北师大版七年级下学期第二章相交线与平行线测试题(最新整理)

合集下载

北师大版七年级数学下册第二章 相交线与平行线练习(含答案)

北师大版七年级数学下册第二章 相交线与平行线练习(含答案)

第二章 相交线与平行线一、单选题1.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒2.如图CD⊥AB,⊥C=90°,线段AC 、BC 、CD 中最短的是( )A .ACB .BC C .CD D .不能确定 3.如图,下列说法正确的是( )A .A ∠与⊥1与是内错角B .A ∠与2∠是同旁内角C .⊥1与2∠是内错角D .A ∠与3∠是同位角4.下列说法正确的是( )A .一条直线的平行线有且只有一条B .经过一点有且只有一条直线与已知直线平行C .经过一点有两条直线与已知直线平行D .过直线外一点有且只有一条直线与已知直线平行5.如图,能判定EB ⊥AC 的条件是( )A .⊥C =⊥ABEB .⊥A =⊥EBDC .⊥C =⊥ABCD .⊥A =⊥ABE 6.如图,点E 在AD 的延长线上,下列条件中能判断AB ⊥CD 的是( )A .⊥3=⊥4B .⊥1=⊥2C .⊥C =⊥CDED .⊥C +⊥ADC =180° 7.AF 是BAC ∠的平分线,//,DF AC 若70,BAC ∠=︒则1∠的度数为( )A .17.5B .35C .55D .708.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒ 9.下列对尺规作图步骤的描述不准确的是( )A .作ABC ∠,使ABC αβ∠=∠+∠B .作AOB ∠,使2AOB α∠=∠C .以点A 为圆心,线段a 的长为半径作弧D .以点O 为圆心作弧10.如图,已知直线AB 、CD 被直线AC 所截,AB⊥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设⊥BAE=α,⊥DCE=β.下列各式:⊥α+β,⊥α﹣β,⊥β﹣α,⊥360°﹣α﹣β,⊥AEC 的度数可能是( )A .⊥⊥⊥B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥⊥⊥二、填空题 11.如图,直线AB 、CD 相交于点O ,OA 平分⊥EOC ,⊥EOC=80°,则⊥BOD=_____.12.如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是___.13.如图,已知AB ,CD ,EF 互相平行,且⊥ABE =70°,⊥ECD =150°,则⊥BEC =________°.14.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .三、解答题15.如图,直线AB ,CD 相交于点O ,OE AB ⊥,垂足为O .(1)直接写出图中AOC ∠的对顶角为 ,BOD ∠的邻补角为 ; (2)若:1:2BOD COE ∠∠=,求AOD ∠的度数.16.如图,已知四边形ABCD ,AB⊥CD ,点E 是BC 延长线上一点,连接AC 、AE ,AE 交CD 于点F ,⊥1=⊥2,⊥3=⊥4.证明:(1)⊥BAE=⊥DAC;(2)⊥3=⊥BAE;(3)AD⊥BE.17.如图,已知AB⊥CD,⊥B=60°,CM平分⊥ECB,⊥MCN=90°,求⊥DCN的度数.18.如图,已知BC⊥GE,AF⊥DE,点D在直线BC上,点F在直线GE上,且⊥1=50°.(1)求⊥AFG的度数;(2)若AQ平分⊥FAC,交直线BC于点Q,且⊥Q=18°,则⊥ACB的度数为______°.(直接写出答案)答案1.A2.C3.D4.D5.D6.B7.B8.A9.D10.D11.40°12.内错角13.4014.12515.(1)⊥AOC 的对顶角为:⊥BOD⊥BOD 的邻补角为:⊥BOC ,⊥AOD(2)⊥:1:2BOD COE ∠∠=设⊥BOD=x,则⊥COE=2x⊥OE⊥AB⊥⊥EOB=90°⊥⊥COE+⊥BOD=90°,即x+2x=90°解得:x=30°⊥⊥BOD=⊥COA=30°⊥⊥AOD=150°16.证明:(1)⊥⊥1=⊥2,⊥⊥1+⊥CAE=⊥2+⊥CAE,即⊥BAE=⊥DAC;(2)⊥AB⊥CD,⊥⊥4=⊥BAE,⊥⊥3=⊥4,⊥⊥3=⊥BAE;(3)⊥⊥3=⊥BAE,⊥BAE=⊥DAC,⊥⊥3=⊥DAC,⊥AD⊥BE.17.⊥AB⊥CD,⊥⊥B+⊥BCE=180°,⊥BCD=⊥B,⊥⊥B=60°,⊥⊥BCE=120°,⊥BCD=60°,⊥CM平分⊥BCE,⊥⊥ECM=12⊥BCE=60°,⊥⊥MCN=90°,⊥⊥DCN=180°-60°-90°=30°.18.(1)⊥BC⊥EG,⊥⊥E=⊥1=50°.⊥AF⊥DE,⊥⊥AFG=⊥E=50°;(2)作AM⊥BC,⊥BC⊥EG,⊥AM⊥EG,⊥⊥FAM=⊥AFG=50°.⊥AM⊥BC,⊥⊥QAM=⊥Q=18°,⊥⊥FAQ=⊥FAM+⊥QAM=68°.⊥AQ平分⊥FAC,⊥⊥QAC=⊥FAQ=68°,⊥⊥MAC=⊥QAC+⊥QAM=86°.⊥AM⊥BC,⊥⊥ACB=⊥MAC=86°故答案为:86。

北师大版七年级下册数学第二章相交线与平行线测试题(附答案)

北师大版七年级下册数学第二章相交线与平行线测试题(附答案)

北师大版七年级下册数学第二章相交线与平行线测试题(附答案)北师大版七年级下册数学第二章相交线与平行线测试题(附答案)一、单选题1.如图,已知直线l1∥l2,将一块直角三角板ABC按如图所示方式放置,若∠1=39°,则∠2等于()A。

39° B。

45° C。

50° D。

51°2.如图.直线a∥b,直线L与a、b分别交于点A,B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A。

130° B。

50° C。

40° D。

25°3.如图,三点共线A、B、C,D、E、F三点共线,且AD∥CF,BE∥CD,下列结论错误的是()A。

∠ABE=∠XXX∠ABE=∠CDEC。

∠ABE=∠XXX∠ABE=∠BDF4.如图,平行线AB∥CD,EF⊥CD,垂足为G,图中∠AGE=()A。

90° B。

45° C。

30° D。

60°5.如图,互余的角有()A。

1个 B。

2个 C。

3个 D。

4个6.如图,AB∥CD,EF∥GH,则下列等式正确的是()A。

∠AEF=∠GHF B。

∠AEF=∠HGFC。

∠XXX∠GHF D。

∠XXX∠HGF7.已知同一平面内的三条直线AB,CD,EF,AB∥CD,CD∥EF,则下列结论错误的是()A。

AB∥EF B。

AB∥CD C。

EF∥CD D。

AB∥EF8.如果a<b,且a+b=5c,如果c<a,b<c,比a与b 的和的3倍少2,那么a与b的位置关系是()A。

a<b B。

a>b C。

a=b D.无法确定9.如图,已知AB∥CD,AE=2cm,EC=3cm,则图中互相平行的线段是()A。

AB//CD B。

AE//DC C。

BE//CD D。

AB//EC10.如图,AB∥CD,点E在直线AD上,且∠AEC=34°,则∠BED的大小为()A。

北师大版七年级数学下册第二章相交线与平行线综合测评试卷(含答案详细解析)

北师大版七年级数学下册第二章相交线与平行线综合测评试卷(含答案详细解析)

北师大版七年级数学下册第二章相交线与平行线综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、嘉淇在用直尺和圆规作一个角等于已知角的步骤如下:已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB作法:(1)如图,以点O为圆心,m为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,n为半径画弧,交O′A′于点C′;(3)以点C′为圆心,p为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.下列说法正确的是()n>0 D.m=n>0A.m=p>0 B.n=p>0 C.p=122、如图,点C 在∠AOB 的OB 边上,用尺规作出了∠NCE =∠AOD ,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧3、如图,∠1=∠2,∠3=25°,则∠4等于( )A .165°B .155°C .145°D .135° 4、在下列各题中,属于尺规作图的是( )A .用直尺画一工件边缘的垂线B .用直尺和三角板画平行线C .利用三角板画45︒的角D .用圆规在已知直线上截取一条线段等于已知线段5、已知1∠和2∠互余,且14017'∠=︒,则2∠的补角是() A .4943'︒ B .8017'︒ C .13017'︒ D .14043'︒6、下列说法不正确的是( )A .两点确定一条直线B .经过一点只能画一条直线C .射线AB 和射线BA 不是同一条射线D .若∠1+∠2=90°,则∠1与∠2互余7、如图,已知//AD BC ,32B =︒∠,DB 平分ADE ∠,则DEC ∠=( )A .32°B .60°C .58°D .64°8、已知一个角等于它的补角的5倍,那么这个角是( )A .30°B .60°C .45°D .150°9、一个角的余角比这个角的补角的一半小40°,则这个角为( )A .50°B .60°C .70°D .80°10、如图,射线AB 的方向是北偏东70°,射线AC 的方向是南偏西30°,则∠BAC 的度数是()A .100°B .140°C .160°D .105°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.2、在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小李同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.王老师说:小李同学的方案是正确的.请回答:该方案最节省材料的依据是垂线段最短和______.3、若α=25°57′,则2α的余角等于_____.4、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为_____.5、如图,已知AB CD∠=︒,则ACEA∥,CE平分ACD∠,50∠=______°.三、解答题(5小题,每小题10分,共计50分)1、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC(),∴∠B+∠DCB=180°().∵∠B=()(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=()(垂直的定义).∴∠2=().∵AB∥DC(已知),∴∠1=()().∵AC平分∠DAB(已知),∴∠DAB=2∠1=()(角平分线的定义).∵AB∥DC(己知),∴()+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB=.2、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.(1)∵∠1=∠2(已知)∴∥CD()∴∠ABD+∠CDB = ()(2)∵∠BAC=65°,∠ACD=115°,( 已知 )∴∠BAC+∠ACD=180° (等式性质)∴AB∥CD()(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)∴∠ABD=∠CDF=90°(垂直的定义)∴∥(同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD = ()3、如图,直线AB 、CD 相交于点O ,OE 是AOD ∠平分线,26AOC ∠=︒,求AOE ∠度数.4、如图,在边长为1的正方形网格中,点A 、B 、C 、D 都在格点上.按要求画图:(1)如图a ,在线段AB 上找一点P ,使PC +PD 最小.(2)如图b ,在线段AB 上找一点Q ,使CQ ⊥AB ,画出线段CQ .(3)如图c ,画线段CM ∥AB .要求点M 在格点上.5、已知A ,O ,B 三点在同一条直线上,OD 平分AOC ∠,OE 平分BOC ∠.(1)若90AOC ∠=︒,如图1,则DOE ∠= ︒;(2)若50AOC ∠=︒,如图2,求DOE ∠的度数;(3)若AOC α∠=0180()α︒<<︒如图3,求DOE ∠的度数.-参考答案-一、单选题1、D【分析】利用作法根据圆的半径相等可得出m=n>0,两个三角形的边长相同,即可得到结论.【详解】解:由作图得OD=OC=OD′=OC′=m=n,CD=C′D′=p,∵m为半径=OC,p为半径=C′D′,m≠P,故选项A不正确;∵n为半径=OC′,p为半径=C′D′,n≠p,故选项B不正确;p为半径确定角的张口大小,与n的大小没直接关系,12p n,故选项C不正确;∵m与n均为半径确定夹角的两边要相同m=n>0.故选项D正确.故选:D.【点睛】本题考查了作图-基本作图:基本作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.2、D【分析】根据作一个角等于已知角的步骤即可得.【详解】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.3、B【分析】∠=∠,最后即可求出∠4.设∠4的补角为5∠,利用∠1=∠2求证a b∥,进而得到35【详解】解:设∠4的补角为5∠,如下图所示:∠1=∠2,a b∥,∴∠=∠=︒,3525∴∠=︒-∠=︒.41805155故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.4、D【分析】根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.【详解】解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;B 、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;C 、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;D 、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;故选D .【点睛】本题主要考查了尺规作图的定义,解题的关键在于熟知定义.5、C【分析】由余角的定义得∠2=90°-∠1,由补角的定义得2∠的补角=90°+∠1,再代入∠1的值计算.【详解】解:∵1∠和2∠互余,∴∠2=90°-∠1,∴2∠的补角=180°-∠2=180°-(90°-∠1)=180°-90°+∠1=90°+∠1,∵14017'∠=︒,∴2∠的补角=90°+4017'︒=13017'︒,故选C .【点睛】本题考查了余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.6、B【分析】根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.【详解】解:A、两点确定一条直线,说法正确,不符合题意;B、过一点可以画无数条直线,说法错误,符合题意;C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B.【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.7、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.【详解】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32° .∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC =∠ADE =64°.故选:D .【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.8、D【分析】列方程求出这个角即可.【详解】解:设这个角为x ,列方程得:x =5(180°−x )解得x =150°.故选:D .【点睛】本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.9、D【分析】设这个角为x ,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x ,则它的余角为(90°-x ),补角为(180°-x ), 依题意得()()118090402x x ︒--︒-=︒解得x =80°故选D .【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.10、B【分析】根据方位角的含义先求解,,,BAD CAE DAE 再利用角的和差关系可得答案.【详解】解:如图,标注字母,射线AB 的方向是北偏东70°,射线AC 的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.二、填空题1、120【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,∴∠BOC=120°.故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.2、两点之间线段最短【分析】根据两点之间线段最短即可得到答案.【详解】解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.3、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.4、7511'︒【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴1=75112DOC AOC'=︒∠∠,故答案为:7511'︒.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.5、65【分析】ACD A再利用角平分线的定义可得答案.由平行线的性质先求解180130,【详解】解:AB CD∠=︒,∥,50AACD A180130,CE平分ACD∠,165,ACE ACD2故答案为:65【点睛】本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.三、解答题1、见解析.【分析】先根据平行线的性质可得180∠=︒,再根据垂直的定义可得DCBB DCB∠+∠=︒,从而可得130∠=︒,从而可得240∠=︒,然后根据平行线的性质可得1240ACB90∠=∠=︒,根据角平分线的定义可得∠=∠=︒,最后根据平行线的性质即可得.2180DAB【详解】解:∵AB DC(已知),∴180∠+∠=︒(两直线平行,同旁内角互补).B DCB∵50∠=︒(已知),B∴180********∠=︒-∠=︒-︒=︒.DCB B⊥(已知),∵AC BC∴90∠=︒(垂直的定义).ACB∴240∠=︒.∵AB DC(已知),∴140∠=︒(两直线平行,内错角相等).∵AC平分DAB∠(已知),∴2180∠=∠=︒(角平分线的定义).DAB∵AB DC(己知),∴180∠+∠=︒(两条直线平行,同旁内角互补).D DAB∴180100∠=︒-∠=︒.D DAB【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.2、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.【分析】(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.【详解】解:(1)∵∠1=∠2 (已知)∴AB∥CD(内错角相等,两直线平行)∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)∵∠BAC=65°,∠ACD=115°,(已知)∴∠BAC+∠ACD=180° (等式性质 )∴AB∥CD (同旁内角互补,两直线平行)故答案为:同旁内角互补,两直线平行;(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°,(已知)∴∠ABD=∠CDF=90°(垂直的定义)∴AB∥CD(同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD = 125°.(两直线平行,同旁内角互补)故答案为:AB;CD;125°;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.3、77°【分析】由题意根据平角的定义以及角平分线的性质可以求得∠AOE的度数.【详解】解:∵OE是∠AOD的平分线,∠AOC=26°,∴∠AOD=180°-∠AOC=154°,∴∠AOE=1∠AOD=77°.2【点睛】本题考查角平分线的定义,邻补角、对顶角,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想进行解答.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.【详解】解:(1)如图a,点P即为所求;(2)如图b,点Q和线段CQ即为所求;(3)如图c ,线段CM 即为所求.【点睛】本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.5、(1)90;(2)90°;(3)90°【分析】(1)由A ,O ,B 三点在同一条直线上,得出180AOB ∠=︒,则90BOC ∠=°,由角平分线定义得出1452DOC AOC ∠=∠=︒,1452COE BOC ∠=∠=︒,即可得出结果; (2)由50AOC ∠=︒,则130BOC ∠=︒,同(1)即可得出结果;(3)易证180BOC α∠=︒-,同(1)得1122DOC AOC α∠=∠=,119022COE BOC α∠=∠=︒-,即可得出结果.【详解】解:(1)A ,O ,B 三点在同一条直线上,180AOB ∴∠=︒, 90AOC ∠=︒,90BOC ∴∠=︒, OD 平分AOC ∠,OE 平分BOC ∠,1452DOC AOC ∴∠=∠=︒,1452COE BOC ∠=∠=︒,454590DOE DOC COE ∴∠=∠+∠=︒+︒=︒,故答案为:90;(2)50AOC ∠=︒,18050130BOC ∴∠=︒-︒=︒,同(1)得:1252DOC AOC ∠=∠=︒,1652COE BOC ∠=∠=︒,256590DOE DOC COE ∴∠=∠+∠=︒+︒=︒; (3)180AOB ∠=,180BOC α∴∠=︒-,同(1)得:1122DOC AOC α∠=∠=,111(180)90222COE BOC αα∠=∠=︒-=︒-,11909022DOE DOC COE αα∴∠=∠+∠=+︒-=︒. 【点睛】本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.。

北师大版七年级数学下册第二章相交线与平行线测试卷

北师大版七年级数学下册第二章相交线与平行线测试卷

北师大版七年级数学测试卷(考试题)第二章相交线与平行线周周测1一、选择题1.在一个平面内,任意三条直线相交,交点的个数最多有( )A.7个B.6个C.5个D.3个2.在同一平面内,两条直线的位置关系可能是( )A.相交、平行B.相交、垂直C.平行、垂直D.平行、相交、垂直3.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个4.面四个图形中,∠1与∠2是对顶角的是( )A. B. C. D.5.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°6.如图,点P在直线AB外,在过P点的四条线段中表示点P到直线AB距离的是线段( ) A.PA B.PB C.PC D.PD二、填空题7.如图,两条直线a、b相交于点O,若∠1=70°,则∠2=_____.8.试用几何语言描述下图:_____.9.如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是_____.10.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为_____.三、解答题11.如图,已知:直线AB与CD相交于点O,∠1=50°.求:∠2和∠3的度数.12.如图,已知DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,DO和AB有怎样的位置关系?为什么?13.平面上有9条直线,任意两条都不平行,欲使它们出现29个交点,能否做到,如果能,怎么安排才能做到?如果不能,请说明理由.14.如图,直线AB、CD相交于点O,OE⊥CD,OF⊥AB,∠BOD=25°,求∠AOE和∠DOF 的度数.第二章相交线与平行线周周测1参考答案与解析一、选择题1.答案:D解析:条直线相交时,位置关系如图所示:判断可知:最多有3个交点,故选D.2.答案:A解析:在同一个平面内,两条直线只有两种位置关系,即平行或相交,故选A.3.答案:D解析:(1)过直线外一点有且只有一条直线与已知直线平行;错误;(2)过直线外一点有且只有一条直线与已知直线垂直;错误(3)应强调在同一平面内不相交的直线是平行线,错误;(4)邻补角的定义是:两个角有公共边和公共顶点,一个角的一边是另一个角的一边的反向延长线,具有这样特点的两个角称就是邻补角.错误;故选D.4.答案:C解析:由对顶角的定义,得C是对顶角。

北师大版七年级数学下学期-第二章-相交线与平行线单元试卷(附参考答案)

北师大版七年级数学下学期-第二章-相交线与平行线单元试卷(附参考答案)

北师大版七年级下册第二章相交线与平行线一.选择题(共15小题)1.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直2.如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠BOM等于()A.140°B.120°C.100°D.80°3.在平面内,过一点画已知直线的垂线,可画垂线的条数是()A.0B.1C.2D.无数4.如图,∠1与∠2是同位角的个数有()A.1个B.2个C.3个D.4个5.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°6.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°7.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.l1、l2、l3为同一平面内的三条直线,若l1与l2不平行,l2与l3不平行,那么下列判断正确的是()A.l1与l3一定不平行B.l1与l3一定平行C.l1与l3一定互相垂直D.l1与l3可能相交或平行9.下列图形中,∠1与∠2互为对顶角的是()A.B.C.D.10.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°11.如图,直线AB和CD相交于O点,OE⊥CD,∠EOF=142°,∠BOD:∠BOF=1:3,则∠AOF的度数为()A.138°B.128°C.117°D.102°12.如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度13.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角14.下列说法中正确的是()A.若a⊥b,b⊥c,则a⊥cB.在同一平面内,不相交的两条线段必平行C.两条直线被第三条直线所截,所得的同位角相等D.两条平行线被第三条直线所截,一对内错角的角平分线互相平行15.如图,AB∥DE,∠CED=31°,∠ABC=70°.∠C的度数是()A.28°B.31°C.39°D.42°二.填空题(共3小题)16.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC =°.17.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.18.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=度.三.解答题(共6小题)19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.如图,EF⊥BC于点F,∠1=∠2,DG∥BA,若∠2=40°,则∠BDG是多少度?21.如图,已知AB∥CD,直线分别交AB、CD于点E,F,∠EFB=∠B,FH⊥FB.(1)已知∠B=20°,求∠DFH;(2)求证:FH平分∠GFD;(3)若为∠CFE:∠B=4:1,则∠GFH的度数.22.如图,直线CD、EF被直线l所截,∠DAB与∠ABF的角平分线相交于点G,且∠AGB =90°,求证:CD∥EF.23.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,求∠DEG的度数.24.如图,DE∥BC,BE是∠ABC的角平分线,∠A=70°,∠C=50°,求∠DEB的度数.附参考答案:一.选择题(共15小题)1.C.2.A.3.B.4.D.5.A.6.B.7.D.8.D.9.D.10.D.11.D.12.C.13.A.14.D.15.C.二.填空题(共3小题)16.42.17.垂线段最短.18.25三.解答题(共6小题)19.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.20.解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.21.解:(1)∵AB∥CD,∠B=20°,∴∠DFB=20°,∵FH⊥FB,∴∠BFH=90°,∴∠DFH=90°﹣∠DFB=70°;(2)证明:∵AB∥CD,∴∠DFB=∠B,∵∠EFB=∠DFB,∵∠DFB+∠DFH=90°,∴∠GFH=∠DFH,∴FH平分∠GFD;(3)∵AB∥CD,∴∠CFB+∠B=180°,∵∠EFB=∠B,∠CFE:∠B=4:1,∴∠EFB=30°,∴∠GFH=90°﹣30°=60°.故答案为:60°.22.证明:∵∠AGB=90°,∴∠BAG+∠ABG=90°,∵AG平分∠BAD,∴∠BAD=2∠BAG,∵BG平分∠ABF,∴∠ABF=2∠ABG,∴∠BAD+∠ABF=2∠BAG+2∠ABG=180°,∴CD∥EF.23.解:∵AB∥CD,∴∠B=∠DEB=72°,∵EF平分∠BEC,∴∠BEF=∠CEF,∵EF⊥EG,∴∠FEG=90°,∵∠DEG+∠CEF=90°,∠BEG+∠BEF=90°,∴∠DEG=∠BEG=36°.24.解:∵∠A=70°,∠C=50°,∴∠ABC=180°﹣50°﹣70°=60°,∵BE是∠ABC的角平分线,∴∠EBC=30°,∵DE∥BC,。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》测试题(含答案解析)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》测试题(含答案解析)

一、选择题1.已知3619'COD ∠=︒,则下列说法正确的是( )A .COD ∠等于36.19︒B .COD ∠的补角为14441'︒C .COD ∠的余角为5319'︒ D .COD ∠的余角为5341'︒2.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°3.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 4.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 5.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90° 6.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65° 7.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°8.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )A .∠α+∠β+∠γ=180°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α-∠β-∠γ=180°[9.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角10.下列图形中,1∠与2∠是对顶角的是( )A .B .C .D . 11.如图,在△ABC 中,∠ABC =60°,点C 在直线b 上,若直线a ∥b ,∠2=26°,则∠1的度数为( )A .26°B .28°C .34°D .36°12.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112°二、填空题13.如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.14.如图,直线a ,b ,//a b ,点C 在直线b 上,90DCB ∠=︒,若170∠=︒,则2∠的度数为______.15.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.16.如果一个角的补角比它的余角度数的3倍少10°,那么这个角的度数是______. 17.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠EOC=35°,则∠AOD 的度数为______.18.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使∠COD =90°,当∠AOC =50°时,∠BOD 的度数是____________.19.如图,点 B 在点 C 北偏东 39°方向,点 B 在点 A 北偏西 23°方向,则∠ABC 的度数为 ___________.20.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.三、解答题21.如图,直线AB ,CD 相交于点O ,OF CD ⊥,OE 平分BOC ∠.(1)若65BOE ∠=︒,求DOE ∠的度数;(2)若:2:3BOD BOE ∠∠=,求AOF ∠的度数.22.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD , OF ⊥CD ,若∠BOC 比∠DOE 大75o .求∠AOD 和∠EOF 的度数.23.如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.24.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)∠ABN 的度数是_____,∠CBD 的度数是_______;(2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(3)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是多少?25.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.26.如图,东西方向上有一条高速公路连接A ,B 两城市,在高速公路的一侧有一座水电站P ,现测得水电站在城市A 的东北方向上,在城市B 北偏西60°方向上.(1)求∠APB 的度数;(2)若一辆轿车以每小时90公里的速度沿AB 方向从A 城市开往B 城市,行驶1.5小时轿车正好在水电站P 的正南方向上,请用方向和距离描述轿车相对于水电站P 的位置.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据角的度量,余角和补角的定义计算即可.【详解】解:A 选项,COD ∠约等于36.32︒,故错误;B 选项,COD ∠的补角为14341'︒,故错误;C 选项,COD ∠的余角为5341'︒,故错误;D 选项,COD ∠的余角为5341'︒,故正确;故选:D .【点睛】本题考查了角的度量之间的转换,余角和补角的定义以及角的计算,解题关键是掌握角的度量是60进制,准确理解余角和补角的定义及角的单位转换.2.A解析:A【分析】由题意可得AB ∥DE ,过点C 作CF ∥AB ,则CF ∥DE ,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF ,继而求出∠DCF ,再由平行线的性质,即可得出∠CDE 的度数.【详解】解:由题意得,AB ∥DE ,如图,过点C 作CF ∥AB ,则CF ∥DE ,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.3.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.4.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.5.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.6.B解析:B【分析】l m,利用平行线的判定定理和性质定理进行分析即可得出答案.由题意过点B作直线//【详解】l m,解:如图,过点B作直线//∵直线m//n,//l m,∴//l n,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.7.D解析:D【分析】如图,根据平行线的性质求出∠3的度数即可解决问题.【详解】如图,∵AB//CD,∴∠3=∠1=50°,∵∠2+∠3=180°-90°=90°,∴∠2=90°-∠3=40°,故选D.【点睛】本题考查了平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.8.C解析:C【分析】过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β-∠γ=180°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.9.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D10.C解析:C【分析】根据对顶角的定义即可判断.【详解】解:A、∠1与∠2的两边没有都互为反向延长线,故A不是对顶角;B、∠1与∠2的两边没有都互为反向延长线,故B不是对顶角;C、∠1与∠2符合对顶角定义,是对顶角,故C选项正确;D、∠1与∠2没有公共顶点,故D不是对顶角;故选:C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.11.C解析:C【分析】如图,过点B作BE∥a.想办法证明∠1+∠2=60°即可解决问题.【详解】如图,过点B作BE∥a.∵a∥b,a∥BE,∴b∥BE,∴∠1=∠ABE,∠2=∠CBE,∵∠ABC=∠ABE+∠CBE=60°,∴∠1+∠2=60°,∵∠2=26°,∴∠1=34°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.12.D解析:D【分析】由∠1=∠2证明直线AD//BC,根据平行线的性质得∠D+∠BCD=180°,计算∠BCD的度数为112°.【详解】解:∵∠1=∠2,∴AD//BC,∴∠D+∠BCD=180°,又∵∠D=68°,∴∠BCD=112°,故选:D.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB>ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.14.20°【分析】根据对顶角的性质和平行线的性质求解即可;【详解】如图∵与是对顶角∴∵点C在直线b上∴∴;故答案是:20°【点睛】本题主要考查了平行线的性质结合对顶角性质求解是解题的关键解析:20°【分析】根据对顶角的性质和平行线的性质求解即可;【详解】如图,∵170∠=︒,1∠与3∠是对顶角,∴370∠=︒,∵//a b ,点C 在直线b 上,90DCB ∠=︒,∴23180DCB ∠+∠+∠=︒,∴21803180709020DCB ∠=︒-∠-∠=︒-︒-︒=︒;故答案是:20°.【点睛】本题主要考查了平行线的性质,结合对顶角性质求解是解题的关键.15.16【分析】根据角平分线的定义可求∠BCF 的度数再根据角平分线的定义可求∠BCD 和∠DCF 的度数再根据平行线的性质可求∠CDF 的度数【详解】解:∵∠BCA=64°CE 平分∠ACB ∴∠BCF=32°∵解析:16【分析】根据角平分线的定义可求∠BCF 的度数,再根据角平分线的定义可求∠BCD 和∠DCF 的度数,再根据平行线的性质可求∠CDF 的度数.【详解】解:∵∠BCA=64°,CE 平分∠ACB ,∴∠BCF=32°,∵CD 平分∠ECB ,∴∠BCD=∠DCF=16°,∵DF ∥BC ,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.16.40°【分析】设这个角的度数是x 根据余角和补角的概念列出方程解方程即可【详解】解:设这个角的度数是x 由题意得180°-x=3(90°-x )-10°解得x=40°故答案为:40°【点睛】本题考查的是余解析:40°【分析】设这个角的度数是x,根据余角和补角的概念列出方程,解方程即可.【详解】解:设这个角的度数是x,由题意得180°-x=3(90°-x)-10°,解得x=40°.故答案为:40°.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.17.125°【分析】由两直线垂直求得∠AOE=90°;由∠AOC与∠EOC互余∠EOC=35°即可得到∠AOC的度数;再由∠AOD与∠AOC互补即可得出∠AOD 的度数【详解】∵EO⊥AB∴∠AOE=90解析:125°【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD与∠AOC互补,即可得出∠AOD的度数.【详解】∵EO⊥AB,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°,故答案为:125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.18.40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论并画出图然后根据OC⊥OD与∠AOC=50°计算∠BOD的度数【详解】解:当OCOD在直线AB同侧时如图∵∠COD=90°∠A解析:40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论,并画出图,然后根据OC⊥OD与∠AOC=50°,计算∠BOD的度数.【详解】解:当OC、OD在直线AB同侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180°-∠COD-∠AOC=180°-90°-50°=40°当OC、OD在直线AB异侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180-∠AOD=180°-(∠DOC-∠AOC)=180°-(90°-50°)=140°.故答案为:40°或140°【点睛】解答此类问题时,要注意对不同的情况进行讨论,避免出现漏解.19.62°【分析】过B作BF∥CD则BF∥AE依据平行线的性质即可得到∠CBF=39°∠ABF=23°进而得出∠ABC的度数【详解】如图所示过B作BF∥CD则BF∥AE∵点B在点C北偏东39°方向点B在解析:62°【分析】过B作BF∥CD,则BF∥AE,依据平行线的性质即可得到∠CBF=39°,∠ABF=23°,进而得出∠ABC的度数.【详解】如图所示,过B作BF∥CD,则BF∥AE,∵点B在点C北偏东39°方向,点B在点A北偏西23°方向,∴∠BCD=39°,∠BAE=23°,∴∠CBF=39°,∠ABF=23°,∴∠ABC=39°+23°=62°,故答案为62°.【点睛】本题主要考查了平行线的性质以及方向角,解题时注意:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.20.垂线段距离最短【分析】过直线外一点作直线的垂线这一点与垂足之间的线段就是垂线段且垂线段最短【详解】解:过D 点引CD ⊥AB 于C 然后沿CD 开渠可使所开渠道最短根据垂线段最短故答案为:垂线段距离最短【点睛 解析:垂线段距离最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,根据垂线段最短. 故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.三、解答题21.(1)115°;(2)45°【分析】(1)根据角平分线的定义求出∠EOC 的度数,根据邻补角的性质求出∠DOE 的度数即可; (2)根据题意设BOD x ∠=°,则32COE BOE x ∠=∠=°,然后根据180COE BOE BOD ∠+∠+∠=︒计算即可得出BOD ∠,从而利用对顶角及余角的概念求解即可.【详解】(1)∵OE 平分BOC ∠,65BOE ∠=︒,∴65EOC BOE ∠=∠=︒,∴18065115DOE ∠=︒-︒=︒.(2)∵:2:3BOD BOE ∠∠=,设BOD x ∠=°,则32COE BOE x ∠=∠=° , ∵180COE BOE BOD ∠+∠+∠=︒, ∴3318022x x x ++=, ∴45x =.∵OF CD ⊥,BOD AOC ∠=∠,∴90COF ∠=︒,∴904545AOF ∠=︒-︒=︒.【点睛】本题考查与角平分线相关的计算,以及列一元一次方程求解角度问题,理解角平分线的定义并根据题意运用方程思想求解是解题的关键.22.∠AOD=110°,∠EOF=55°【分析】设∠BOD=2x ,利用角平分线的∠BOE=x ;由∠BOC 比∠DOE 大75°可求∠BOC=∠DOE+75°=x+75°.根据题意列出方程x+75°+2x =180°,得出x=35°,求出∠BOD=70°,即可求出∠AOD=180°-70°=110°,由FO ⊥CD ,可求∠BOF=90°-∠BOD=20°,可求∠EOF=∠FOB+∠BOE=55°.【详解】解:设∠BOD=2x ,∵OE 平分∠BOD ,∴∠DOE=∠EOB=1BOD 2∠=x , ∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x =180°,解得:x=35°,∴∠BOD=2×35°=70°, ∴∠AOD=180°-∠BOD=180°-70°=110°,∵FO ⊥CD ,∴∠BOF=90°-∠BOD=90°-70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.【点睛】本题考查了角平分线、垂线、邻补角,一元一次方程等知识;弄清各个角之间的数量关系是解题的关键.23.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠,1552BED AED ∴∠=∠=︒,又//AB CD,255BED∴∠=∠=︒.【点睛】本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.24.(1)116°;58°;(2)不变,∠APB=2∠ADB,理由见解析;(3)29°【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出∠ABN;由角平分线的定义可以证明∠CBD=12∠ABN,即可求出结果;(2)证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(3)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】(1)∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;故答案为:116°;58°;(2)不变,∠APB=2∠ADB,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB=2∠ADB;(3)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.25.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键26.(1)105°;(2)小轿车在水电站P 正南方向,135km 的公路上.【分析】(1)过点P 作PE //BC 交AB 于点E .根据平行线的判定与性质即可求∠APB 的度数; (2)根据每小时90公里的速度行驶1.5小时轿车正好在水电站P 的正南方向上,即可用方向和距离描述轿车相对于水电站P 的位置.【详解】解:(1)如图,过点P 作PE //BC 交AB 于点E .由题意知:∠DAP=45°,∠CBP=60°AD//BC,∴∠CBP=∠BPE=60°(两直线平行,内错角相等),又∵PE//BC,AD//BC,∴PE//DA(平行于同一直线的两条直线互相平行),∴∠DAP=∠APE=45°(两直线平行,内错角相等),∴∠APB=∠APE+∠BPE=45°+60°=105°(2)由(1)知PE//DA,又∵∠DAE=90°,∴∠DAE=∠PEB=90°,∴PE⊥AB,∴∠AEP=90°,∴在△AEP中,∠AEP=90°,∠APE=45°,∴EA=EP,又∵EA=90×1.5=135 (km)∴EP=135(km).答:小轿车在水电站P正南方向,135km的公路上.【点睛】本题考查了平行线的判定与性质、方向角,解决本题的关键是掌握平行线的判定与性质.。

北师大版七级下册数学第二章相交线与平行线测试题

北师大版七级下册数学第二章相交线与平行线测试题

七年级下册数学第二章相交线与平行线测试卷一、单选题。

1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠0)等于( 1=50,则∠20000 D.30C.60 B.50 .40A的位置与大DCFABE与∠⊥,BCCD,∠EBC=∠BCF,那么,∠2、如图,AB⊥BC )小关系是(A.是同位角且相等 B.不是同位角但相等。

C.是同位角但不等 D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等 B.互补 C.相等或互补 D.相等且互补4、下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补。

②同位角相等, 两条直线平行。

③内错角相等, 两条直线平行。

④垂直于同一条直线的两条直线平行.A.① B.②③ C.④ D.②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=()A.60° B.50° C.30° D.20°1 / 86、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360° B.α-β+γ=180°C.α+β-γ=180° D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30° B.南偏东60° C.北偏西30° D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对 B.5对 C.4对 D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )A.互余B.对顶角C.互补D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( )A.50°、40° B.60°、30° C.50°、130° D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角2 / 8C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A.2个 B.3个 C.4个 D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89° B.101° C.79° D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个 B.2个 C.3个 D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①② B.①③ C.①④ D.③④3 / 8二、填空题16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则=____°。

北师大七年级下数学第二章相交线与平行线单元测试(含答案)

北师大七年级下数学第二章相交线与平行线单元测试(含答案)

第二章订交线与平行线一、选择题1.以下作图语句正确的选项是()A. 延伸线段AB 到 C,使 AB=BCB. 延伸射线ABC. 过点 A 作 AB∥ CD∥EF D作.∠ AOB 的均分线 OC2.以下四幅图中,∠ 1 和∠ 2 是同位角的是()A. ⑴⑵B. ⑶⑷C. ⑴⑵⑶D. ⑵、⑶⑷3.假如一个角的补角是150 °,那么这个角的余角的度数是()A.30 °B.60 °C.90 °D.120 °4.如图,以下说法错误的选项是()A. ∠A 与∠ EDC是同位角B∠. A 与∠ ABF 是内错角C. ∠ A 与∠ ADC是同旁内角D∠. A 与∠ C 是同旁内角5. 两条平行线被第三条直线所截,一对同旁内角的比为2: 7,则这两个角中较大的角的度数为()A.40 °B.70 °C. 100 °D. 140 °6. 以下说法正确的有 ( ) ① 对顶角相等;② 相等的角是对顶角;③ 若两个角不相等,则这两个角必定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A. 1 个B. 个2C.个3D. 个47.如图, AB∥CD,则图中∠ 1、∠ 2、∠ 3关系必定建立的是()A. ∠1+∠ 2+∠ 3= 180 °B. ∠1+∠ 2+∠ 3= 360 °8.以下说法:①在同一平面内,不订交的两条线段叫做平行线;知直线;③ 两条平行直线被第三条直线所截,同位角相等;有()个.C.∠ 1+∠ 3=2∠ 2D.∠ 1+∠ 3=∠ 2② 过一点,有且只有一条直线平行于已④ 同旁内角相等,两直线平行.正确的个数9.如图,直线a, b 订交于点O, OE⊥ a 于点 O, OF⊥ b 于点 O,若∠ 1=40 °,则以下结论正确的选项是()A. ∠2=∠ 3=50 °B.∠ 2=∠ 3=40 °C.∠ 2=40 °,∠ 3=50 °D.∠2=50 °, 3=40 °10.如图,给出了过直线外一点作已知直线的平行线的方法,其依照是()A. 同位角相等,两直线平行B内.错角相等,两直线平行C. 同旁内角互补,两直线平行D. 两直线平行,同位角相等11.如图,已知∠1=∠ 2=∠ 3=∠ 4,则图形中全部平行的是()A. AB∥ CD∥ EFB. CD∥ EFC. AB∥EFD. AB∥ CD∥ EF, BC∥DE12.如图, AB∥ CD,∠ 1=58 °, FG 均分∠ EFD,则∠ FGB的度数等于()A. 122 °B. 151C. 116 °D. 97 °°二、填空题, b, c 是直线,且 a∥b ,b∥ c,则 ________ .14. 两个角的两边分别平行,此中一个角比另一个角的 4 倍少 30°,这两个角是 ________.15. 一个正方体中有一条棱是a,与 a 平行棱长有 ________ 条,与 a 垂直并订交的棱长有________ 条.16. 如图,∠ 1=75 °,∠ 2=120 °,∠ 3=75 °,则∠ 4=________17.如图,直线l1∥ l2,而且被直线l 3,l4所截,则∠ α=________18.图中的内错角是________ .19.假如一个角的余角是30°,那么这个角是________ .20.已知∠α的补角是它的 3 倍,则∠α=________.21.已知∠ A 与∠ B 互余,若∠ A=20° 15,′则∠ B 的度数为 ________ .22.如下图,已知AB∥ DC, AE 均分∠ BAD, CD 与 AE 订交于点F,∠ CFE=∠ E.试说明AD∥BC.达成推理过程:∵ AB∥ DC(已知)∴∠ 1=∠ CFE( ________)∵AE 均分∠ BAD(已知)∴∠ 1=∠ 2 (角均分线的定义)∵∠ CFE=∠ E(已知)∴∠ 2=________(等量代换)∴ AD∥ BC ( ________)三、解答题23.如下图, L1,L2,L3交于点O,∠ 1=∠ 2,∠ 3:∠ 1=8:1,求∠ 4的度数.24.一个角的补角加上24°,恰巧等于这个角的 5 倍,求这个角的度数.25.如图,已知射线AB 与直线 CD交于点 O, OF 均分∠ BOC, OG⊥ OF 于 O, AE∥ OF,且∠ A=30°.(1)求∠ DOF的度数;(2)试说明 OD 均分∠ AOG.26.如图 1, CE均分∠ ACD, AE 均分∠ BAC,∠ EAC+∠ ACE=90°( 1)请判断AB 与 CD 的地点关系并说明原因;( 2)如图 2,在( 1)的结论下,当∠E=90°保持不变,挪动直角极点点挪动时,问∠BAE与∠ MCD 能否存在确立的数目关系?E,使∠MCE=∠ ECD,当直角极点 E( 3)如图运动时(点3,在( 1)的结论下, P 为线段 AC 上必定点,点C 除外)∠ CPQ+∠CQP与∠ BAC 有何数目关系?Q 为直线( 2、3CD上一动点,当点 Q 在射线小题只要选一题说明原因)CD 上参照答案一、选择题D A B D D B D A C A D B二、填空题13.a ∥ c14.42°, 138 °或 10°, 10°15.3; 416.60°17.64°18.∠ A 与∠ AEC;∠ B 与∠ BED19.60°20.45°21.69.75 °22.两直线平行,同位角相等;∠ E;内错角相等,两直线平行三、解答题23.解:设∠ 1=x,则∠ 2=x,∠ 3=8x,依题意有x+x+8x=180 ,°解得 x=18°,则∠ 4=18°+18°=36°.故∠ 4 的度数是36°.24.解:设这个角的度数为 x°,180﹣ x+24=5x,解得, x=34.∴这个角的度数是34°.25.解:( 1)∵ AE∥ OF,∴∠ FOB=∠ A=30°,∵ OF 均分∠ BOC,∴∠ COF=∠ FOB=30°,∴∠ DOF=180°﹣∠ COF=150°;(2)∵ OF⊥OG,∴∠ FOG=90°,∴∠ DOG=∠ DOF﹣∠ FOG=150°﹣90°=60°,∵∠ AOD=∠ COB=∠ COF+∠FOB=60°,∴∠ AOD=∠ DOG,∴ OD 均分∠ AOG.26. ( 1)解:∵ CE均分∠ ACD,AE 均分∠ BAC,∴∠ BAC=2∠ EAC,∠ ACD=2∠ ACE,∵∠ EAC+∠ ACE=90°,∴∠ BAC+∠ ACD=180°,∴AB∥ CD;( 2)∠ BAE+∠ MCD=90° ;过E作EF∥ AB,∵AB∥ CD,∴EF∥ AB∥CD,∴∠ BAE=∠ AEF,∠ FEC=∠DCE,∵∠ E=90°,∴∠ BAE+∠ ECD=90°,∵∠ MCE=∠ ECD,∴∠ BAE+∠ MCD=90° ;( 3)∵ AB∥CD,∴∠ BAC+∠ ACD=180°,∵∠ QPC+∠ PQC+∠ PCQ=180°,∴∠ BAC=∠ PQC+∠ QPC.。

北师大版七年级下册第二章相交线与平行线专项测试题附答案(5份)

北师大版七年级下册第二章相交线与平行线专项测试题附答案(5份)

第二章相交线与平行线专项测试题(一) 一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,已知直线、被直线所截,那么的同位角是().A.B.C.D.2、在下列命题中,一定正确的是( ).A. 对顶角相等B. 同旁内角互补C. 内错角相等D. 同位角相等3、如图,小明写了四个条件,其中能判定的条件是()A.B.C.D.4、过一点画已知直线的平行线()A. 不存在或有且只有一条B. 有两条C. 不存在D. 有且只有一条5、平面内三条直线的交点个数可能有()A. 个个或个或个B. 个或个或个C. 个或个D. 个或个6、如图,的内错角是()A.B.C.D.7、画一条线段的垂线,垂足在()A. 以上都有可能B. 线段的延长线上C. 线段的端点D. 线段上8、下列图形中与互为对顶角的是()A.B.C.D.9、在同一平面内,两条直线的位置关系是()A. 平行,垂直或相交B. 垂直或相交C. 平行或相交D. 平行或垂直10、已知,,则直线与的关系是()A. 垂直B. 相交或平行C. 平行D. 相交11、下列图形中,线段的长表示点到直线距离的是()A.B.C.D.12、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个13、下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A. 个B. 个C. 个D. 个14、用一把带有刻度的直角尺,(1)可以画出两条平行线;(2)可以画出一个角的平分线;(3)可以确定一个圆的圆心、以上三个判断中正确的个数是()A. 个B. 个C. 个D. 个15、尺规作图的画图工具是()A. 没有刻度的直尺和圆规B. 直尺、量角器C. 三角板、量角器D. 刻度尺、量角器二、填空题(本大题共有5小题,每小题5分,共25分)16、已知两条直线相交,有一组邻补角相等,则这两条直线的位置关系为 .17、如图,,,则点,,在同一条直线上,理由是__________________________.18、三条直线相交,最多有个交点.19、如图,立定跳远比赛时,小明从点起跳落在沙坑内处,跳远成绩是米,则小明从起跳点到落脚点的距离______米、(填“大于”“小于”或“等于”)20、作图题的书写步骤是_______、________、_______,而且要画出_______和_______,保留________.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在铁路旁有一城镇,现在要建一火车站,为使城镇的人乘车方便(即距离最近),①请你在铁路边选一点建火车站,②说明理由.22、如图,过点画出底边的平行线.23、如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.第二章相交线与平行线专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、【答案】D2、【答案】A3、【答案】A4【答案】A5、【答案】A6、【答案】A7、【答案】A8、【答案】B9、【答案】C10、【答案】C11【答案】A12、【答案】C13、【答案】C14、【答案】A15、【答案】A二、填空题(本大题共有5小题,每小题5分,共25分)16、【答案】互相垂直17、【答案】经过直线外一点,有且只有一条直线与这条直线平行.18、【答案】319、【答案】大于20、【答案】已知、求作、作法,图形,结论,作图痕迹【解析】解:作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.三、解答题(本大题共有3小题,每小题10分,共30分)21、【解析】解:把铁路看作一条直线,把城镇看做一个点,把火车站看作一个点,①做法:过点作交直线于点,点即为所求.如图②理由:直线外一点和直线上所有点的连线中,垂线段最短.故正确答案为:①,②理由:直线外一点和直线上所有点的连线中,垂线段最短.22、【解析】解:把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和点重合,过点沿三角板的直角边画直线即可.画图如图所示:23、【解析】解:内错角:与,与,与,与;同旁内角:与,与,与,与;同位角:与,与,与.第二章相交线与平行线专项测试题(二) 一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,下列叙述正确的是( ).A. 和是同旁内角B. 和是同位角C. 和是同位角D. 和是内错角2、如图,下列说法错误的是( ).A. 与是同位角B. 与是内错角C. 与是同旁内角D. 与是同旁内角3、在同一平面内,两条不重合的直线的位置关系可能是( )A. 平行或相交B. 垂直或平行C. 垂直或相交D. 平行、垂直或相交4、下列说法正确的是( )A. 在同一平面内,两条不相交的射线相互平行B. 在同一平面内,两条不相交的线段一定平行C. 在同一平面内,两条不平行的直线一定相交D. 两条不相交的直线一定相互平行5、如图,于点,点到直线的距离是( )A. 线段的长度B. 线段的长度C. 线段的长度D. 线段6、已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同旁内角的平分线互相垂直B. 一对同旁内角的平分线互相平行C. 一对内错角的平分线互相平行D. 一对同位角的平分线互相平行7、在下列说法中,正确的是()A. 钝角的补角一定是锐角B. 相等的角互为余角C. 两个锐角的和为钝角D. 一条射线把一个角分成两个角,这条射线叫做这个角的平分线8、下列命题中正确的有()①相等的角是对顶角;②若,,则;③同位角相等;④邻补角的平分线互相垂直.A. 个B. 个C. 个D. 个9、图中的尺规作图是作()A. 角的平分线B. 一个角等于已知角C. 一条线段等于已知线段D. 线段的垂直平分线10、下列属于尺规作图的是()A. 作一条线段等于已知线段B. 用圆规画半径的圆C. 用量角器画一个的角D. 用刻度尺和圆规作11、下列说法不正确的是()A. 平行于同一直线的两直线平行B. 在同一平面内,过直线外一点只能画一条直线与已知直线垂直C. 同一平面内两条不相交的直线是平行线D. 过任意一点可作已知直线的一条平行线12、如图,于点,于点,下列关系中一定成立的是()A.B.C.D.13、如图所示,,,垂足为,则给出下列结论:①与互相垂直②与互相垂直③点到的垂线段是线段④点到的距离是线段⑤线段的长度是点到的距离⑥线段是点到的距离.其中正确的有()A. 个B. 个C. 个D. 个14、如图,,,则()A.B.C.D.15、如图,下列能判定的条件有()个、(1);(2);(3);(4).A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,已知,则为.17、如图,,,,图中互相平行的直线有.18、如图,直线与相交于点,,则度.19、如图,和被所截,的同位角是_______;的同旁内角是_______;和是一对_______.20、四条直线两两相交,至多会有个交点.三、解答题(本大题共有3小题,每小题10分,共30分)21、用三角板在下图中过点画的垂线段.22、如图,说出下列各对角分别是哪一条直线截哪两条直线形成什么角.(1)和;(2)和;(3)和;(4)和.23、如图,已知的三个顶点分别在直线、上,且,若,,则的度数.第二章相交线与平行线专项测试题(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,下列叙述正确的是( ).A. 和是同旁内角B. 和是同位角C. 和是同位角D. 和是内错角【答案】D【解析】解:由图形可知,和不是两条直线被第三条所截得到的角,不是同旁内角;和不是两条直线被第三条所截得到的角,不是同位角;和不是两条直线被第三条所截得到的角,不是同位角;和是内错角.故答案应选:和是内错角.2、如图,下列说法错误的是( ).A. 与是同位角B. 与是内错角C. 与是同旁内角D. 与是同旁内角【答案】A【解析】解:如图所示:根据同位角、内错角、同旁内角、邻补角的定义,知与是同旁内角;与是同旁内角;与是内错角;与是邻补角.故与是同位角错误.故答案为:与是同位角.3、在同一平面内,两条不重合的直线的位置关系可能是( )A. 平行或相交B. 垂直或平行C. 垂直或相交D. 平行、垂直或相交【答案】A【解析】解:在同一平面内,两条不重合的直线的位置关系可能是平行或相交.4、下列说法正确的是( )A. 在同一平面内,两条不相交的射线相互平行B. 在同一平面内,两条不相交的线段一定平行C. 在同一平面内,两条不平行的直线一定相交D. 两条不相交的直线一定相互平行【答案】C【解析】解:根据平行线的判断,两条直线相互平行,首先应该在同一平面内.若两条直线没有指明在同一平面内,即使没有交点,也不一定平行,故两条不相交的直线一定相互平行不正确;而同一平面内的两条直线,只有相交和平行两种位置关系,故在同一平面内,两条不平行的直线一定相交不正确;在同一平面内,两条线段或射线平行,是指它们所在的直线平行,即使这两条线段或射线不相交,也不能保证它们所在直线不相交,故在平面内,两条不相交的线段一定平行不正确;在同一平面内,两条不相交的射线互相平行也不正确.5、如图,于点,点到直线的距离是( )A. 线段的长度B. 线段的长度C. 线段的长度D. 线段【答案】C【解析】解:,根据点到直线的距离的定义知,点到直线的距离是线段的长度.6、已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同旁内角的平分线互相垂直B. 一对同旁内角的平分线互相平行C. 一对内错角的平分线互相平行D. 一对同位角的平分线互相平行【答案】B【解析】解:如图,根据图形可知,一对同位角的平分线互相平行;一对内错角的平分线互相平行;一对同旁内角的平分线互相垂直.故一对同旁内角的平分线互相平行,说法不正确7、在下列说法中,正确的是()A. 钝角的补角一定是锐角B. 相等的角互为余角C. 两个锐角的和为钝角D. 一条射线把一个角分成两个角,这条射线叫做这个角的平分线【答案】A【解析】解:一条射线把一个角分成分成两个相等的角,这条射线叫做这个角的平分线,故对应选项错误;反例:,故两个锐角的和为钝角错误;两个角之和为时才互余,故相等的角互为余角错误;利用钝角大于,互补为,故钝角的补角一定是锐角,故正确.8、下列命题中正确的有()①相等的角是对顶角;②若,,则;③同位角相等;④邻补角的平分线互相垂直.A. 个B. 个C. 个D. 个【答案】C【解析】解:①相等的角是对顶角;根据对顶角相等,但相等的角不一定是对顶角,故此选项错误;②若,,则;根据平行于同一直线的两条直线平行,故此选项正确;③同位角相等;根据两直线平行,同位角相等,故此选项错误,④邻补角的平分线互相垂直,根据角平分线的性质得出,邻补角的平分线互相垂直.故此选项正确.9、图中的尺规作图是作()A. 角的平分线B. 一个角等于已知角C. 一条线段等于已知线段D. 线段的垂直平分线【答案】D【解析】解:根据图象是一条线段,它是以线段的两端点为圆心,作弧,进而作出垂直平分线,故做的是:线段的垂直平分线.10、下列属于尺规作图的是()A. 作一条线段等于已知线段B. 用圆规画半径的圆C. 用量角器画一个的角D. 用刻度尺和圆规作【答案】A【解析】解:用刻度尺和圆规作,而尺规作图中的直尺是没有长度的,错误;量角器不在尺规作图的工具里,错误;画半径的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;作一条线段等于已知线段,正确.11、下列说法不正确的是()A. 平行于同一直线的两直线平行B. 在同一平面内,过直线外一点只能画一条直线与已知直线垂直C. 同一平面内两条不相交的直线是平行线D. 过任意一点可作已知直线的一条平行线【答案】D【解析】解:若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合.“过任意一点可作已知直线的一条平行线”是不正确的.12、如图,于点,于点,下列关系中一定成立的是()A.B.C.D.【答案】B【解析】解:∵点到的距离为,根据垂线段最短,则有.13、如图所示,,,垂足为,则给出下列结论:①与互相垂直②与互相垂直③点到的垂线段是线段④点到的距离是线段⑤线段的长度是点到的距离⑥线段是点到的距离.其中正确的有()A. 个B. 个C. 个D. 个【答案】D【解析】解:①与互相垂直,说法正确;②与互相垂直,说法错误;③点到的垂线段是线段,说法错误;④点到的距离是线段,说法错误;⑤线段的长度是点到的距离,说法正确;⑥线段是点到的距离,说法错误;正确的有个.14、如图,,,则()A.B.C.D.【答案】A【解析】解:,,.15、如图,下列能判定的条件有()个、(1);(2);(3);(4).A.B.C.D.【答案】B【解析】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,,,而不能判定,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.正确的为(1)、(3)、(4),共个.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,已知,则为.【答案】70【解析】解:,,,,,,故答案为:.17、如图,,,,图中互相平行的直线有.【答案】【解析】解:,.,.,,.互相平行的直线有.故答案为:.18、如图,直线与相交于点,,则度.【答案】72【解析】解:(邻补角的性质),。

北师大版七年级下第二章相交线与平行线单元测试(含答案)【最新精品】

北师大版七年级下第二章相交线与平行线单元测试(含答案)【最新精品】

第二章相交线与平行线单元测试(含答案)一.选择题:(每小题3分,共36分,四个选项中只有一个正确,选出正确答案填在题后括号内)1.在同一个平面内,不重合的两条直线的位置关系可能是 ( )A.相交或平行 B.相交或垂直 C.平行或垂直 D.不能确定2.已知∠A=25°,则∠A的余角、补角分别是 ( )A.65° B.75° C.155° D.165°3.如图,在所标识的角中,互为对顶角的是 ( )A.∠1和∠2 B.∠1和∠4 C.∠2和∠3 D.∠1和∠34.如图,下列说法不正确的是 ( )A.∠1和∠2是同旁内角 B.∠1和∠3是对顶角C.∠3和∠4是同位角 D.∠1和∠4是内错角第3题图第4题图5.下列作图能表示点A到BC的距离的是 ( )A. B. C. D.6.若A、B、C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离 ( )A.等于3 cm B.大于3 cm而小于4 cm C.不大于3 cm D.小于3 cm7.下列图形中AB∥CD,能得到∠1=∠2的是 ( )8.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是 ( )A.55° B.65° C.75° D.85°第8题图第9题图第10题图第12题图9.如图,∠BAC=90°,AD⊥BC,垂足为D,则下面的结论中,正确的个数为 ( )① AB与AC互相垂直;② AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离.A.2个 B.3个 C.4个 D.5个10.如图,直线a,b被直线c所截,下列条件能使a∥b的是 ()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠711.下列语句正确的有 ( )①任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b;④若直线a∥b,b∥c,则c∥a;A.4个 B.3个 C.2个 D.1个12.如图,l1∥l2,下列式子中,等于180°的是 ( )A.α+β+γ B.α+β-γ C.β+γ-α D.α-β+γ二.填空题:(每空3分,共18分,把正确答案填在题目相应的横线上)13.如图,直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD=;14.如图,已知∠1=∠2,则图中互相平行的线段是;理由是:__________________________________________;15.如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=30°,则∠2= ;16.将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=120°,则∠BOC=;第13题图第14题图第15题图第16题图17.如图,直线a∥b,直线l与直线a相交于点P,与直线b相交于点Q,且PM垂直于直线l,若∠1=58°,则∠2=;三.解答题:(共46分,写出必要的解答过程)18.(满分8分)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角;19.(满分8分)如图,在△ABC中,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为F;(1) CD与EF平行吗?为什么?(2) 如果∠1=∠2,且∠3=105°,求∠ACB的度数;20.(满分8分)如图,已知AB//CD,∠1=∠2,∠EFD=56°,求∠D的度数;21.(满分10分)如图,MN、EF分别表示两个互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4;试判断AB 与CD的位置关系,并说明理由;22.(满分12分)有一天李老师用“几何画板”画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,DE后(如图1),他用鼠标左键点住点E并拖动后,分别得到如图2、图3、图4等图形,这时他突然一想,∠B,∠D与∠BED的度数之间有没有某种联系呢?接着李老师利用“几何画板”的“度量角度”和“计算”的功能,找到了这三个角之间的关系.(1) 请探讨得出图1至图4各图中的∠B,∠D与∠BED之间的关系;(直接写出角的关系)(2) 请从(1)所得的关系中,选一个并说明它成立的理由.七下第二章相交线与平行线单元测试参考答案:1~12 ACCAB CBBAB DB13.30°;14.AD//BC,内错角相等,两直线平行;15.15°;16.60°;17.32°;18.40°;19.(1) ∵ CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90 °∴ CD∥EF(2) ∵ EF∥DC ∴∠2=∠BCD∵∠1=∠2,∴∠1=∠BCD∴ DG∥BC∴∠ACB=∠3=105 °20.62°;21.AB∥CD;理由如下:∵MN∥EF (已知),∴∠2=∠3 (两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4(等量代换).∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°(平角的定义),∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).22.(1) 图1:∠BED=∠B+∠D;图2:∠B+∠BED+∠D=360°;图3:∠BED=∠D-∠B;图4:∠BED=∠B-∠D.(2) 选择:∠BED=∠B+∠D.理由:过点E作EF∥AB,∴∠ABE=∠BEF∵ AB∥CD,∴ EF∥CD∴∠FED=∠CDE∴∠B+∠D=∠BEF+∠FED即∠B+∠D=∠BED其他选择略;。

北师大版七年级数学下册第二章《相交线与平行线》单元测试卷附答案

北师大版七年级数学下册第二章《相交线与平行线》单元测试卷附答案

第二章《相交线与平行线》单元测试卷(新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知∠A=25°,则∠A的补角等于()A.65°B.75°C.155°D.165°2.如图,直线a与直线c相交于点O,则∠1的度数是()A.60°B.50°C.40°D.30°第2题图第3题图第4题图3.如图,∠1=15°,AO⊥CO,直线BD经过点O,则∠2的度数为()A.75°B.105°C.100°D.165°4.如图,直线c与直线a,b都相交.若a∥b,∠1=55°,则∠2=()A.60°B.55°C.50°D.45°5.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2=()A.55°B.65°C.75°D.85°第5题图第6题图第7题图第8题图6.如图,下列说法中正确的是()A.若∠2=∠4,则AB∥CDB.若∠BAD +∠ADC=180°,则AB∥CDC.若∠1=∠3,则AD∥BCD.若∠BAD +∠ABC=180°,则AB∥CD7.(传统文化)一条古称在称物时的状态如图所示,已知∠1=80°,则∠2=()A.20°B.80°C.100°D.120°8.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2=()A.90°B.65°C.60°D.50°9.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4等于()。

北师大版七年级下册数学第二章 相交线与平行线含答案(汇总)

北师大版七年级下册数学第二章 相交线与平行线含答案(汇总)

北师大版七年级下册数学第二章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,AB=AC,AF∥BC,∠FAC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°2、如图,在下列条件中,不能判定AB∥DF的是()A. B. C. D.3、如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4的度数为( )A.55°B.60°C.65°D.75°4、如图,AB是⊙O的直径,点C,D在⊙O上,且点C,D在AB的异侧,连接AD,BD,OD,OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°5、如图,直线,点A在直线上,以点A为圆心,适当长度为半径画弧,分别交直线、于B、C两点,连结AC、BC.若,则的大小为()A. B. C. D.6、如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°7、如果a∥b,b∥c,d⊥a,那么()A.b⊥dB.a⊥cC.b∥dD.c∥d8、如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线 FG交AB于点H,则结论正确的是()A.∠AFG=70°B.∠AFG>∠AGFC.∠FHB=100°D.∠CFH =2∠EFG9、如图,a∥b,∠1是∠2的3倍,则∠2等于()A.45°B.90°C.135°D.150°10、如图,直线c与直线a相交于点A,与直线b相交于点B,,,若要使直线,则将直线a绕点A按如图所示的方向至少旋转()A. B. C. D.11、如图,由已知条件推出结论正确的是()A.由,可以推出B.由,可以推出C.由,可以推出D.由,可以推出12、将一块三角板如图放置,∠ACB=90°,∠ABC=60°,点B,C分别在PQ,MN上,若PQ∥MN,∠ACM=42°,则∠ABP的度数为()A.45°B.42°C.21°D.12°13、已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥cB.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥cD.如果b⊥a,c⊥a,那么b∥c14、如图,下列条件中不能判定AB∥CD的是()A.∠3=∠5B.∠1=∠5C.∠1+∠4=180°D.∠3=∠415、如图,若∠1+∠2=180°,则( )A.c∥dB.a∥bC.c∥d且a∥bD.∠3=∠2二、填空题(共10题,共计30分)16、如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:∵AD∥BC(已知),∴∠1=∠3(________).∵∠1=∠2(已知),∴∠2=∠3.∴BE∥________(________).∴∠3+∠4=180°(________).17、如图,在中,CD平分∠ACB,DE∥BC,DE交AC于E,若DE=7,AE=5,则AC=________。

北师大版七年级下册数学第二章相交线与平行线 测试题及答案

北师大版七年级下册数学第二章相交线与平行线 测试题及答案
15.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,求∠2的度数.
16.一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=_____度.
17.如图,AB∥CD,∠E=60°,则∠B+∠F+∠C=_____°.
18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.
23.如图,已知AB∥CD∥EF,GC⊥CF,∠ABC=65º,∠EFC=40º,求∠BCG的度数.
24.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC =70°.
(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);
【详解】
(1)因为AC′∥BD′,所以∠C′EF=∠EFB,
因为∠EFB=32°,所以∠C′EF=32°,则(1)正确;
(2)根据折叠的性质,∠CEC′=2∠C′EF=2×32°=64°,
所以∠AEC=180°-∠CEC′=180°-64°=116°,则(2)错误;
(3)因为AC′∥BD′,所以∠C′EC=∠BGE,
评卷人
得分
三、解答题
19.已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.
20.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.试说明:AB∥CD.
21.如图, , , ,试说明 .
22.如图,已知CD⊥AB,GF⊥AB,∠B=∠ADE.试说明∠1=∠2.
B、由内错角相等,两直线平行可知,如果∠1=∠3,那么AD∥BC,原来的说法是错误的,符合题意;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


∵AB∥FD(已知)∴∠EDF+______=180°(
)。
3、 如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF (

∴∠D=∠


又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE(
)。
4、如图,已知 DE∥BC,∠1=∠2, 试说明:CD 是∠ECB 的平分线.
证明:∵ AB⊥BC,CD⊥BC(已知)
∴ ∠1+∠3=90º,∠2+∠4=90º(

∴ ∠1 与∠3 互余,∠2 与∠4 互余
∵ ∠1=∠2(

∴ ∠3=∠4(

∴ BE∥CF (
)。
2、如图,∵AC∥ED(已知) ∴∠A=______(

∵AC∥ED(已知)∴∠EDF=______(

∵AB∥FD(已知)∴∠A+_______ =180°(
C
A
B
14.如图, CD ⊥ AB ,垂足为 C,1 130 ,则 2
度.
1
三、作图题:(尺规作图,不写作法,保留痕迹) 1、已知:∠BAD 及 AB 上一点 B
求作:过 B 作 BC∥AD
三、解答题:(共 48 分)
1、已知:如图,AB⊥BC 于 B,CD⊥BC 于 C,∠1=∠2.
求证:BE∥CF.
11.如图,若∠A=110°,AB∥CD,AD∥BC,则∠ECD=_______.
A
A
D
c
d
B
1
a
2
12
1
O
B
14
C
E
2
b
(第 10 题图)
(第 11 题图)
(第 12 题图)
(第 13 图)
1
D
12.如图,∠1=118°,∠2=62°,则_____//______.
2
13.如图,是用一张长方形纸条折成的,如果∠1=100°,那么∠2=________
第二章 平行线与相交线单元检测题 班级
姓名
一、选择题:
1..如果一个角的补角是 120°,那么这个角的余角的度数是( )
A.30°
B.60°
C.90°
D.120°
2.如图,直线 AB,CD 相交于点 O,因为∠1+∠3=180° ,∠2+∠3=180° ,所以
∠1=∠2. 其推理依据是( A. 同角的余角相等 C. 同角的补角相等
A
D B
E 1
2
C
2




At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
A. ∠C=∠ABE
B. ∠A=∠EBD
C. ∠C=∠ABC
D. ∠A=∠ABE
5.如图, 下列判断中错误的是 ( )
A. ∠A+∠ADC=180°→AB∥CD B. AD∥BC→∠3=∠4
DB A
C
D
14
C. AB∥CD→∠ABC+∠C=180° D. ∠1=∠2→AD∥BC
3
2
6.如果两条平行线被第三条直线所截, 那么内错角的平分线( )B
① 90 ;② 90 ;③ 1 ( ) ;④ 1 ( ) .
2
2
正确的有( )
A.4 个
二、填空题:
E
D
1
2
图(3)
9.如图是一把剪刀,其中 1 40 ,则 2
°,其理由是
.
10.当右图中的∠1 和∠2 满足__________时,能使 OA ⊥OB.(只需填上一个条件即可)
) B. 等角的余角相等 D. 等角的补角相等
A
D
3
1
2
C
B
3.一条公路两次转弯后又回到原来的方向(即 AB ∥CD ,
如图).如果第一次转弯时的 B 140° ,那么, C
C
D
应是( )
A.140° B. 40°
C.100° D.180°
140°
A
B
4.如图,能判定 EB∥AC 的条件是(

E
A
C
A. 互相平行 B. 互相垂直
C. 交角是锐角
D. 交角是钝角
7.如图,是赛车跑道的一段示意图,其中 AB∥DE,测得∠B=140°,∠D=120°,
则∠C 的度数为( )
A. 120°
B. 100°
C. 140°
D. 90°
A
8.如果 和 互补,且 ,则下列表示 的余角的式子中:
B C
相关文档
最新文档