算术平方根第1课时(1)

合集下载

第1课时 算术平方根

第1课时  算术平方根

第六章实数6.1 平方根第1课时算术平方根1.理解并掌握算术平方根的概念,会用根号表示一个正数的算术平方根,并了解算术平方根的非负性,会求一个非负数的算术平方根.2.能用夹值法求一个数的算术平方根.3.会用计算器求一个数的算术平方根.自学指导:阅读教材第40至44页,独立完成下列问题.知识探究一般地,如果一个非负数的平方等于a,那么这个非负数叫做a的算术平方根.a的算术平方根记为a,a叫做被开方数.规定:0的算术平方根是0.自学反馈(1)25的算术平方根是5,3是9的算术平方根,16的算术平方根是2.(2)切一块面积为16 cm2的正方形钢板,它的边长是多少?解:4 cm.(3)3表示3的算术平方根;如果-x2有平方根,那么x的值为0.(4)一个数的算术平方根是a,则比这个数大8的数是(D)A.a+8B.a-4C.a2-8D.a2+8(5)若81=9,那么0.0081=0.09,810000=900.(6)用计算器求下列各数的算术平方根.①625; ②101.203 6; ③5(精确到0.01).对于实际问题可以转化成数学问题来解决,如题(2),就是求平方等于16的正数.若被开方数的小数点向左或向右移2n位,则其算术平方根的小数点向相同的方向移动n位.活动1 学生独立完成例1求下列各式的值:(1)3·25; (2)81+36; (3)0.04-124; (4)0.36·4121.解:(1)原式=3×5=15;(2)原式=9+6=15;(3)原式=0.2-1.5=-1.3;(4)原式=35×211=655.1.求一个数a(a>0)的算术平方根就是确定一个正数x,使得x2=a.2.求一个代分数的算术平方根,应先将代分数化成假分数,再求其算术平方根.例2试比较下列各对数的大小:(1)123与112; (2)412与25.解:(1)∵112=94,而213=73>94,∴123>112.(2)∵412=814,25=20,而814>20,∴814>20,即412>25.要比较两个数的大小,可以由算术平方根的意义,去比较它们的被开方数的大小.本题就是用“转化”的数学思想,将其“转化”成比较根号下被开方数的大小.例3试估算7的取值范围是2<7<3.活动2 跟踪训练1.一个自然数的算术平方根是a,则下一个自然数的算术平方根是(D)A.a+1B.a2+1C.a+1D.21a 注意审题,先确定这个自然数,再确定下一个自然数的算术平方根.2.估算31-2的值(C)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间31.3.9a b,则a+b=900.000 009.活动3 课堂小结1.算术平方根的意义是求一个正数的算术平方根的基本方法.2.运用“转化”的数学思想方法,并通过恒等变形达到求解目的是对能力的一种考察.教学至此,敬请使用学案当堂训练部分.。

人教版七年级数学下册教学课件《平方根》(第1课时)

人教版七年级数学下册教学课件《平方根》(第1课时)

求下列各式的值:
(1)
1

(2)
9 25

(3) 42 ;
(4) 0

解:(1) 1 1 ;
(2)
9 25
3 5

(3) 42 4 ;
(4) 0 0 .
探究新知 知识点 2 算术平方根的双重非负性
6.1 平方根
1. 负数有算术平方根吗? 2. a 是什么数? 3. a 中的a可以取任何数吗?
探究新知
6.1 平方根
一般地,如果一个正数 x 的平方等于a,即x2=a,那么这
个正数x叫做a的算术平方根. a的算术平方根记为 a ,读作
“ 根号 a” .
规定:0的算术平方根是0,即 0 0 .
探究新知
6.1 平方根
怎么用符号来表示一个数的算术平方根? 平方根号
x2 a 互为 x a (x≥0) 逆运算
6.1 平方根
求下列各数的算术平方根:
(1)100 ;
(2)49 ; 64
(3)0.0001.
解:(1)因为 102=100 , 所以100的算术平方根是10 . 即 100=10 .
探究新知
6.1 平方根
(2) 49 ; 64
解:(2)因为 (7)2 49 , 8 64
所以 49 的算术平方根是 7 .
3
66
x
3
y
4z
7 3
3
7 6
4
35 6
175 6
.
课堂小结
算术平方根的概念
6.1 平方根
算术平 方根
算术平方根的双重非负性
算术平方根的应用
课后作业
作业 内容

算术平方根【公开课教案】

算术平方根【公开课教案】

2.2 平方根第1课时 算术平方根第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数,但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=; (2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x 2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式 已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 18+0.4 216+0.8 324+1.2 432+1.6 540+2.0 … …解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算 计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例
1.理解算术平方根的概念,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根的知识解决实际问题,如计算面积、体积等。
3.了解算术平方根在实际生活中的应用,如测量、建筑设计等。
(二)过程与方法
1.通过复习平方根的概念,引导学生自主探究算术平方根的定义,培养学生的自主学习能力。
2.利用多媒体展示、实物演示等方法,让学生在直观感知的基础上,理解并掌握算术平方根的概念。
3.通过学生之间的互相评价,让学生了解自己的学习情况,发现他人的优点,学会欣赏和尊重他人。
4.教师要根据学生的学习情况,及时调整教学策略,以保证教学目标的实现。同时,要对学生的进步给予肯定和鼓励,增强他们的自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:一块土地的面积是36平方米,求它的边长。让学生思考如何解决这个问题。
3.通过小组讨论、数学游戏等形式,激发学生的学习兴趣,培养学生合作探究的能力。
4.设计一系列练习题,巩固所学知识,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,使他们感受到数学的趣味性和魅力。
2.培养学生的自信心,使他们相信自己能够掌握算术平方根的知识,并能够运用所学知识解决实际问题。
针对这一教学目标,我设计了以下教学案例。首先,通过复习平方根的概念,引导学生回顾已学知识,为新课的学习做好铺垫。然后,通过多媒体展示、实物演示等方法,生动形象地引入算术平方根的概念,让学生在直观感知的基础上,理解并掌握算术平方根的定义。接下来,运用数学游戏、小组讨论等形式,激发一系列练习题,巩固所学知识,提高学生的解题能力。最后,结合生活实际,引导学生运用所学知识解决实际问题,培养学生的应用意识。
整个教学过程中,注重启发式教学,引导学生主动参与,积极思考,提高学生的思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习过程中感受到成功的喜悦。通过本节课的教学,使学生对算术平方根有了更深入的理解,提高了学生的数学素养,为后续学习奠定了基础。

1.1 平方根 第1课时

1.1  平方根  第1课时
16 = 4 = 2
=4, 的算术平方根是2 ⑤∵ 16 =4,22 =4 ∴ 16的算术平方根是2,即
1.下列各式中哪些有意义?哪些无意义?为什么? 1.下列各式中哪些有意义?哪些无意义?为什么? 下列各式中哪些有意义
5;− 3; −3;
答:有意义的是
(−3)
(−3)2
2
;
5
无意义的是
− 3
−3
∴2x − 3y + z = 4 − 9 + 4 = −1
3.(2010·宁波中考)实数4 3.(2010·宁波中考)实数4的算术平方根是0·成都中考) x,y为实数, 4.(2010·成都中考)若x,y为实数,且 x + 2 + y −3 = 0 成都中考 为实数 则
(x + y)
5dm
0.25 0.5
一般地,如果一个正数x的平方等于a,即 一般地,如果一个正数x的平方等于a,即 a,
=a,那 x=a,那
2
么这个正数x叫做a的算术平方根。 么这个正数x叫做a的算术平方根。a的算术平方根记 为 读作“根号a”, 叫做被开方数。 a” a,读作“根号a”,a叫做被开方数。
x x ), 即: 2 = a( > 0 x a的算术平方根, 叫做 的算术平方根, x 记作: = a 记作:
2010
1 的值为_____. 的值为_____. _____
看谁能很快记住1 看谁能很快记住11到20的平方? 20的平方? 的平方
121 144 169 196 225 256 289 324 361 400
x
2
= a( > 0) x ,
叫 a的 术 方 , x 做 算 平 根 作 x= 记 : a

平方根第1课时课件人教版七年级数学下册

平方根第1课时课件人教版七年级数学下册

因为1.412=1.9981,1.422=2.0164,所以1.41< 2 <1.42
因为1.4142=1.999396,1.4152=2.002225,所以1.414< 2 <1.415.
······
如此进行下去,可以得到 2 的更精确的近似值.
三、概念剖析
思考:你能计算出 2 的值吗?
按键顺序:
正方形的面积/dm2 1 正方形的边长/dm 1
9
16 36
4
25
2
3
46
5
思考:你能从表格中发现什么共同点吗?
上面的问题,实际上是已知一个数的平方,求这个正数的问题.
三、概念剖析
新知
一般地,如果一个正数 x 的平方等于a,即 x2=a,那么这个正数 x 就
叫做 a 的算术平方根,a 的算术平方根记作“ a ”,读作“根号 a ”,a
【当堂检测】
3.在计算器上按键
正确的是 ( B )
A. 3
B. -3
C. -1
,下列计算结果 D. 1
【当堂检测】
4.某地新建一个以环保为主题的公园,开辟了一块长方形的荒地,已知这 块荒地的长是宽的3倍,它的面积为600000m2,那么公园的宽约为B( )
A.320m B.447m C.685m D.320m或447m 解析:设长方形的宽为x,长则为3x, 建立方程式:x·3x=600000,
五、课堂总结
一般地,如果一个正数 x 的平方等于a,即 x2=a,那么这个正数 x 就
叫做 a 的算术平方根,a 的算术平方根记作“ a ”,读作“根号 a ”,a
叫做被开方数.
特别地,我们规定:0的算术平方根是0,即 0 0 .

人教版初一数学 6.6.1 平方根 第一课时PPT课件

人教版初一数学 6.6.1 平方根 第一课时PPT课件
第六章
实数
6.1 平方根
第1课时 算术平方根
单元内容结构图
学习目标
1.了解算术平方根的意义和求法以及实际应用.
2.会求某些正数(完全平方数)的算术平方根,并会用符号
表示,提高抽象能力.
3.通过独立思考、合作交流,经历从平方运算到求算术平
方根的演变过程,感悟二者的互逆关系,并会用算术平方
根解决实际问题,发展应用意识.
= ;
8
64
64
8
64 8
探究新知
(3)0.000 1.
解:因为0.012=0.000 1,所以0.000 1的算术平方根是
0.01,即 . =0.01.
拓展应用
下列说法正确的是 ( D )
A. -1的算术平方根是-1
B. 0没有算术平方根
C.-1的相反数没有算术平方根
D. (-1)2的算术平方根是1
问题2:0的算术平方根是多少?怎么表示?
解:0的算术平方根是0.表示为 =0.
探究新知
学生活动三【典例精讲】
例 求下列各数的算术平方根:
(1)100;
解:因为102=100,所以100的算术平方根是10,
即 =10;
探究新知
49
(2) ;
64
7 2 49
49
7
49 7
解:因为
= ,所以 的算术平方根是 ,即
25;
0.81;
11
1 .
25
解:它们分别表示25的算术平方根,0.81的算术平方根,
11
6
1 的算术平方根,它们的值分别是5,0.9, .
25
5
课后作业
1.教材第41页练习第1,2题,第47页习

算术平方根第一课时

算术平方根第一课时

谢谢指导!
收获与体会

● ●
算术平方根是Βιβλιοθήκη 负数.0的算术平方根是0a ≥0
被开方数是非负数. a≥0
● ●
负数没有算术平方根。
被开方数越大,对应的算
术平方根也越大
思考:
面积是2的正方形的边长是几呢? 是不是求2的算术平方根呢?
课后作业: (1)课本p47习题6.1第1,2题 (2) 基础训练:35页第一课时
答:有意义的是
3 ;
2
5
无意义的是
3 3
3
2
争先恐后:
(1)121的算术平方根是 11
1 256 的算术平方根是
1 16

0.25的算术平方根是 0.5 ;



49 (2)100的算术平方根是 10 ;64 的算术平方根 7 0.81的算术平方根是 0.9 ;
8
0 的算术平方根是
2
2
7 ,即 9
49 7 81= 9
③∵0.6 2=0.36,∴0.36的算术平方根是0.6,即 0.36=0.6 2 ④∵0 =0,∴0的算术平方根是0,即 0=0
⑤∵ 16 =4,2 =4 ∴ 16的算术平方根是2,即 16 4 2
2
例、下列各式中哪些有意义?哪些无意义?为
什么?
5 ; 3 ; 3 ;
0
说下列各式所表示的意义。
100
5
已知 x 2 y 3 z 4 0
2
求 2 x 3 y z的值
2 ( x 2) 0 y 3 0
z4 0
2 ( x 2) 0 y 3 0 x 2

课时1 算数平方根

课时1 算数平方根

A.-2
B.0
C.1
D.2
当堂小练
2.若 2x-1 + 1-2x +1有意义,则x满足的条
件是( C )
A.x≥ 1
2
C.x= 1
2
B.x≤ 1
2
D.x≠ 1
2
拓展与延伸
求 18 的算术平方根. 解:因为 18=9, 9 =3, 所以的算术平方根是3.
新课讲解
典例分析
例 求下列各数的算术平方根:
(1) 100;
49
(2) 64 ;
(3) 0.0001.
解:(1)因为102 = 100,所以100的算术平方根是10,
即 100 10;
(2)因为( 7 )2 = 49 ,所以 49 的算术平方根是 7 ,
8 64
64
8
即 49 7 ; 64 8
D.3
A.因为62=36,所以6是36的算术平方根
B.因为(-6)2=36,所以-6是36的算术平方根
以上说法都不对
新课讲解
知识点2 求算术平方根
(1) 正数的算术平方根是一个正数; (2) 0的算术平方根是0; (3) 负数没有算术平方根; (4) 被开方数越大,对应的算术平方根也越大.
(2)因为92=81,所以81的算术平方根是9, 即 81 =9;
(3)因为32=9,9的算术平方根是3,所以32的算 术平方根是3,即 32 =3.
新课讲解
知识点3 算术平方根的非负性
问题1: (1)因为___8__2=64,所以64的算术平方根是 ___8___,即 64 =__8____.
(2)因为__0_.5__2=0.25,所以0.25的算术平方根是__0_._5__, 即 0.25 =__0_.5___.

平方根第1课时(精华版)

平方根第1课时(精华版)
求解公式
$x = frac{-b pm sqrt{b^2 - 4ac}}{2a}$,其中 $sqrt{b^2 4ac}$ 为方程的根
判别式与平方根关系
判别式定义
$Delta = b^2 - 4ac$
判别式与平方根关系
当 $Delta geq 0$ 时,方程有实数解;当 $Delta < 0$ 时,方程 无实数解。
估算法
对于不能直接开方的数,可以采用估算法。首先确定该数在哪两 个完全平方数之间,然后逐步逼近。
因式分解法求平方根
提取公因式
将被开方数写成几个因数的乘积 ,然后分别求出每个因数的平方 根,最后相乘得到结果。
分组分解
将被开方数进行适当的分组,使 每组都能提取公因式或应用公式 法进行因式分解,然后求出各组 的平方根并相乘。
平方根表示方法
非负平方根用符号“$sqrt{}$”表示,如$sqrt{b}$ 表示$b$的非负平方根。
平方根存在条件
只有非负数才有实数平方根,负数没有实数平方根 。
平方根性质
02
01
03
非负性
平方根的结果总是非负的。
对称性
若$a$是$b$的平方根,则$-a$也是$b$的平方根。
唯一性
对于给定的非负数,其平方根是唯一的。
平方根性质
复数中平方根具有一些独特的性质,如多值 性、周期性等。同时,平方根运算也满足一 些基本的运算法则,如乘法公式$(a+b)^2 = a^2 + 2ab + b^2$在复数中仍然成立。
复数中平方根运算方法
直接开方法
三角形式法
指数形式法
对于形如$z = a + bi$的复数,可以 直接使用开方法求解其平方根,即 $sqrt{z} = sqrt{a+bi}$。需要注意的 是,开方时要选择合适的分支。

6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)

6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)

−0.3 2 =0.3.
迁移应用
1.计算:(1) 9 =_____;


(4) (−6)2 =_____;
(2) 0.25=_____;
.
(3)﹣

64
=______;

49


(5) 36+ 16- 25=_____.
2.已知 + 4=3,则x=______.

3.若单项式2xmy3与3xym+n是同类项,则 2 + 的值为______.
解:因为(x-2)2+ + 1+|z-3|=0,
(x-2)2≥0, + 1≥0,|z-3|≥0,
所以(x-2)2=0, + 1=0,|z-3|=0.
所以x-2=0,y+1=0,z-3=0.
所以x=2,y=-1,z=3.
所以(x+3y)z=[2+3×(-1)]3=(-1)3=-1.
迁移应用
所以|3x-3|=0, − 2 =0.
所以3x-3=0,y-2=0,即x=1,y=2.
所以x+4y=1+4×2=9.
因为 9=3,所以x+4y的算术平方根为+ + 3=0,求a(b+c)的值.
解:因为(a+1)2+|b-2|+ + 3=0,
所以a+1=0,b-2=0,c+3=0,

4.若4是3x-2的算术平方根,则x的值是______.

迁移应用
5.求下列各数的算术平方根:
121
(2) ;
100
(1)0.64;

第1课时算术平方根PPT课件(北师大版)

第1课时算术平方根PPT课件(北师大版)
非负数
a 0 (a≥0)
算术平方根具有双重非负性
典例精析
例3 若|m-1| +
=0,求m+n的值.
解: 因为|m-1| ≥0, ≥0,又|m-1| +
=0,
所以 |m-1| =0, =0,所以m=1,n=-3,
所以m+n=1+(-3)=-2.
归纳 几个非负数的和为0,则每个数均为0,初中阶段学过 的非负数有绝对值、偶次幂及一个数的算术平方根.
当堂练习
1.填空ห้องสมุดไป่ตู้:
①若一个数的算术平方根是 7 ,那么这个数是 49 ;
② 的算术平方根是 3 ;
2
③ 的算术平方根是 3 ;
④若
,则
16 .
2.求下列各数的算术平方根
(1)25; (2)4891 ;(3)0.36 ;(4) 16.
解:(1)因为52 25 ,所以25的算术平方根是5,即 25 5.
5 dm 因为 52=25
讲授新课
一 算术平方根的概念
请大家根据勾股定理,结合图形完成填空:
2,
3,
4,
5 . x, y, z, w中哪
些是有理数?哪 些是无理数?你 能表示它们吗?
概念学习
一般地,如果一个正数 x 的平方等于a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根, 记作“ a ”,读作“根号 a ”.
特别地,我们规定:0的算术平方根是0,


请大家根据算术平方根的概念,结合图形完成填空:
2 ,x= 2 ; 3 ,y= 3 ; 4 ,z= 2 ; 5 ,w= 5 .
典例精析
例1:求下列各数的算术平方根: (1) 900;(2) 1;(3) ;(4) 14.

算术平方根(第1课时)-【名师经典教学设计课件】

算术平方根(第1课时)-【名师经典教学设计课件】

加速度教学设计加速度是力学中的重要概念,它是联系动力学和运动学的桥梁,本节课的重点是加速度的概念及其物理意义,难点是加速度和速度的区别。

加速度是用比值定义法定义的物理量,教材从加速度的定义出发,提出了变化率的概念,正确理解变化率的含义,对学习和正确理解其他用比值定义的物理量具有非常重要的意义。

以学生为主导,让学生自己定义概念。

在定义加速度的过程中,通过学生的讨论与交流,引导学生自己用△v/△t的比值来描述速度变化的快慢,把加速度看成是一个比值的符号,“加速度”只是一个符号的名称而已,实现了把抽象的概念具体化,把生硬的概念形象化的目的。

学生把加速度看作是一个新认识的朋友,对陌生的概念产生了亲切感,他们亲身经历了定义加速度概念的全过程,对概念的理解就更加深刻了。

但教后的感觉还有待于提高。

本节课有意识进行控制变量法和用比值定义物理量的方法教育,对于控制变量法的教育是在潜移默化中进行的,对于用比值定义物理量的方法,不但向学生指明是用比值来定义加速度,且和学生一起回顾了平均速度的定义及初中学习的压强、密度、电阻等物理量的定义。

其目的是让学生明白,很多物理量是为了研究或描述的方便而定义出来的,使学生消除了对物理量的神秘感和恐惧感进而产生亲切感。

本节课的教学难点是加速度的方向和加速度与速度的区别,对于加速度的方向的教学,是让学生根据位移和速度的矢量性来讨论加速度的矢量性,需选择更有效的教学方法进行授课。

加速度教学设计加速度是力学中的重要概念,它是联系动力学和运动学的桥梁,本节课的重点是加速度的概念及其物理意义,难点是加速度和速度的区别。

加速度是用比值定义法定义的物理量,教材从加速度的定义出发,提出了变化率的概念,正确理解变化率的含义,对学习和正确理解其他用比值定义的物理量具有非常重要的意义。

以学生为主导,让学生自己定义概念。

在定义加速度的过程中,通过学生的讨论与交流,引导学生自己用△v/△t的比值来描述速度变化的快慢,把加速度看成是一个比值的符号,“加速度”只是一个符号的名称而已,实现了把抽象的概念具体化,把生硬的概念形象化的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加比赛,这块正方形画布的边长应取多少?
2、面积为16、9、4的正方形的边长分别是多少?
3、上述两个问题的实质是什么?
4、阅读课本P68-69页,并回答下列问题
(1)如果一个________的______等于a ,那么_________就叫做______的算术平方根
(2)正数a 的算术平方根表示 读作_______规定:0的算术平方根为0。

(3)因为( )2
=100,所以100的算术平方根是_______,即__________; (4)仿照(3)格式探求下列各数的算
术平方根:0.0025;121;32
;0.0001 (5)求算术平方根的运算与求平方运算有什么关系?
上是已知一个正数的平方求这个证书的问题,其中问题1中的5叫做25的算术平方根,问题2中的4就叫做16的算术平方根,一般情况下,什么叫算术平方根?怎样表示一个数的算术平方根?怎样求一个数的算术平方根?算术平方根有哪些性质?
(2)出示问题组织自学,提两名学生回答,关注学困生的表现,教师进行点拨引导评价。

(3)板书算术平方根的概念、符号表示,强调:(1)被开方数、根指数的意义。

(2)0的算术平方根是0是算术平方根的重要组成部分。

1-3,参与对同伴表现情况的评价。

(2)自学教科书相关内容,独立解决问题4,配合教师检查,对照同伴表现,检查自己的自学情况。

(3)学生讨论 思考并回答,师生共同总结。

足的时间和空间,理解和感知算术平方根概念,通过小组间的讨论、交流,释疑解难,提出共同的问题,使学生的自主性和合作性得到很好的发展,教学目标得到很好的落实。

活动三 例题讲解 理解新知 例1:求下列各数的算术平方根
(1)121 (2)0.0064
例2:计算下列各式的值
【教师活动】 教师出示题目 引导学生思考并解答,巡视学生完成情况 适时指导点拨
【学生活动】
两名同学板演,学生独立完成后,共同完善解题过程
【设计意图】
规范解题格式,帮助理解新知
活动四 应用迁移,巩固提高 一、判断下列说法是否正确,若不正确,请改正:
(1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0;
【教师活动】 (1)出示问题1,提出答题要求,根据学生回答,适时评价学生的表现,用PPT 展示确认。

【学生活动】
(1)口答问题一、二。

(2)独立【媒体使用】
(1)出示题组一及其答案;实物展台展示部
(3) 2212-13)1(29-)2()(12136
)3( 252)4()(--
(4)0.01是0.1的算术平方根;
(5)-5是-25的算术平方根。

二、选择填空
1、下列说法正确的是()
A、81是9的算术平方根
B、 0的算
术平方根是0
C 、144是12的算术平方根 D、-5是
25的算术平方根
2、=
-2)3
(()
A -3 B3 C 3 D3
-
3、要使代数式
2
3
x-
有意义,则x的
取值范围是()
A. 2
x≠ B.2
x≥ C.2
x> D.2
x≤
三、解答下列各题
1、求下列各式的算术平方根
25
4
,
4
1
2
,
)
25
(
,
812
-
2、下列式子表示什么意义?你能求出
它们的值
【课外探究】怎样用两个面积为1的小正
方形拼成一个面积为2的大正方形?
(2)出示问题
2,结合学生口答,
屏幕出示答案。

(3)出示问题
3将学生分为A、B,
分别完成各题的单
双号,提两名学生
板演(有条件的学
校,可以用实物展
台展示学生解答过
程)强调注意解答
过程。

(3)学会判断各
式在有理数范围内
是否有意义,
完成问题
三,关注并
评价同伴
表现。

两人
板演,集体
评价,关注
注意事项。

分学生解
决题组二、
三的过程
(2)
展示题及
解答过程。

【设
计意图】
多媒体的
使用有利
于节时增
效,吸引学
生眼球,最
大限度地
激发学生
的学习兴
趣,优化课
堂结构,提
高课堂教
学效率。

活动五全课小结,内化新知
本节课你学习了哪些知识?在探索知识
的过程中,你用了哪些方法?对你今后的
学习有什么帮助?
【教师活动】
引导学生自主
小结的基础上,进
行概括小结,教师
应关注学生的表
现,包括知识掌握
情况、情绪状况等。

【学
生活动】
按要求,进
行自主小
结,注意倾
听同伴意
见,反思梳
整存在问

【设
计意图】
使所
学知识条
理化、系统
化;让学生
在交流中
共享,在反
思中提升。

活动五推荐作业,深化新知
1、必做题:(1)同步指导相关练习
(2)习题13.1
【教师活动】
课件展示作业题
【学生活
动】按照要
求自主完
成作业
【设计意
图】为使学
生的主体
作用得以
有效发挥,。

相关文档
最新文档