霍尔电流传感器电源消耗电流计算方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔电流传感器电源消耗电流计算方案
霍尔电流传感器由于具有精度高、线性好、频带宽、响应快、过载能力强和无插入损耗等诸多优点,因而被广泛应用于变频器、逆变器、电源、电焊机、变电站、电解电镀、数控机床、微机监测系统、电网监控系统和需要隔离检测的大电流、电压等各个领域中。霍尔传感器需用到直流电源供电才可正常工作,在做产品设计时需要考虑其功率消耗,本文基于传统的霍尔电流传感器,精确计算其电流消耗,并利用LTspice软件进行仿真,所推导的理论计算公式可为产品设计提供参考。
霍尔电流传感器工作原理
从工作原理上,霍尔电流传感器可以分为霍尔开环电流传感器和霍尔闭环电流传感器。
●霍尔开环电流传感器
图1 霍尔开环电压传感器的工作原理
霍尔传感器的磁芯使用软磁材料,原边电流产生磁场通过磁芯聚磁,在磁芯切开一个均匀的切口,磁芯气隙处磁感应强度与原边电流成正比,霍尔元件两端感应到的霍尔电压的大小与原边电流及流过霍尔元件电流的乘积成正比,霍尔电压经过放大后作为传感器的输出。其输出关系式满足:
VOUT=K*IP*IHall
其中K为固定的常数,其大小通常与磁芯的尺寸,材料性质,气隙开口的宽度,以及处理电路的放大倍数有关。
●霍尔闭环电流传感器的工作原理:
闭环电流传感器在开环的基础上增加了反馈线圈,霍尔元件两端感应到的霍尔电流经过放大后控制后端的三极管电路产生补偿电流,补偿电路流过缠绕在磁芯上的线圈,产生的磁场与原边电流产生的磁场方向相反,当磁芯气隙处的磁场强度补偿为0时,传感器的输出满足IS=IP/KN,其中KN为补偿线圈的匝数。
图2 霍尔闭环电压传感器的工作原理
传感器的功耗计算
●开环电流传感器的功耗计算
对于开环电流传感器,因为其输出信号为电压,所以其功耗相对较为稳定。通常霍尔电流传感器的电流设计为采用正负电源供电,其额定输出电压一般为几伏,一般不超过10伏。输出端对负载的要求一般为大于10KΩ,所以流过负载的电流一般小于1个mA。通常开环传感器的电流消耗小于15mA。电流消耗主要是霍尔元件消耗的电流,流入霍尔元件两端的电流通常要求小于20mA,LEM 的产品霍尔电流通常在10mA左右。另外在调压支路还有几mA的电流消耗。这样开环传感器的电流消耗可以维持在十几mA的水平内,通常说明书上标的都是不超过15mA。
●闭环电流传感器的功耗计算
闭环传感器输出信号为电流,其功耗相对于开环传感器多很多,下面以LF 205-S为例来分析闭环电流传感器的电流消耗。
图3为LF 205-S的原理示意
图4为LF205-S原理图
从图中可以看出闭环电流传感器的主要电路包括几部分:首先是霍尔元件的驱动电路,传感器可以测量准确的前提是首先要给霍尔元件提供一个稳定的电流,通常在10mA左右。一般可通过稳压二极管和三极管来实现。这一部分的电流消耗主要集中在霍尔元件,按照通常的设计流过霍尔元件的电流控制在10mA 以内。其次是补偿电流驱动电路,对于输出电流较小的传感器,补偿电流驱动电路可只由运放组成。而对于需要输出较大电流的传感器,补偿电流驱动电路通常由运放和一对串联的三极管电路组成。此部分消耗的电流通常很小,一般为几个mA。补偿电流产生电路,在前面补偿电流驱动电路的驱动作用下,三极管输出补偿电流。三极管补偿电流即是传感器的输出电流,其大小取决于原边被测电流。在静态即无被测电流的情况下,无补偿电流输出。所以对于闭环电流传感器,其静态电流主要是霍尔驱动电流和补偿电流驱动电路电流两部分的总和。因为此时输出电流为零,所以传感器从+VC和-VC消耗的电流相等。即IC0(+VC)=IC0(-VC)图4?闭环电流传感器静态消耗电流流向而在动态情况下,即在测量电流的情况下,传感器输出电流不为零,IC0 (+VC)和IC0 (-VC)的大小取决于被测电流的大小和方向。如果被测电流为直流,假设其方向和传感器的正方向一致。此时补偿电流完全由上半部的三极管产生,也就是说此时输出电流完全由+VC提供。而-VC 的电流大小仍然为IC0 (-VC)。IC(+VC)= IC0 (+VC)+ IS
图5 闭环电流传感器测量直流电流时消耗电流流向如果被测电流为交流,则上半部分和下半部分的三极管轮流导通来产生补偿电流。假设被测电流为正弦波,其电流的有效值为IP,则输出电流同样也为正弦交流,其有效值为IS=IP/KN。因为三极管轮流导通,所以补偿电流是轮流从+VC 和-VC输出的,当被测电流方向为正,即和传感器的正方向一致时补偿电流完全由上半部的三极管产生;当被测流方向为负,即
和传感器的负方向一致时补偿电流完全由下半部的三极管产生。此时消耗电流的波形为一直流叠加了半个周期的正弦波,整个电流的波形峰值为
Icpeak=Ic0(+VC)+ 2 IS则此时的电流有效值为ICrms(+VC)=π/ 2 222) (020 S CI IsI VCcI ? + + +平均值为Cave(+VC)=IC0+ π/ 2SI
同理-VC端消耗电流的有效值和平均值与+VC端的相同。
图6 闭环电流传感器测量交流电流时消耗电流流向传感器电流消耗的LTspice仿真
使用LTspice对传感器的电流消耗进行仿真,按照图4的电路分别对静态、测量直流和测量交流电流的情况进行仿真。从图7中可以看出,静态时+VC的消耗电流为15.33mA,-VC的静态消耗电流为15.27mA,此处正负电源的消耗不完全相等,主要是因为零点的存在,此时传感器的零点为0.06mA。其中流过霍尔元件的电流为8.83mA,补偿电路驱动电路消耗电流为5.24mA,从数据中可以看出,这两部分电流加起来为14.07mA,约占整个+VC消耗电流的91.8%
图7 闭环电流传感器IP=0时的输出电流及消耗电流当施加200ADC原边电流后,传感器的输出为100.06mA,此时+VC端的消耗电流为116.21mA,-VC端的消耗电流为16.15mA
图8闭环电流传感器测量200ADC时的输出电流及消耗电流当在原边施加有效值200Arms的正弦交流电后,传感器的输出为正弦交流,因为上下三极管轮流导通,补偿电流按照半个周期的间隔分别叠加到+VC和-VC