定总氮的原理。
2. 掌握总氮的检测方法及操作步骤。
3. 了解总氮在水环境中的重要性及其对水体生态的影响。
二、实验原理总氮(Total Nitrogen,TN)是指水中所有含氮化合物的总含量,包括有机氮和无机氮。
无机氮主要包括硝酸盐氮(NO3-N)、亚硝酸盐氮(NO2-N)和氨氮(NH4-N),而有机氮则主要包括蛋白质、氨基酸等含氮有机物。
碱性过硫酸钾消解紫外分光光度法是一种常用的测定总氮的方法。
其原理如下:1. 在碱性条件下,过硫酸钾(KHSO5)分解产生硫酸氢钾(KHSO4)和原子态的氧(O2)。
2. 原子态的氧在高温(120-124°C)条件下,可将水样中的含氮化合物氧化为硝酸盐(NO3-N)。
3. 利用紫外分光光度法,在波长220nm和275nm处分别测定吸光度(A220和A275)。
4. 通过校正吸光度(A)和校准曲线,计算总氮含量。
三、实验材料与仪器1. 实验材料:- 水样- 碱性过硫酸钾- 硫酸钾- 紫外分光光度计- 实验试剂:硝酸、盐酸、氢氧化钠等- 实验仪器:容量瓶、移液管、烧杯、玻璃棒等2. 实验试剂:- 标准硝酸盐氮溶液- 校准曲线试剂四、实验步骤1. 准备水样:取一定量的水样,用硝酸酸化,过滤,备用。
2. 配制校准溶液:根据实验要求,配制一系列不同浓度的标准硝酸盐氮溶液。
3. 消解:向水样和校准溶液中加入适量的碱性过硫酸钾和硫酸钾,在高温下消解。
4. 冷却:待消解液冷却至室温后,用蒸馏水定容至一定体积。
5. 测定吸光度:在紫外分光光度计上,于波长220nm和275nm处分别测定水样和校准溶液的吸光度(A220和A275)。
6. 计算总氮含量:根据校正吸光度(A)和校准曲线,计算水样中的总氮含量。
五、实验结果与分析1. 水样中总氮含量为XX mg/L。
2. 实验结果与校准曲线拟合良好,相关系数R²为XX。
水质BOD分析实验报告
水质BOD分析实验报告实验目的本实验旨在通过测定水样中的生物需氧量(BOD)来评估水体的有机污染程度,判断水质是否达到环境标准要求。
实验原理生物需氧量(BOD)是指在一定条件下,有机物被微生物氧化产生的耗氧量。
BOD值越高,表明有机物含量越多,水质污染程度越严重。
实验中常用BOD5来表示水样中有机物的含量,即在5天的时间里,水样中的生物需氧量。
本实验采用室内培养法,将水样与一定量的培养液混合,通过培养液中的微生物来进行有机物的氧化,测定BOD5值。
实验步骤1. 取一定容量的待测水样,记录初始溶解氧(DO)浓度。
2. 取一定容量的含有培养液的烧杯,记录培养液的溶解氧浓度。
3. 将待测水样与培养液混合,使得水样与培养液的体积比为1:1。
4. 取一定容量的混合液,加入一只具有较小孔径的密封瓶中,并将密封瓶倒置,使混合液充分接触到空气中的氧。
5. 将密封瓶放入恒温槽中,恒温槽的温度应控制在20左右。
6. 在培养的第1天至第5天每天同一时间进行一次溶解氧浓度的测定,记录数据。
7. 将测得的溶解氧浓度数据绘制成折线图,根据BOD5的定义,计算出BOD5值。
实验数据与结果实验中测得的溶解氧浓度数据如下表所示:天数溶解氧浓度(mg/L)1 8.22 7.43 6.84 6.25 5.7根据实验数据绘制的BOD5曲线如下图所示:![BOD5曲线图](根据BOD5曲线图可以得出待测水样的BOD5值为6.9 mg/L。
结果分析与讨论根据实验结果,待测水样的BOD5值为6.9 mg/L,说明水质中的有机物含量较低,水质相对较好。
根据相关的环境标准,水质在BOD5值小于20 mg/L时可判定为优良水质。
因此,根据实验结果,待测水样符合环境标准要求。
然而,需要注意的是,由于实验中的测量误差以及其他影响因素的存在,待测水样的BOD5值仅作为参考。
对于更准确的水质评估,应结合实际情况进行综合分析。
实验总结通过本次实验,我们学习了水质BOD分析的实验方法,并通过测量溶解氧浓度和绘制BOD5曲线来评估水质。
水质环境监测实验报告
水质环境监测实验报告摘要:本实验以水质环境监测为目标,通过对水质的化学指标、微生物指标和物理指标进行监测和分析,评估了所选取的水样的水质状况。
实验结果表明,所选取的水样存在一定程度的污染,需采取相应的措施进行水质改善。
一、引言水是人类生活的基本需求,水质的好坏直接关系到人类的健康和生存环境。
因此,对水质状况进行监测和评估具有重要意义。
本实验旨在通过对水质的化学指标、微生物指标和物理指标进行监测和分析,评估所选取的水样的水质状况,为环境污染治理提供科学依据。
二、实验方法1.水样采集与处理:选择若干个典型的水样点进行采集,并将其分为不同的组别进行处理。
2.化学指标监测:测定水中的溶解氧(DO)、氨氮(NH3-N)、总磷(TP)和总大肠菌群的含量,并根据国家水质标准进行评估。
3.微生物指标监测:采集水样后,使用培养基进行微生物菌落总数、大肠杆菌的测定,并进行定性鉴定。
4.物理指标监测:测定水样的颜色、浑浊度、温度和pH值。
5.数据处理与分析:根据监测结果进行数据整理,并进行统计分析和图表展示。
三、实验结果与分析1. 化学指标监测结果:根据测定结果,水样A的溶解氧浓度为8.5mg/L,低于国家水质标准的要求;水样B的氨氮浓度为0.3mg/L,超过了标准限值;水样C的总磷浓度为0.05mg/L,属于较好的水质;水样D 的总大肠菌群数目超过了国家水质标准。
2.微生物指标监测结果:经过培养基培养后,水样A的微生物菌落总数为10^4CFU/mL,属于较好的水质;水样B和水样C中检测不出大肠杆菌;水样D中大肠杆菌含量超过了国家水质标准。
3.物理指标监测结果:水样的颜色、浑浊度、温度和pH值均在正常范围内。
四、讨论与结论通过本实验的水质监测与评估,我们可以得出以下结论:1.所选取的水样中,存在部分化学指标和微生物指标超过国家水质标准的情况,说明水质受到一定程度的污染。
2.通过监测水样中的溶解氧、氨氮、总磷和总大肠菌群等指标,可以对水质进行准确评估。
水质全分析实验报告
水质全分析实验报告水质全分析实验报告摘要:本实验旨在对不同来源的水样进行全面的水质分析,以评估水质的优劣,并探讨可能的污染源。
通过测量水样的pH值、溶解氧、总固体、氨氮、硝酸盐、磷酸盐等指标,我们可以了解水体的污染程度,以及对环境和人类健康的潜在影响。
引言:水是生命之源,对于人类和环境的健康至关重要。
然而,随着工业化和城市化的快速发展,水资源面临着越来越大的压力和污染威胁。
因此,对水质进行全面的分析和评估,对于保护水资源和维护生态平衡至关重要。
实验方法:1. 收集不同来源的水样,包括自来水、河水和地下水。
2. 使用标准化学试剂和设备,按照相关标准方法进行水质分析。
3. 测量水样的pH值,使用酸碱指示剂和pH计。
4. 测量水样的溶解氧,使用溶解氧计。
5. 测量水样的总固体,使用干燥炉和称量器。
6. 测量水样的氨氮,使用氨氮试剂盒和分光光度计。
7. 测量水样的硝酸盐,使用硝酸盐试剂盒和分光光度计。
8. 测量水样的磷酸盐,使用磷酸盐试剂盒和分光光度计。
实验结果:1. 样本一:自来水pH值:7.2溶解氧:8.5 mg/L总固体:120 mg/L氨氮:0.5 mg/L硝酸盐:2.0 mg/L磷酸盐:0.1 mg/L2. 样本二:河水pH值:6.8溶解氧:6.2 mg/L总固体:180 mg/L氨氮:1.2 mg/L硝酸盐:5.6 mg/L磷酸盐:0.8 mg/L3. 样本三:地下水pH值:7.5溶解氧:9.2 mg/L总固体:90 mg/L氨氮:0.3 mg/L硝酸盐:1.8 mg/L磷酸盐:0.2 mg/L讨论:根据实验结果,我们可以得出以下结论:1. 自来水的水质较好,pH值接近中性,溶解氧含量较高,总固体和污染物含量较低,符合饮用水标准。
2. 河水的水质较差,pH值稍低,溶解氧含量较低,总固体和污染物含量较高,可能受到工业废水和农业排放的污染。
3. 地下水的水质良好,pH值接近中性,溶解氧含量较高,总固体和污染物含量较低,适合作为饮用水。
水质分析监测实验报告
水质分析监测实验报告前言水质分析是对水体中各种成分的含量和性质进行测定和评价的过程,对保护水资源和人类健康具有重要意义。
本次实验旨在通过对水样的分析监测,了解水质状况及其中存在的污染物,以及对水质进行评价。
实验目的1. 了解常见水质参数的测定方法;2. 掌握水质分析的基本实验步骤和操作技巧;3. 进行水质监测实验,评价水质情况;4. 提供水质改善的参考意见。
实验装置和试剂实验装置:1. 水样采集器;2. 试剂瓶、量筒和滴定管;3. 水质分析仪器(如PH计、离子色谱仪等);4. 加热设备。
试剂:1. pH标准缓冲液;2. 氯化物指示剂;3. 高锰酸钾溶液;4. 硝酸银溶液等。
实验步骤1. 水样采集在实验前应选择具有代表性的不同水源,采集样品,并分别记录采样点、时间、日期和天气情况。
2. 温度和pH值测定使用温度计和pH计测定样品的温度和pH值,并记录。
3. 总溶解固体(TDS)测定取一定量的水样,通过蒸发法或便携式TDS仪器测定水样中总溶解固体的含量。
4. 氧化还原电位(ORP)测定使用氧化还原电位仪测定水样的氧化还原电位,并记录结果。
5. 悬浮物测定将水样放置一定时间后,观察悬浮物的颜色、透明度和颗粒大小,并记录观察结果。
6. 重金属离子测定采用离子色谱仪等方法,测定水样中重金属离子(如铅、汞等)的含量,并与国家标准进行比较。
7. 溶解氧(DO)测定使用溶解氧仪测定水样中的溶解氧含量,并记录结果。
8. 有机物质测定通过紫外分光光度计等设备对水样中的有机物质进行测定,并与标准值进行对比。
9. 细菌总数测定采用培养基培养法,测定水样中细菌总数,并记录结果。
实验结果与讨论根据实验步骤所得结果,可以对水质进行评价和分析。
比如,pH值在范围内的水样可认为是中性的,而超出范围可能表示存在酸性或碱性污染。
溶解氧含量过低可能导致水体富营养化和水生生物死亡,高浓度重金属离子可能对人体健康产生潜在的风险等。
结论通过本实验的水质分析监测,我们得出了以下结论:1. 样品A的pH值偏酸性,可考虑采取中性化措施;2. 样品B的溶解氧含量低于标准值,水体需要增加氧气供应;3. 样品C的重金属离子浓度超标,需要加强废水处理和源头控制;4. 样品D的有机物质浓度较高,需进行有机物质排放的治理。
水质分析实验报告
水质分析实验报告概述本次实验的目的是通过分析不同来源水样的物理性质和化学成分,评估水质的优劣程度。
通过测量水样的pH值、溶解氧含量、总固体溶解物(TDS)和氨氮含量等参数,可以得出水质的综合评价。
本次实验采集了来自自来水厂、河流和井水的样品进行分析,以便比较不同水源的水质差异。
实验设计与步骤在实验开始之前,首先需要清洗实验用具,尤其是玻璃容器和传感器等,以确保实验结果的准确性。
然后,按照以下步骤进行实验:1. 采集样品:从自来水厂、河流和井水等不同水源处分别采集适量的水样,并将其储存在干净的密封容器中,以免外界因素对样品产生影响。
2. 测量pH值:使用pH计测量各个水样的pH值,记录下实验结果。
pH值可用于评估水的酸碱程度,从而判断是否适合饮用和其他用途。
3. 测量溶解氧含量:通过溶解氧仪测量各个水样的溶解氧含量,记录下实验结果。
溶解氧在水中的含量会影响水体中的生物生活,过低的溶解氧含量可能会导致水体富营养化。
4. 测量总固体溶解物:使用电导率计测量各个水样中的总固体溶解物含量,记录下实验结果。
总固体溶解物是水样中所有溶解的无机物和有机物的总和,在一定程度上反映了水质的浓度。
5. 测量氨氮含量:使用分光光度计测量各个水样中的氨氮含量,记录下实验结果。
氨氮是水质指标之一,高浓度的氨氮会对水体中的生物生活产生严重影响。
结果与讨论1. pH值测定结果自来水厂供水的pH值为7.2,处于接近中性的状态,适宜人体饮用。
河流水样的pH值为6.8,稍微偏酸性,可能受到周围环境的影响。
而井水的pH值为8.5,呈碱性状态,可能与地下水中的矿物质含量有关。
2. 溶解氧含量测定结果自来水厂供水的溶解氧含量为8.2 mg/L,处于较高的水平,适宜水生生物生活。
河流水样的溶解氧含量为6.4 mg/L,稍低于自来水,可能受到水体流动和污染物的影响。
井水的溶解氧含量只有3.1 mg/L,明显低于自来水和河流水样,可能与地下水受到良好的自然保护有关。
水质检测实验报告
水质检测实验报告一、引言水是生命之源,对于人类的生活、工业生产以及生态环境都具有至关重要的意义。
为了确保水质的安全和符合相关标准,我们进行了一次全面的水质检测实验。
本报告将详细介绍实验的目的、方法、结果以及结论。
二、实验目的本次水质检测实验的主要目的是评估所检测水样的物理、化学和微生物学指标,以确定其是否符合国家饮用水标准和相关环境保护要求。
具体目标包括:1、检测水样中的主要污染物,如重金属、有机物、营养盐等的浓度。
2、评估水样的物理性质,如颜色、气味、透明度等。
3、测定水样中的微生物指标,如细菌总数、大肠菌群等。
4、根据检测结果,判断水样的质量状况,并提出相应的建议和措施。
三、实验方法(一)样品采集在不同的地点和时间,使用无菌采样瓶采集了多个水样。
采样过程中,遵循了相关的采样规范,确保样品的代表性和准确性。
(二)物理指标检测1、颜色和透明度:通过目视比较法,将水样与标准色板进行对比,评估水样的颜色。
使用透明度盘测量水样的透明度。
2、气味:通过嗅觉直接感受水样的气味,并进行描述。
(三)化学指标检测1、 pH 值:使用 pH 计直接测量水样的 pH 值。
2、溶解氧(DO):采用碘量法测定水样中的溶解氧含量。
3、化学需氧量(COD):采用重铬酸钾法测定水样的化学需氧量。
4、氨氮(NH₃N):采用纳氏试剂分光光度法测定氨氮浓度。
5、总磷(TP):采用钼酸铵分光光度法测定总磷含量。
6、重金属(如铜、锌、铅、镉等):使用原子吸收光谱仪进行测定。
(四)微生物指标检测1、细菌总数:采用平板计数法,将水样接种在营养琼脂培养基上,培养后计数菌落总数。
2、大肠菌群:采用多管发酵法,通过初发酵和复发酵确定大肠菌群的存在和数量。
四、实验结果(一)物理指标1、颜色:所采集的水样颜色大多呈现无色或微黄。
2、透明度:部分水样的透明度较低,可能与水中的悬浮物含量较高有关。
3、气味:大部分水样无明显异味,但有个别水样存在轻微的异味。
水质监测与分析实验报告
水质监测与分析实验报告摘要:本实验旨在通过对水样品的采集、处理、分析和评价,了解水质检测的方法和流程,并对水质进行综合评价。
通过对采集的水样进行物理、化学和微生物指标的检测与分析,我们得出了水质的评价结果,并探讨了可能的水质问题和改善措施。
实验结果表明,该水样的总溶解固体含量超标,部分化学指标不符合国家标准。
通过分析引起水样异常的原因,我们提出了相应的建议和改进措施,以提高水质。
1. 实验目的本实验的目的是通过水质监测与分析,了解水质检测的方法和流程,掌握水样的采集、处理和分析技术,并对水质进行综合评价,为水质改善提供依据。
2. 实验仪器与试剂2.1 实验仪器:pH计、光度计、电导率计、比色皿、显微镜等。
2.2 试剂:巴氏液、硝酸银溶液、硝酸钡溶液、高锰酸钾溶液等。
3. 实验步骤3.1 水样采集:选择合适的采样点,使用无菌容器采集水样,避免污染。
3.2 水样处理:使用巴氏液处理水样,将水样pH值调整至7左右。
3.3 物理指标检测:测定水样的温度、浊度和电导率等物理指标。
3.4 化学指标检测:测定水样中的COD(化学需氧量)、BOD(生化需氧量)、溶解氧等化学指标。
3.5 微生物指标检测:采用显微镜观察水样中的微生物种类和数量。
4. 实验结果与讨论4.1 物理指标结果:根据实验测定,水样的温度为25℃,浊度为5 NTU,电导率为500 μS/cm,均符合国家标准。
4.2 化学指标结果:根据实验测定,水样的COD值为60 mg/L,超过国家标准的限值;BOD值为30 mg/L,低于国家标准;溶解氧为8 mg/L,符合国家标准。
4.3 微生物指标结果:根据显微镜观察,水样中存在大量的原生动物和细菌,可能存在微生物污染的风险。
在对实验结果进行综合评价时,我们发现水样中的总溶解固体超标,可能是由于周边土地的农药和肥料使用导致。
此外,水样中的COD超标可能与工业废水排放有关。
根据结果分析,我们提出了以下改善建议:5. 改善建议5.1 整治周边环境:加强对周边农田和工业区的管理,严禁乱排乱放,减少污染源的输入。
水质全分析实验报告
水质全分析实验报告1. 实验目的本实验旨在通过对水样进行全面的分析,了解水质的基本情况,并评估其是否符合相关标准。
通过实验,我们将了解水质分析的常用方法和步骤,并掌握实验操作的基本技巧。
2. 实验原理水质分析是通过对水样中各种物质进行定性和定量分析,以了解水样的组成及其对环境和人体的潜在影响。
本实验主要包括以下几个方面的分析:2.1 pH值的测定pH值反映了水样的酸碱性。
通过使用酸碱指示剂或pH计测定水样的pH值,可以了解水样是否酸性、中性或碱性。
2.2 溶解氧的测定溶解氧是水体中的重要指标之一,它反映了水体中溶解的氧气含量。
通过使用溶解氧电极,可以测量水样中溶解氧的浓度,以评估水体的氧气供应情况。
2.3 总硬度的测定总硬度是水样中可溶性碳酸盐、硫酸盐和氯化物等离子物质的总量。
通过滴定法,可以测定水样中总硬度的含量,从而判断水质是否符合相关标准。
2.4 阴离子的测定水中常见的阴离子包括氯离子、硝酸盐离子和硫酸盐离子等。
通过使用离子色谱仪,可以准确测定水样中各种阴离子的含量,并评估水质是否符合相关要求。
3. 实验步骤3.1 pH值的测定步骤1.取一定量的水样,放入容器中。
2.加入酸碱指示剂或使用pH计进行测定。
3.记录测得的pH值。
3.2 溶解氧的测定步骤1.取一定量的水样,放入溶解氧电极中。
2.进行溶解氧的测定,并记录测得的溶解氧浓度。
3.3 总硬度的测定步骤1.取一定量的水样,加入适量的指示剂。
2.使用标准滴定液进行滴定,直至颜色出现变化。
3.记录滴定液的用量,并计算出总硬度的含量。
3.4 阴离子的测定步骤1.取一定量的水样,进行前处理步骤。
2.将处理后的水样注入离子色谱仪中。
3.进行阴离子的测定,并记录测得的各种阴离子的含量。
4. 实验结果和讨论经过实验测定,我们得到了以下结果:1.pH值为6.5,属于中性水质。
2.溶解氧浓度为8 mg/L,符合水体生态要求。
3.总硬度含量为150 mg/L,低于标准限值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;
;
样品量(mL)
试剂(一)
试剂(二)
试剂(三)
显色时间(min)
氟化物
6
试剂一:二= 7:3(混匀)4.0
30
铁
10
0.5
一支
一支
15
氨氮
10
0.2
一支
10
COD
2
1
3mL(150℃消解15min)
亚硝酸盐
10
0.2
一支
20
硫化物
10
0.4
0.2
10
钙
10
0.2
0.2
5
总磷
5
0.8mL(120℃消解30min)
6.3
6.11
5.91
5.95
4.94
6.3
6.15
5.9
5.95
4.92
6.3
平均数
6.141667
5.921667
5.971667
4.953333
6.313333
5.860333
2.对实验现象、实验结果的分析及其结论:
实验序号
4
实验名称
水质分析
实验时间
2010年4月12
实验室
生科院实验楼综合2
一.实验预习
1.实验目的
1.1学习和掌握测定水中溶解氧、浊度、氟化物、铁、氨氮和pH、六价铬、硫化物、钙、亚硝酸盐氮、有效氯(总氯)COD和总磷的方法。
1.2了解这些因素在水环境中的地位及对水生生物的影响。
2.实验原理、实验流程或装置示意图
E = E0+ 0.0591 log[H+] (25℃)
E = E0–0.0591 pH式中,E0为常数。
2.1.5浊度(NTU):
基于不同浊度的被测溶液对电磁辐射有选择性吸收而建立的比浊法。
2.1.6铁:
Fe2++二氮杂菲橙红色络合物
基于在pH3~9的条件下,低价态铁离子与二氮杂菲生成稳定的橙红色络合物,对可见光有选择性吸收而建立的比色分析方法。
2K2(HgI4) + 3KOH + NH3NH2HgOI (黄棕色沉淀) + 7KI + 2H2O
2.1.3亚硝酸盐测定:
测定亚硝酸盐氮,通常使用重氮比色法,此法是基于亚硝酸盐和对氨基苯磺酸起重氮化作用,再与α-萘胺起偶合反应,生成紫红色染料,与标准液进行比色。
2.1.4 pH测定:
利用玻璃电极作指示电极,甘汞电极作参比电极,组成一个电池。在此电池中,被测溶液的氢离子随其浓度不同将产生相应的电位差。此电位与溶液的pH值的关系,符合能斯特方程式:
2.1.9硫化物:
在酸性条件下,硫化物与过量的碘作用,剩余的碘用硫代硫酸钠滴定。由硫代硫酸钠溶液所消耗的量,间接求出硫化物的含量。
COD的测定:
化学需氧量(COD),化学需氧量越大,说明水体受有机物的污染越严重。在强酸性溶液中,一定量的重铬酸钾氧化水样中还原性物质,用分光光度法检测消化显色后的溶液的吸光值,求出水样的CODCr值。
二.实验内容
1.实验现象与结果
表1溶解氧量记录表
水样
溶解氧量(mg/L)
蒸馏水
5.96
5.93
5.92
5.91
5.91
5.90
地下水
5.97
5.98
5.97
5.96
5.95
5.91
氟化物:3.22mg/L氨氮:0.11mg/L Fe2+:0.04mg/L
硫化物:0.01mg/L亚硝酸盐:0.03mg/L Ca2+:0.69mg/L
2.1.7氟化物:
氟离子+氟试剂(硝酸镧)蓝色三元络合物(F-)
氟离子在pH4.1的乙酸盐缓冲介质中与氟试剂及硝酸镧反应生成蓝色三元络合物颜色的强度与氟离子浓度成正比在620nm波长处定量测定氟化物(F-)。
2.1.8钙:
钙离子+EDTA溶液红色络合物
在pH 12~13条件下用EDTA溶液络合滴定钙离子以钙羧酸为指示剂与钙形成红色络合物。
5.52
6.72
6.12
5.91
6.78
5.52
6.71
平均数
6.175
5.956667
6.766667
5.53
6.728333
6.231333
蒸馏水
6.19
5.96
6.02
4.97
6.34
6.16
5.93
5.98
4.98
6.32
6.12
5.92
5.97
4.97
6.32
6.12
5.91
5.96
4.94
2.1实验原理:
水是水生生物生活的场所,水体洁净程度如何,各种化学成分含量多少,是我们选用不同用途水源时Байду номын сангаас主要依据,进行水质分析已成为环境分析化学的一个重要组成部分,也是生态工作不可缺少的手段。
2.1.1溶解氧的测定:
水中溶解氧的测定一般用碘量法,在水样中加入硫酸锰及碱性碘化钠溶液,生成氢氧化锰沉淀,此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰
浊度(NTU):3.4度总磷:0mg/LCOD:0mg/L
溶氧mg/l
第一组
第二组
第三组
第四组
第五组
总体平均数
地下水
6.25
5.97
6.67
5.55
6.78
6.21
5.98
6.78
5.55
6.74
6.21
5.97
6.79
5.53
6.71
6.13
5.96
6.79
5.51
6.71
6.13
5.95
6.79
总磷:
在高温加热条件下使试样消解,将水样中所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与试剂反应生成蓝色的络合物,通过测定其吸光度,即可得出水样的总磷含量。
3.实验设备及材料
3.1器材:SG6溶氧测定仪、GDYS-101M多参数水质分析仪、烧杯
3.2药品:蒸馏水、各种相关试剂
3.3样品:地下水
4.实验方法步骤及注意事项
4KI + 2H2SO44HI + 2K2SO4
2MnMnO3+ 4H2SO4+ 4HI 4MnSO4+ 2I2+ 6H2O
用移液管取一定量反应完毕的水样,以淀粉作指示剂,用硫代硫酸钠溶液滴定碘含量(碘量与溶解氧量成比例关系),计算出水样溶解氧的含量。
2.1.2氨氮的测定:
氨与碘化汞钾在碱性溶液中生成黄色络合物,其色度与氨氮含量成正比,在0~2.0mg/L的氨氮范围内近于直线。反应式如下:
4MnSO4+ 8NaOH 4Mn(OH)2(肉色沉淀) + 4Na2SO4
2Mn(OH)2+ O22MnO(OH)2(棕黄色或棕色沉淀)
2H2MnO3+ 2Mn(OH)22MnMnO3+ 4H2O
加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘,溶解氧越多,析出的碘就越多,溶液的颜色也就越深。
0.2mL
0.4mL(30s)
15(避光)
,用GDYS-101M多参数水质分析仪检测分析水样,并记录下数据。
4.2注意事项:
,注意量程;
,使用时严禁打闹,试剂粘到手脸应立即清洗;
4.2.3COD试剂(二)加入会放出大量的热,操作时应小心,每次按键操作应间隔10秒;
,一定要加盖消解管塑料保护罩,避免液体喷溅发生意外。