多高层钢结构抗震概念设计主要内容

合集下载

第六章多层和高层钢结构房屋的抗震设计

第六章多层和高层钢结构房屋的抗震设计
化学工业出版社
2.竖向布置
抗震设防的高层建筑钢结构,宜采用 竖向规则的结构。在竖向布置上具有下 列情况之一者,为竖向不规则结构:
(1)楼层刚度小于其相邻上层刚度的 70%,且连续三层总的刚度降低超过50%。
(2)相邻楼层质量之比超过1.5(建筑 为轻屋盖时,顶层除外)。
(3)立面收进尺寸的比例为L1/L< 0.75(右图)。
化学工业出版社
②结构平面形状有凹角,凹角的伸出部分在一个方向 的长度,超过该方向建筑总尺寸的25%;
③楼面不连续或刚度突变,包括开洞面积超过该层总 面积的50%;
④抗水平力构件既不平行于又不对称于抗侧力体系的 两个互相垂直的主轴。
属于上述情况第①、④项者应计算结构扭转的影响, 属于第③项者应采用相应的计算模型,属于第②项者应 采用相应的构造措施。
化学工业出版社
带有偏心支撑的框架-支撑结构,具备中心支撑体系侧向 刚度大、具有多道抗震防线的优点,还适当减少了支撑构件的 轴向力,进而减小了支撑失稳的可能性。
由于支撑点位置偏离框架接点,便于在横梁内设计用于 消耗地震能量的消能梁段。强震发生时,消能梁段率先屈服, 消耗大量地震能量,保护支撑斜杆不屈曲或屈曲在后,形成了 新的抗震防线,使得结构整体抗震性能,特别是结构延性大大 加强。
3.水平地震作用计算
高层建筑钢结构采用底部剪力法时,可按下式计算顶 部附加地震作用系数:
1.框架体系
2.框架-支撑体系 框架-支撑体系是在框架体系中沿结构的纵、横两个方
向均匀布置一定数量的支撑所形成的结构体系。 (1)中心支撑
中心支撑是指斜杆与横梁及柱汇交于一点,或两根斜 杆与横杆汇交于一点,也可与柱子汇交于一点,但汇交时 均无偏心距。
化学工业出版社

多高层建筑结构抗震概念的设计原则

多高层建筑结构抗震概念的设计原则

多高层建筑结构抗震概念的设计原则多高层建筑结构抗震概念的设计原则是什么?有哪些要点?请看下文介绍。

结构的概念设计主要是重视规范及规程中有关结构概念设计的各条规定,不至于陷入只凭计算的误区。

若结构严重不规则,整体性差,则仅按目前的结构设计计算水平,难以保证结构的安全,而且十分不经济。

结构抗震概念设计的基本原则如下:(1)结构的简单性:指结构在地震及其他荷载作用下具有明确的和直接的传力途径,便于建立完整、准确的结构计算模型。

(2)结构的规则性和均匀性:建筑平面规则、平面内结构布置宜规则、对称、均匀、减少偏心,使建筑物分布质量产生的地震惯性力能以比较短和直接的途径传递,并使质量分布与结构刚度分布协调,限制质量与刚度之间的偏心。

沿建筑物竖向的结构布置宜规则、均匀,避免有过大的外挑和内收,避免刚度、承载能力和传力途径的突变,以限制结构在竖向第一楼层或少数几个楼层出现薄弱层,以致在这些部位因产生应力集中和过大的变形而使结构不安全。

(3)结构的刚度和抗震能力:结构布置应使结构平面在两个主轴方向均具有足够的刚度和抗震能力,同时还应具有抗扭转刚度和抵抗扭转振动的能力。

框架结构应在纵横两个方向布置成双向刚接框架。

(4)结构的整体性:由于设计内力计算模型是建立在楼盖平面内刚度无限大的假定的基础上,设计应使楼盖系统有足够的平面内刚度和抗力,并与竖向结构有效连接,从而保证梁、板、柱、墙能共同协同工作。

(5)抗震房屋应尽可能设置多道抗震防线,并考虑第一防线被突破后,引起内力重分布的影响不至于使结构出现倒塌。

(6)结构构件应具有必要的承载力、刚度、稳定性、延性及耗能等方面的性能。

主要耗能构件应具有较高的延性和适当的刚度,承受竖向荷载的主要构件不宜作为主要耗能构件。

(7)合理控制结构的非弹性部位(塑性铰区),掌握结构的屈服过程,实现合理的屈服机制。

多高层钢筋混凝土房屋可以归纳为两类屈服机制:一种为总体机制,另一种为楼层机制,其他机制均可由这两种机制组合而成。

高层建筑钢结构的抗震设计与抗震措施

高层建筑钢结构的抗震设计与抗震措施

高层建筑钢结构的抗震设计与抗震措施高层建筑的抗震设计与抗震措施高层建筑的抗震设计与抗震措施是保证建筑在地震发生时能够承受地震力并保持稳定的重要考虑因素。

随着现代建筑技术的发展和城市化进程的加快,高层建筑在城市中扮演着重要的角色。

因此,高层建筑的抗震设计对于保障人民生命财产的安全至关重要。

首先,高层建筑钢结构的抗震设计需要满足地震作用下的结构稳定。

抗震设计的目标是在保证建筑结构安全的前提下,尽可能减小地震对建筑造成的破坏。

此外,还需要考虑地震烈度、建筑所处的地震带、地基情况以及建筑的重要性等因素。

其次,高层建筑的抗震设计需要根据建筑结构的特点选择合适的抗震措施。

钢结构具有重量轻、刚度大、延性好等特点,使其成为高层建筑常用的结构材料。

在抗震设计中,可以采用以下措施:1. 设计合理的结构形式:高层建筑的结构形式应选择适合地震作用下的构造形式,如框架结构、剪力墙结构等。

这样能有效分散和吸收地震力,提高结构的抗震性能。

2. 控制建筑质量和刚度:合适的质量和刚度控制有助于提高建筑的整体稳定性。

在高层建筑的设计中,应根据抗震要求合理配置结构材料和加固措施,确保建筑具有足够的抗震能力。

3. 筒体设计:筒体是高层建筑的重要组成部分,其设计应考虑到地震作用下的变形和稳定性。

通过合理布置筒体内的横向抵抗构件和纵向加固措施,可以增强建筑的整体抗震能力。

4. 考虑地基条件:高层建筑的地基条件对其抗震性能有着重要影响。

建筑应根据地基承载力、地震波传递性能等因素进行综合考虑,采取相应的地基加固措施。

准确分析高层建筑的抗震需求,采取适当的抗震措施是确保建筑在地震中安全的关键。

国内外针对高层建筑抗震设计与抗震措施已经建立了一系列的规范和标准,如我国《抗震设计规范》等。

建筑师和工程师需要充分了解这些规范和标准,结合实际情况进行设计与工程实施。

此外,高层建筑抗震措施的有效性还需要在建筑的整个生命周期中得到保证。

定期检查和维护是确保高层建筑持久抗震能力的重要环节。

钢多高层结构设计手册

钢多高层结构设计手册

钢多高层结构设计手册钢结构是目前建筑行业中常用的一种结构形式,它具有抗震、抗风、耐久等优点,在高层建筑中得到广泛应用。

本手册将围绕钢多层结构的设计原则、结构构件、施工工艺和安全管理等方面展开说明,以期为相关从业者提供指导和参考。

一、设计原则1.1 结构设计的主要任务在设计钢多层结构时,首先要明确其承载力、变形、稳定性和振动等方面的设计要求,确保结构的安全、经济和合理。

1.2 结构设计的基本原则(1)遵循国家相关规范标准,确保结构的安全性和合法性;(2)根据建筑功能需求和使用性能要求,合理设计结构形式和布局;(3)满足建筑设计的外观和空间布局要求;(4)考虑施工和装饰方便性,减少施工难度。

1.3 结构设计的安全原则设计师应充分考虑建筑的使用环境、自然条件、工作强度等因素,确保结构稳定、安全。

二、结构构件2.1 主要构件(1)柱:作为承受垂直荷载的主要构件,要具备足够的承载力和稳定性。

(2)梁:承受楼板和荷载的主要构件,要求刚度大、变形小。

(3)框架:形成整体的框架结构,承受建筑整体受力,并保证整体稳定性。

2.2 钢结构材料选择在设计中应选择合适的钢材,常用的有碳素结构钢、合金结构钢、不锈钢等。

选择时要考虑其机械性能、耐腐蚀性、可焊性等因素。

2.3 连接方式钢结构的连接方式主要有焊接、螺栓连接和铆接等,设计时应根据实际情况选择合适的连接方式,确保连接的牢固可靠。

三、施工工艺3.1 工艺准备施工前应做好工艺准备工作,包括加工和制作构件、预制各类节点连接件等,确保施工的顺利进行。

3.2 焊接工艺焊接是钢结构施工中最常用的连接方式,施工中应严格按照规范进行焊接作业,采取必要的防护措施,确保焊接质量。

3.3 混凝土浇筑在多层钢结构中,混凝土浇筑工艺是不可或缺的一环,在施工中应注意浇筑质量和混凝土与钢结构的连接工艺。

四、安全管理4.1 安全意识在施工过程中,施工人员应始终保持严谨的安全意识,严格遵守相关安全规定,确保施工现场的安全。

钢多高层结构设计手册

钢多高层结构设计手册

钢多高层结构设计手册钢多高层结构设计手册第一章:引言1.1 本手册的目的和范围本手册旨在为工程师和设计师提供一套完整的、系统的高层钢结构设计指南,以确保高层建筑的结构安全、稳定性和经济性。

本手册适用于超过30层的高层钢结构建筑设计和施工,并且概述了一些与空间结构和特殊结构相关的内容。

1.2 现行标准和规范高层建筑的设计必须符合国家和地区的建筑设计标准和规范要求。

本手册将根据最新的标准和规范提供设计建议,并指出其中的变化和差异。

1.3 本手册的结构本手册共包括八个章节,分别是:引言、材料、结构设计、节点设计、振动控制、防火设计、耐震设计和施工。

每个章节将逐一详细介绍相关的设计原则、计算方法、核心技术和注意事项。

第二章:材料2.1 钢材的选用和使用选取合适的钢材对于高层钢结构的设计和施工至关重要。

本章将介绍常用的结构钢种类、性能、优缺点,以及如何进行合理的材料选择。

2.2 钢材的特性与应用钢材的强度、延展性、疲劳性等特性对于高层钢结构的设计和施工具有重要影响。

本章将介绍钢材的力学特性,如强度、刚度、韧性等,并探讨其在高层结构中的应用。

2.3 钢材的预应力控制预应力技术在高层钢结构中具有重要的应用价值。

本章将介绍预应力的原理、方法和控制要点,并提供实际计算案例。

第三章:结构设计3.1 弹性设计基本原理弹性设计是高层钢结构的基本设计原则。

本章将介绍弹性设计的基本概念、假设条件和计算方法,并提供详细的计算流程和示例。

3.2 塑性设计基本原理塑性设计在高层钢结构设计中具有重要的应用价值。

本章将介绍塑性设计的原理、方法、局限性和计算要点,并提供实际计算案例。

3.3 极限状态设计基本原理极限状态设计对于高层钢结构的安全性和可靠性具有重要意义。

本章将介绍极限状态设计的基本原理、设计要求和计算方法,并提供详细的计算流程和示例。

第四章:节点设计4.1 节点设计基本原理节点是高层钢结构的重要组成部分,对于整体结构的性能和稳定性起着至关重要的作用。

高层建筑钢结构连接节点的抗震设计

高层建筑钢结构连接节点的抗震设计

高层建筑钢结构连接节点的抗震设计- 结构理论摘要:本文介绍高层建筑钢结构抗震设计时,并对钢结构构件节点和杆件接头处的三种杆件连接方式,其性能及适用范围进行了分析比较,然后对梁、与柱、柱与柱、梁与梁的连接以及抗震剪力墙与框架的连接等方式进行了阐述,以供同行参考。

关键词:高层建筑;钢结构;连接节点;安装1 前言随着城市建设的发展,高层建筑在我国日益增多。

高层钢结构具有承载力高、抗震性能好、施工周期短等特点,特别适用于高耸的高层建筑。

在高层钢结构抗震设计中,节点连接良好的抗震设计是保证结构安全的重要一环。

连接节点应满足强度、延性和耗能能力三方面的要求,其连接强度应高于相连构件端部的屈服承载力,并且必须有较大的变形能力,用以弥补强度方面的缺陷。

钢材本身具有很好的延性,但这种延性在结构中不一定能体现出来,这主要是由于节点局部压曲和脆性破坏而造成的,因此在设计中应采用合理的细部构造,避免应变集中而形成较大的约束应力。

在钢材的选用上应满足强度、塑性、韧性及可焊性的要求。

钢材强度指的是抗拉强度和屈服强度,钢材应具有较高的强屈比,其屈服强度的上限值和下限值应适当。

钢材的塑性表现在伸长率和冷弯性能两项指标上,反映钢材承受残余变形量的程度及塑性变形能力。

对抗震结构还必须满足冲击韧性的要求。

钢材另一重要的基本要求是对化学成分含量的限制,它将直接影响结构的可焊性,应控制钢材的碳当量。

在高层钢结构中,厚钢板的应用较为广泛,在梁一柱节点范围,当节点约束较强,板厚等于或大于40mm时,应附加要求板厚方向的断面收缩率,以防发生平行于钢材表面的层状撕裂。

2 杆件连接2.1连接方式2.1.1 连接类型建筑钢结构的构件节点和杆件接头处的杆件连接可采用:(1)全焊连接;(2)高强度螺栓连接;(3)焊缝和高强度螺栓混合连接。

2.1.2 性能比较2.1.2.1全焊连接,传力最充分,不会滑移。

良好的焊接构造和焊接质量可以为结构提供足够的延性。

高层钢结构建筑中的抗震设计思路分析

高层钢结构建筑中的抗震设计思路分析

高层钢结构建筑中的抗震设计思路分析【摘要】随着当今高层钢结构建筑的增多,探讨如何进行高层钢结构建筑的防震设计成为备受关注的焦点。

本文从概念设计、结构计算以及构造上入手,其设计结果经实践证明符合抗震水准。

【关键词】高层钢结构建筑;抗震;设计钢结构建筑与传统的混凝土建筑结构相比具有突出的优点,例如强度与重量比高、韧性好,因此被广泛的应用与各种类型的民用建筑以及商用的高层、超高层建筑中。

但是由于钢结构建筑的发展时间较短,很多现实的问题没有得到充分的解决,致使钢结构建筑的优势得不到充分的发挥,在面临地震作用下也会形成一定的破坏和损失。

1 概念设计概念设计即采用一种从总体上、大概的进行抗震的工程决策,以免盲目的进行计算工作,可以实现合理的抗震设计。

1.1 建筑场地场地的选择要充分的掌握了相关的工程地质资料以及地震活动情况的基础上对于建筑用地进行综合的评估。

经验表明,密实坚硬或者开阔平坦的坚硬场地食欲建筑使用,而易于液化土、软弱场地土、孤立的山丘、采空区以及河岸或者边坡均不适于建筑使用。

1.2地基与基础由于不均匀的沉降会给建筑物带来巨大的危害,因此要在地基的设置上避免将同一个结构单元设置于不同性质的地基土上,同时避免天然地基与桩基混用。

当遇到严重不均匀土层、软弱粘性土时要着重的加强基础的刚性与整体性。

1.3 平面与立面的布置由于钢结构建筑在地震中易于发生扭转、塑性变形以及应力集中的现象,从而使得抗震效果减弱。

而均匀的刚度变化、质量分布以及规则、对称的立面、平面设置可以有效的环节地震带来的破坏。

同时合理的设置抗震缝,将建筑物分割为规则的结构单元也可以起到加强房屋抗震的作用。

在此方面,我国已经出台了官运钢结构房屋的使用高度、高宽比的规定,如下表1、2:1.4 结构体系结构体系一般有着如下的规范要求:具备相当的承载力、耗能力与变形力;设置多重的抗震防线,以免发生部分的结构失效所带来的整体建筑破坏的后果;设计要满足刚度分布、承载力合理以及不发生因局部的削弱而导致的薄弱环节,同时对于可能会出现的薄弱环节要及时的采取措施提高其承载力。

结构抗震设计的基本概念及抗震结构的概念设计

结构抗震设计的基本概念及抗震结构的概念设计
2)竖向不规则 塔楼上部(4层楼面以上),北、东、西三面布置了密集的小柱子,共64根,支承在4层楼板水平 处的过渡大梁上,大梁又支承在其下面的10根1m× 1.55m的柱子上(间距9.4m)。上下两部分严
重不均匀,不连续。 主要破坏:第4层与第5层之间(竖向刚度和承载力突变),周围柱子严重开裂,柱钢筋压屈; 横向裂缝贯穿3层以上的所有楼板(有的宽达1cm),直至电梯井东侧; 塔楼西立面、其他立面窗下和电梯井处的空心砖填充墙及其它非结构构件均
建筑抗震概念设计基本内容
1.建筑设计应重视建筑结构的规则性; 2.合理的建筑结构体系选择; 3.抗侧力结构和构件的延性设计。
结构设计的7条基本原则
1、质量与刚度对称原则 2、比例协调原则 3、减轻自重原则,使建筑物自重减轻,重心降低, 4、弹性原则,采用均质材料 5、下部结构的可靠性原则,采用密实且具有足够刚度的
(1) 悬臂、倾斜体系,水平地震作用会导致较大的竖向位移。
特别是对于悬臂段,可能产生较大的竖向位移和振动,进而影 响建筑的正常使用; (2)倾斜、悬臂体系,使得结构在竖向地震作用下,存在较大 的水平和竖向动力响应; (3)地震作用下,结构基础承受较大的倾覆弯矩;(蹲马步) (4) 结构严重竖向不规则,结构各层的位移和内力响应沿高度 有很大变化,特别是在9 层(裙房顶层)和37层(悬臂底层) ,应 力高度集中,层间位移大; (5)结构倾斜和受力构件的不对称分布,使得结构对不同方向 水平地震作用的响应有一定差异; (6)地震作用下,结构会有较大的扭转变形; (7)薄弱部位的构件,在地震作用下应力水平较高,可能较早
地裂
1.2 选择有利于抗震的场地 《规范》3.3.4 地基和基础设计应符合下列要求: 1、同一结构单元的基础不宜设置在性质截然不同

试论建筑结构设计中抗震性能化设计要点

试论建筑结构设计中抗震性能化设计要点

试论建筑结构设计中抗震性能化设计要点摘要:我国常规建筑的抗震设计是基于承载力和刚度的设计方法,以小震为设计为基础,通过地震力的调整系数和各种抗震构造措施来保证中震和大震的抗震性能来实现“小震不坏,中震可修,大震不倒”的三水准抗震设防目标。

但对于特别重要的建筑或者特别不规则的建筑这类复杂的结构会对结构设计提出更高的要求。

抗震性能化设计可以通过计算及构造等抗震性能化设计手段,提高建筑抗震性能,增强建筑结构的抗震能力。

基于性能的抗震设计方法已经被广泛认可,并逐渐成为抗震设计的一个重要发展趋势。

关键词:抗震性能化设计;建筑工程;结构设计1 抗震性能化设计概述1.1 抗震性能化设计基本概念基于性能的抗震设计理论以结构抗震性能分析为基础,根据设防目标的分类不同划分不同的性能目标及设防等级,根据建设者不同的要求,设计者采用经济合理的抗震性能设计方法。

是一种考虑对抗震设计的深化与细化的“多级抗震设防”的方式。

抗震性能化设计的主要目的是在地震作用下的建筑物破坏程度处于预期范围内,并且在经济成本、使用时间和修复费用达到平衡。

抗震性能化设计的中心工作是确定设防标准、性能水准以及抗震性能目标。

1.2 抗震性能化设计方法当前性能化设计最常用的方法是基于位移的抗震设计方法,重点任务是结构的位移满足抗震性能设计要求,中心工作是控制结构的层间位移。

当结构或者构件进入非线性弹塑性阶段时,结构或者构件的内力增加很小,但是其对应的变形增加很大,因此抗震阶段的主要指标是控制结构的位移。

抗震性能化设计根据抗震性能要求调整放大竖向构件的内力,通过提高结构的变形能力,来提高结构的抗震性能,并适当提高结构的抗震承载力,推迟结构进入弹塑性工作阶段以减少弹塑性变形以更有利于实现抗震性能目标。

2 抗震性能化设计主要内容2.1 结构方案分析结构或者构件设计的第一步是判断其是否需要采用抗震性能化设计方法,并且从建筑物规则性、场地条件、结构类型及高度、抗震设防标准等五方面进行分析判断,选取合理的性能目标。

多层和高层钢结构节点抗震设计

多层和高层钢结构节点抗震设计
对铡框架构件及节 点的抗震承载力验算作
了如 下规 定 :
t 柱 节点域 的腹板厚度 。 另外 , 在钢结 构构件连接设计中 , 范 规
还 作 了如下 规 定 : 梁 与柱连接的极限受弯 , 受剪承载 力, 应 符 合下 列 要求 : M 12 MP ( .. 1 ≥ . 828 ) V ≥ 1 3 2 M l ) V. 0 5 . ( /n且 . ≥ .8
羹 羹 一
中 期 。 国。 c旺 。 科 HA. ・ 技年 m 信第 N T 息 A 。。 刚
维普资讯
多层和 高层钢结构节 点抗 震设 计
傅恒 沈阳铝镁设计研 究院 1 0 0 0 1
25 ) . 3
本 文 作 者 通 过 多年 的钢 结 构设 计 经验 , 结 合 及 新 的 《 筑 抗 震 设 计 规 范》 对 钢 结 构 节 点 抗 建 震 设 计 提 出 了 几 种 比 较 实 用 的 节 点 设 计 方
法 。
箱 形截 面柱 V =18 h hl t (. . l_w 8
25 ) . 4
i在弹性阶段 , . 梁柱连接处的抗弯能力 必须大于框架梁的抗弯能力 , 并使二者之比 ≥K( K为连接承载力抗震调整系数 与框架 梁 承 载 力 抗 震 调 整 系 数 之 比 ) 防 止 受 大 。 震作用时因梁柱连接处可能存在的某些缺 陷 导致框架横梁在尚未 出现塑性铰之前 , 节 点连 接就过 早地发 生脆性破 坏 。 2 在满足基本原则 1 , . 后 在弹塑性阶段 , 塑性铰必然将离开柱面 向外移 , 为此在弹性 设计阶段就应预测并人为控制 塑性铰的位 置, 使该位置梁截面最外纤维的最大弯曲应 力高于梁柱连接处焊缝 的最大弯曲应力, 以 便在大震时促使框架梁在可能出现 塑性铰 的部位 , 其翼缘在高应 力下首先屈服 , 产生塑 性变形 , 形成塑性铰 , 以达到耗散地震能量的

多层和高层钢结构抗震规范

多层和高层钢结构抗震规范

6多层和高层钢筋混凝土房屋6.1一般规定6.1.1本章适用的现浇钢筋混凝土房屋的结构类型和最大高度应符合表6.1.1的要求。

平面和竖向均不规则的结构或建造于Ⅳ类场地的结构,适用的最大高度应适当降低。

注:本章的“抗震墙”即国家标准《混凝土结构设计规范》GB50010中的剪力墙。

注: 1 房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分);2 框架-核心筒结构指周边稀柱框架与核心筒组成的结构;3 部分框支抗震墙结构指首层或底部两层框支抗震墙结构;4 乙类建筑可按本地区抗震设防烈度确定适用的最大高度;5 超过表内高度的房屋,应进行专门研究和论证,采取有效的加强措施。

6.1.2钢筋混凝土房屋应根据烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算和构造措施要求。

丙类建筑抗震等级应按表6.1.2确定。

6.1.3 钢筋混凝土房屋抗震等级的确定,尚应符合下列要求:1框架-抗震墙结构,在基本振型地震作用下,若框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,最大适用高度可比框架结构适当增加。

2裙房与主楼相连,除应按裙房本身确定外,不应低于主楼的抗震等级;主楼结构在裙房顶层及相邻上下各一层应适当加强抗震构造措施。

裙房与主楼分离时,应按裙房本身确定抗震等级。

3当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。

地下室中无上部结构的部分,可根据具体情况采用三级或更低等级。

4 抗震设防类别为甲、乙、丁类的建筑,应按本规范3.1.3条规定和表6.1.2确定抗震等级;其中,8度乙类建筑高度超过表6.1.2规定的范围时,应经专门研究采取比一级更有效的抗震措施。

注:本章“一、二、三、四级”即“抗震等级为一、二、三、四级”的简称。

注:1建筑场地为Ⅰ类时,除6度外可按表内降低一度所对应的抗震等级采取抗震构造措施,但相应的计算要求不应降低;2接近或等于高度分界时,应允许结合房屋不规则程度及场地、地基条件确定抗震等级;3 部分框支抗震墙结构中,抗震墙加强部位以上的一般部位,应允许按抗震墙结构确定其抗震等级。

高层建筑的抗震设计

高层建筑的抗震设计

高层建筑的抗震设计高层建筑是现代城市发展中不可或缺的一部分,它们不仅提供了大量的办公和居住空间,也是城市地标和人们生活的象征。

然而,由于地震的频发和破坏力,高层建筑的抗震设计显得尤为重要。

本文将探讨高层建筑的抗震设计原则、技术以及未来的发展趋势。

一、抗震设计原则1. 结构合理性高层建筑的结构设计应合理,结构形式选择应考虑各种力的影响,如竖向荷载、水平荷载以及地震荷载。

2. 隔震设计隔震设计是高层建筑抗震的关键措施之一。

通过设置隔震装置,能有效减轻地震对建筑物的冲击。

常见的隔震装置包括橡胶隔震支座和钢球隔震装置等。

3. 抗震墙抗震墙是高层建筑中常见的抗震设计手段。

通过将抗震墙布置在建筑的关键部位,可以提高建筑的整体抗震能力。

4. 钢结构设计钢结构在高层建筑中的应用越来越广泛,其强度和韧性使其成为抗震设计的理想选择。

钢结构能够在地震中更好地吸收能量,并分散到整个结构中。

5. 增加结构强度通过增加材料的强度和截面尺寸,可以提高高层建筑的抗震能力。

在设计过程中,应根据地震的烈度和建筑物的高度,选择适当的强度和截面尺寸。

二、抗震设计技术1. 数值模拟数值模拟是高层建筑抗震设计中常用的技术手段之一。

通过计算机模拟地震力对建筑物的作用,可以评估不同结构形式和材料参数的抗震性能。

2. 结构监测与预警系统结构监测与预警系统可以实时监测高层建筑的结构状态,并在地震发生前提供预警信息。

这为人们提供了逃生和避险的宝贵时间。

3. 新型材料的应用随着科技的进步,新型材料如碳纤维复合材料等逐渐应用到高层建筑的抗震设计中。

这些材料具有更好的抗震性能和轻质高强的特点。

4. 钢筋混凝土结构的优化在高层建筑的抗震设计中,钢筋混凝土结构是最常见的结构形式之一。

通过优化设计方法和加强施工质量管理,可以提高钢筋混凝土结构的抗震性能。

三、未来的发展趋势1. 结构柔性化未来的高层建筑抗震设计将朝着结构柔性化发展。

通过使用可调节的结构和材料,在地震发生时,建筑物可以自动调整结构形态,减少地震荷载对建筑的影响。

抗震概念与高层建筑结构设计

抗震概念与高层建筑结构设计

浅谈抗震概念与高层建筑结构设计摘要:针对目前建筑结构设计当中过分依赖结构软件计算结果,不注重结构的构造设计。

提倡采用概念设计思想来促进结构工程师的创造性,推动结构设计的发展。

所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确力学分析或在规范中难以规定的问题中,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。

关键词:建筑设计;概念设计;抗震近十年来,高层建筑大量涌现,其结构一般都是不规则的,有些是特别不规则的,从而使结构设计遇到了许多难点,结构工程师发挥了创造才能,尽可能地解决结构设计中的难题和技术关键,从而陆续产生了能适应建筑师创新意识的多种复杂高层建筑结构体系。

高层建筑连体结构是一种新型结构形式,通过在不同建筑塔楼间设置连接体使其成为共同的使用空间。

同时,由于连体建筑的独特外形能够带来强烈的视觉效果,使建筑型体更具特色。

1.我国现行规范对抗震设计的要求地震作用是一种随机的不可复制的自然运动,是其大小和方向都无法确定的一种偶然荷载。

根据我国《抗规》规定,建筑物的抗震设计按“三水准二阶段”进行,即体现“小震不坏,中震可修,大震不倒”的原则,一般情况下遭遇第一水准烈度时,建筑处于正常使用状态,从结构抗震设计计算的角度,可以视为弹性体系,用弹性反应谱进行弹性阶段分析;当遭遇第二水准烈度时,结构进入非弹性工作阶段,但非弹性变形或结构体系的损坏控制在可修复的范围,此阶段的设计主要由构造来体现;遭遇第三水准烈度时,结构有较大的非弹性变形,但变形控制在规定的范围内,以免倒塌。

二阶段的设计即是按小震作用效应和其他荷载效应的基本组合验算结构构件的承载能力以及在小震作用下验算结构的弹性变形,一般采用的是弹性反应谱分析方法,以满足第一水准抗震设防目标的要求;第二阶段是在大震作用下验算结构的弹性塑性变形,以满足第三水准抗震设防目标的要求。

对于第二水准抗震设防目标的要求,《抗规》是以抗震措施来加以保证的。

钢结构抗震设计讲解

钢结构抗震设计讲解

Crack at the top of a column
No.42 Failure of welded part at the beam end
No.71 Local buckling of a single-column steel pier
Brittle failure of a column of a high-rise steel structure
No.40 Fracture of a welded column joint (6-story steel building)
No.43 Failure at a beam-column connection
4 基础锚固破坏 Failure of column base
5 构件破坏
日本神户地震
6.2.5地下室
多、高层钢结构设置地下室对于提高上部结构抗震 稳定性、提高结构抗倾覆能力、增加结构下部整体性、 减小结构沉降起有利作用。
地下室及其基础作为上部结构连续的锚连部分,应 具有可靠的埋置深度和足够的承载力及刚度。因此, 《建筑抗震设计规范》规定,对于超过12层的钢结构应 设置地下室,其基础埋置深度,当采用天然地基时不宜小 于房屋高度的1/15;当采用桩基时,桩承台埋深不宜小 于房屋总高度的1/20。
6.1 震害特征及原因
表6-1 1985年墨西哥城地震中钢结构和钢筋混凝土结构的破坏情况
建造年份
1957年以前 1957~1976
年 1976年以后
钢结构 倒塌 严重破坏
7
1
3
1
0
0
钢筋混凝土结构 倒塌 严重破坏
27
16
51
23
4
6
总体来说,在同等场地、烈度条件下,钢结构房屋的震害较 钢筋混凝土结构房屋的震害要小。

高层钢结构房屋抗震设计

高层钢结构房屋抗震设计

高层钢结构房屋抗震设计作者:牛超蔡肖娴来源:《装饰装修天地》2016年第04期摘要:随着人们对高层钢结构建筑的需求越来越大,其抗震设计越来越引起人们的高度重视。

本文阐述了高层钢结构房屋抗震设计的内容:包括概念设计、计算设计和构造要求,以供参考。

关键词:高层钢结构房屋;抗震设计前言钢材基本属于各向同性的均质材料,且轻质高强、延性好,是一种很适合于建筑抗震结构的材料。

但是,钢结构房屋如果设计与制造不当,在地震作用下,可能发生构件的失稳和材料的脆性破坏或连接破坏,使钢材的性能得不到充分发挥,造成灾难性后果。

因此,高层钢结构房屋的抗震设计就显得非常重要和必要。

一、概念设计1.建筑场地在选择建筑场地时,应根据工程需要,掌握地震活动情况和工程地质的有关资料,对建筑场地做出综合评价。

宜选择对建筑抗震有利的地段,如开阔平坦的坚硬场地土或密实均匀的干硬场地土等地段,避开对建筑抗震不利的地段,如软弱场地土、易液化土、条状突出的山嘴、高耸孤立的山丘,非岩质的陡坡、采空区、河岸和边坡边缘等地段。

2.地基和基础为了避免建筑物不均匀沉降而导致结构产生裂缝、甚至倾斜,使结构构件过早进入塑性区,同一结构单元不应设置在性质截然不同的地基土上,不宜部分采用天然地基,部分采用桩基;地基有软弱粘性土、可液化土或严重不均匀土层时,应加强基础的整体性和刚性。

3.平面和立面布置为了避免地震时建筑发生扭转和应力集中或塑性变形集中而形成薄弱环节,建筑平面、立面布置宜规则、对称,质量分布和刚度变化宜均匀。

当不设置抗震缝时,应采用与实际情况相符合的计算模型,设置抗震缝时,应将建筑物分割成规则的结构单元。

我国《抗震规范》对高层钢结构房屋的最大适用高度和钢结构房屋的最大高宽比都有规定。

4.结构体系应具有明确的计算简图和合理的地震作用传递途径;应有多道抗震设防防线,避免因部分结构或构件失效而导致整个体系丧失抗震能力或丧失对重力的承载能力;应具备必要的承载能力,良好的变形能力和耗能能力;应具有合理的刚度分布和承载力分布,避免因局部削弱或突变而形成薄弱部位,产生过大的应力集中或塑性变形集中,对可能出现的薄弱部位,应采取措施提高其承载能力。

试谈高层建筑结构抗震设计理念及方法

试谈高层建筑结构抗震设计理念及方法
■ 孙明亮 ■ S u n Mi n g l i a n g
【 摘 要】从 改变物体运动 状态 的根本 原因 出发我 们出得有
对 比 安全和稳 固性 能可知 , 高层 建筑 具有较 高的摆 动性和 柔韧 性,对于越是高层 的建筑物来说 ,它 的 周期振 幅也就越大 ,因此在设计 中应在高层建筑地 基基础 上和 抗震预测设计方面上首要考虑尽可 能优 先满足其延 展性和 足够的强度和刚度 。换而言之 , 在地震 的严 重作用 下,结构进入弹塑性阶段后 ,仍 具有着抵抗地震作 用的足 够强度变形能力 ,由此 出 发通过科学详细分 析计算和实验结果 ,我们得 出该 高层建筑不会发生倒 塌事故的结论。这种看似矛盾 的关 系 在 实 际 工 作 中 却 屡 见 不 鲜 。 二、 高层建筑结构类型 高层建筑采用 的基本 原始结构以钢筋混凝土结 构 ( 如广东国际大厦 ) 、钢结构 ( 如北京 国际贸易中 心) 、钢一钢 筋混凝 土组合结构 ( 如北京香格里拉饭 店)等为主要代表 已经在我们 身边崛地而起,就 目 前正在使用的情形来分析判 断来 看,它们 无疑是可 以使 我们信服的 ,可完全信赖 的最好权威 证明。然 而诚 如俗话说学如逆水行舟 ,不进 则退 ,对比可知 高层 建筑结构设计亦如此 ,所 以我们 为了能够设计 出更 好的结构大胆做 出了根据对 比它们 的不同特 点
全 是 正 常 的 , 因 又 一 个 很 严 肃 的 问题 就 出现 了 ,那
【 Ke y wo r d s l s e i s mi c f o r t i i f c a t i o n ,s t r u c t u e r s y s t e m,s t r u c t u r e
【 关键 词】 抗震设 防 结构体系 结构构件 概念 设计

多层和高层钢结构房屋抗震设计新规定

多层和高层钢结构房屋抗震设计新规定

一、一般规定
8.1.7条 是2001规范的8.1.8条,主要是作了文字修改。 8.1.8条 1.是2001规范的8.1.7条; 2.对楼板需要设置水平支撑的情况作了明确:转换层楼 盖或楼板有很大洞口。 8.1.9条 1.将2001规范的8.1.9、8.1.10条进行了合并; 2.对第1款作了文字修改,增加了“……其竖向荷载应直 接传至基础。”目的是使传力变成简单、直接。
6.依据抗震性能化设计的方法,当按提高一度的地 震内力进行构件抗震承载力(包括强度和稳定) 验算时,则可以按降低了的抗震等级检查该构件 的延性构造要求。
一、一般规定
8.1.4条 取消了2001规范中的前半句话。可按3.4.3 条执行。3.4.3条对混凝土结构和钢结构均有效。 8.1.5条 作了改动。主要是对超过50m,8、9度地 区的钢结构房屋,推荐耗能性能好的体系。同时对 单跨框架结构做出了限制。主要是参照混凝土结构 新增加的。 8.1.6条 1.把2001规范8.4.1条列入了第3款; 2.增加了一款对屈曲约束支撑布置的要求。作为一 种消能部件的设计方法根据本规范第12.3节设计; 3.屈曲约束支撑可分为承载型、耗能承载型和阻尼 器3种类型。
总体上,修订后的钢结构,地震作用有所降低, 承载力抗震调整系数有所减小,长细比和宽厚比的 构造要求更加体现延性的特点,可比2001规范更加 经济些。
对于2001规范中已有规定而这次变更不大的内容, 只作一般介绍,着重说明本次修订中的新规定。
一、一般规定
8.1.1条 高层民用建筑钢结构不同结构体系在各设防烈 度时的合理高度取值,与2001年规范的规定大体一致。
200m时可取0.03;高度不小于200m时保持0.02。
二、计算要点
• 偏心支撑框架部分承担的地震倾覆力矩大于结构总地 震倾覆力矩的50%以上时,其阻尼比相应增加0.005。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多高层钢结构抗震概念设计主要内容多高层钢结构抗震概念设计
随着城市化进程的加快和人口规模的增加,高层建筑的需求也逐渐增多。

然而,高层建筑由于其特殊的结构和地理位置,所面临的抗震挑战较大。

为了保障高层建筑的安全性和可持续发展,抗震概念设计成为了不可忽视的重要环节。

一、建立合理的概念设计阶段
多高层钢结构抗震概念设计的第一步是建立合理的设计阶段。

在此阶段,需要
综合考虑建筑物的地理位置、结构,以及所需承载的荷载等因素,制定相应的参数和准则。

例如,钢结构的荷载参数可以根据高层建筑的使用类型和人口密度进行合理的确定。

此外,在地震区域,还应根据当地的地震烈度和震害性等级,确定高层建筑的抗震性能指标。

二、采用适当的抗震设计理念
高层建筑的抗震设计理念是保证其抗震性能的关键。

常见的抗震设计理念有强
柔度抗震设计理念和强刚度抗震设计理念。

强柔度抗震设计理念追求结构的柔度和位移能力,通过增加结构的变形能力来消减地震荷载。

而强刚度抗震设计理念则注重结构的刚度和强度,通过增加结构的刚度来分担地震荷载。

针对高层建筑,一般采用强柔度抗震设计理念较为常见,它适应了高层建筑柔度较大的特点,能够在地震中减小结构的反应。

三、合理选择结构形式和材料
高层建筑的抗震性能与其结构形式和使用的材料密切相关。

结构形式的选择应
兼顾高层建筑的空间布局和抗震性能。

例如,采用中央核心筒或框架-筒式结构,
可以提高高层建筑的整体稳定性和抗风能力。

此外,钢材作为高层建筑常用的结构材料之一,具有高强度和较好的韧性,能够满足高层建筑对抗震性能的要求。

四、增强结构的抗震能力
为增强高层钢结构的抗震能力,可以采取多种措施。

一方面,通过合理的结构布置和振动控制技术,减小结构的振动幅度,降低地震对结构的破坏程度。

另一方面,采用抗震剪力墙、减震装置等增加结构的抗震性能。

例如,采用钢筋混凝土剪力墙可以提高结构的刚度和抗震能力;采用减震装置可以有效吸收地震能量,降低结构的震动反应。

五、加强施工质量管理
高层钢结构的抗震概念设计需要与施工质量管理相结合,确保设计方案能够有效实施。

在施工过程中,严格遵守设计要求,进行全程质量监控和质量验收,及时发现和解决施工中的问题。

合理的施工工艺和严格的施工质量控制,可以保证高层钢结构的抗震性能符合设计要求。

总结起来,多高层钢结构抗震概念设计需要建立合理的概念设计阶段,采用适当的抗震设计理念,合理选择结构形式和材料,增强结构的抗震能力,并加强施工质量管理。

这些措施的综合应用,可以提高高层建筑的抗震能力,保障其安全性和可持续发展。

相关文档
最新文档