全等三角形(最全面的资料)
全等三角形的判定和性质
全等三角形的判定和性质在初中数学的学习中,全等三角形是一个非常重要的概念。
它不仅在几何证明中经常出现,而且对于培养我们的逻辑思维和空间想象力也有着重要的作用。
接下来,让我们一起深入了解全等三角形的判定和性质。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
比如,三角形 ABC 全等于三角形 DEF,记作“△ABC≌△DEF”。
二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等即∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的对应线段(角平分线、中线、高)相等例如,如果两个三角形全等,那么它们对应的角平分线长度相等,对应的中线长度相等,对应的高的长度也相等。
4、全等三角形的周长相等、面积相等因为全等三角形的对应边相等,所以它们的周长必然相等。
而由于对应边和对应高都相等,根据三角形面积公式(面积=底×高÷2),可得它们的面积也相等。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
全等三角形(知识点讲解)
全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
初中教育数学全等三角形知识点总结材料及复习
适用标准全等三角形知识点总结及复习一、知识网络对应角相等性质对应边相等全等形全等三角形判断角均分线边边边SSS边角边SAS应用角边角ASA角角边AAS斜边、直角边HL作图性质与判断定理二、根基知识梳理〔一〕、根本观点1、“全等〞的理解全等的图形一定知足:〔1〕形状相同的图形;〔2〕大小相等的图形;即能够完整重合的两个图形叫全等形。
相同我们把能够完整重合的两个三角形叫做全等三角形。
全等三角形定义:能够完整重合的两个三角形称为全等三角形。
〔注:全等三角形是相像三角形中的特别状况〕当两个三角形完整重合时,相互重合的极点叫做对应极点,相互重合的边叫做对应边,相互重合的角叫做对应角。
由此,能够得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边必定是对应边;(4)有公共角的,角必定是对应角;(5)有对顶角的,对顶角必定是对应角;2、全等三角形的性质〔 1 〕全等三角形对应边相等;〔2〕全等三角形对应角相等;3、全等三角形的判断方法(1 〕三边对应相等的两个三角形全等。
(2 〕两角和它们的夹边对应相等的两个三角形全等。
(3 〕两角和此中一角的对边对应相等的两个三角形全等。
(4 〕两边和它们的夹角对应相等的两个三角形全等。
(5 〕斜边和一条直角边对应相等的两个直角三角形全等。
4、角均分线的性质及判断性质:角均分线上的点到这个角的两边的距离相等判断:到一个角的两边距离相等的点在这个角均分线上〔二〕灵巧运用定理1、判断两个三角形全等的定理中,一定具备三个条件,且起码要有一组边对应相等,所以在找寻全等的条件时,老是先找寻边相等的可能性。
2、要擅长发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要擅长灵巧选择适合的方法判断两个三角形全等。
(1〕条件中有两角对应相等,可找:①夹边相等〔 ASA 〕②任一组等角的对边相等 (AAS)①夹角相等 (SAS) ②第三组边也相等(SSS)〔3 〕条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)〔三〕经典例题例 1. :以下列图,AB=AC ,,求证:.例 2. 以下列图,:AF=AE , AC=AD , CF 与 DE 交于点 B。
(完整版)全等三角形知识点总结
全等三角形 知识梳理一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 S S S 全等形全等三角形应用边角边 S A S 判定角边角 A S A 角角边 A A S 斜边、直角边 H L 作图 角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
全等三角形复习资料(搜集整理版)
特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。
第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。
轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。
全等三角形知识点
全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。
本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。
关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。
在数学符号中,我们通常用“≌”来表示全等。
2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。
- 对应角相等:两个全等三角形的对应角度数完全相同。
- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。
- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。
- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。
3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。
- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。
- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。
- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。
- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。
4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。
通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。
5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
全等三角形学习资料
全等三角形➢学习目标1.正确理解全等的概念,能够识别全等图形;2.能够准确找到全等的对应边、对应角,会进行全等三角形的表示;3.能够利用全等三角形的性质进行相关的计算.➢重难点分析1.全等三角形对应边、对应角的识别;2.全等三角形的性质及其相关计算.➢要点集结➢精讲精练全等的概念及其表示1、全等形的概念:能够完全重合的两个图形叫做全等形.2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.3、全等的符号表示:“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.4、全等的对应顶点、对应边、对应角(1)把两个全等三角形重合到一起,重合的顶点叫做对应顶点;(2)把两个全等三角形重合到一起,重合的边叫做对应边;(3)把两个全等三角形重合到一起,重合的角叫做对应角.例1.下列图形中与已知图形全等的是()A.B.C.D.【答案】B练习1.下列选项中,和下图全等的图形是()A.B.C.D.【答案】D练习2.下列图形中,是由多个全等图形组成的图案的是()A.B.C.D.【答案】C●小结根据全等的定义识别全等的图形,图形全等的本质就是经过移动后能够完全重合.例2.下列说法正确的是()A.面积相等的两个长方形全等B.周长相等的两个长方形全等C.形状相同的两个长方形全等D.能够完全重合的两个长方形全等【答案】D【解析】解:根据能够完全重合的两个图形是全等图形可知,能够完全重合的两个长方形全等,面积相等,周长相等,形状相同,都不一定能够完全重合.所以A、B、C选项不一定正确,D选项一定正确.故选D.练习1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【答案】C【解析】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;●小结利用语言描述图形的特征,再根据特征进行全等的判别,此类问题较直接看图辨别的类型难度要稍大一些,需要学生对所描述的图形的几何性质要相对熟悉一些,并能够根据几何性质去判断图形的具体形状是否可以固定,从而判断是否全等.例3.用两个全等的三角形一定不能拼出的图形是()A.等腰三角形B.直角梯形C.菱形D.矩形【答案】B【解析】解:用两个全等的直角三角形就能拼出等腰三角形,A可以;如图两个全等的正三角形就可以拼出菱形,C可以;两个全等的直角三角形时就可以拼出矩形,D可以;不管用什么形状的两个全等的三角形不管怎样也拼不出直角梯形.故选B.●小结利用全等形进行新图形的拼接,需要注意分类讨论思想的应用,将不同的边拼接在一起,得到的新图形的形状是不同的.例4.把下列各图分成若干个全等图形,请在原图上用虚线标出来.【答案】解:如图所示:【解析】根据能够完全重合的图形叫做全等形,将第一个图分割成5个正方形,将第二个图分割成3个直角三角形即可.例 5.已知A与A′,B与B′是对应点,则≌ABC和≌A′B′C′全等用符号语言表示为:.【答案】≌ABC≌≌A′B′C′【解析】解:≌A与A′,B与B′是对应点,≌≌ABC≌≌A′B′C′,故答案为:≌ABC≌≌A′B′C′.练习1.如图,≌ABC≌≌DEF,≌A和≌D是对应角,AB和DE是对应边,那么还有对应角是,,对应边是,.【答案】≌B=≌E,≌C=≌F;BC=EF,AC=DF【解析】解:≌≌ABC≌≌DEF,≌A和≌D是对应角,AB和DE是对应边,≌相等的边有:AB=DE,BC=EF,AC=DF;相等的角有:≌A=≌D,≌B=≌E,≌C=≌F.故答案为≌B=≌E,≌C=≌F;BC=EF,AC=DF.练习2.在≌ABC中,≌B=≌C,与≌ABC全等的三角形有一个角是100°,那么在≌ABC中与这100°角对应相等的角是()A.≌A B.≌B C.≌C D.≌B或≌C【答案】A【解析】解:在≌ABC中,≌≌B=≌C,≌≌B、≌C不能等于100°,≌与≌ABC全等的三角形的100°的角的对应角是≌A.故选:A.小结在用全等符号表示两三角形全等时,一定要注意将对应的点写在对应的位置上,这样方便找到对应边和对应角.在最开始学的时候就养成这样的好习惯,是非常有必要的.全等的性质及其相关计算1、全等三角形的性质性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等注意:(1)全等三角形的对应边上的高、中线以及对应角的平分线相等;(2)全等三角形的周长相等,面积相等;(3)平移、翻折、旋转前后的图形全等.2、关于全等三角形的性质应注意(1)全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边;(2)要正确区分对应边与对边,对应角与对角的概念对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指同一个三角形中角的对边,对角是指同一个三角形中边的对角.例1.如图,已知≌ABC≌≌DEB,点E在AB上,若DE=8,BC=5,线AE的长为()A.3B.5C.6D.4【答案】A【解析】解:≌≌ABC≌≌DEB,≌AB=DE=8,BE=BC=5,≌AE=AB﹣BE=3,故选:A.练习1.如图,已知≌ABC≌≌DAE,BC=2,DE=5,则CE的长为()A.2B.2.5C.3D.3.5【答案】C【解析】解:≌≌ABC≌≌DAE,≌AC=DE=5,BC=AE=2,≌CE=5﹣2=3.故选C.练习2.下列说法错误的是()A.全等三角形对应边上的中线相等B.面积相等的两个三角形是全等三角形C.全等三角形对应边上的高相等D.全等三角形对应角平分线相等【答案】B小结全等的一个典型性质就是对应边相等,所以在有全等形的求线段长度的题目中,一定要注意对全等对应边相等这一性质的应用.同时对于两个全等的三角形来说,不仅对应边相等,对应的角平分线、中线、高线也分别是相等的,这就为全等形中计算线段的长度提供了又一个理论依据.例2.如图,在≌ABC中,D、E分别是AC、BC上的点,若≌ADB≌≌EDB≌≌EDC,则≌C 的度数是()A.15°B.20°C.25°D.30°【答案】D【解析】解:≌≌ADB≌≌EDB≌≌EDC,≌AB=BE=EC,≌ABD=≌DBE=≌C,≌≌A=90°,≌≌C=30°,故选:D.练习1.如图,两个三角形为全等三角形,则≌α的度数是()A.72°B.60°C.58°D.50°【答案】A【解析】解:根据三角形内角和可得≌1=180°﹣50°﹣58°=72°,因为两个全等三角形,所以≌α=≌1=72°,故选A.小结全等的另一个典型性质是对应角相等,在全等形存在的题目中进行角度计算时,一定要注意对这一性质的应用.全等性质中常见模型的识别在利用全等三角形的性质进行相关的边、角计算时,除了直接利用性质外,还需要对一些常见的几何结构能够准确识别,从而逐步建立几何感知能力.如:(1)平移型:(2)旋转型(3)翻折型(4)对调性型(5)共角型(6)共边型——其本质也是翻折型(7)一线三等角之三垂直模型例1.如图,已知≌ABC≌≌DEF,≌A=85°,≌B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB≌DE.【答案】解:(1)≌≌A=85°,≌B=60°,≌≌ACB=180°﹣≌A﹣≌B=35°,≌≌ABC≌≌DEF,AB=8,≌≌F=≌ACB=35°,DE=AB=8,≌EH=2,≌DH=8﹣2=6;(2)证明:≌≌ABC≌≌DEF,≌≌DEF=≌B,≌AB≌DE.【解析】(1)根据三角形内角和定理求出≌ACB,根据全等三角形的性质得出AB=DE,≌F=≌ACB,即可得出答案;(2)根据全等三角形的性质得出≌B=≌DEF,根据平行线的判定得出即可.练习1.如图,≌ABC≌≌DEF,AC≌DF,则≌C的对应角为()A.≌F B.≌AGE C.≌AEF D.≌D【答案】A【解析】解:≌AC≌DF,≌≌D=≌BAC;≌≌ABC≌≌DEF,≌≌ABC与≌DEF的对应角相等;又≌C是≌ABC的一个内角,≌≌C的对应角应≌DEF的一个内角;A、≌AGE不是≌DEF的一个内角,不符合题意;B、≌AEF不是≌DEF的一个内角,不符合题意;C、≌D与≌BAC是对应角,不符合题意;故选A.小结注意平移型全等形的识别,平移的距离可以有多种情况,两个图形可以没有公共的部分,这也是平移型的一种典型情况,在授课过程中注意帮助学生建立这种模型意识.例2.已知:如图,≌ABC≌≌AEF,AB=AE,≌B=≌E,则对于结论≌AC=AF,≌≌FAB=≌EAB,≌EF=BC,≌≌EAB=≌FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:≌≌ABC≌≌AEF,≌AC=AF,故≌正确;≌EAF=≌BAC,≌≌FAC=≌EAB≠≌FAB,故≌错误;EF=BC,故≌正确;≌EAB=≌FAC,故≌正确;综上所述,结论正确的是≌≌≌共3个.故选C.练习1.如图,≌ABC≌≌DBE,≌DBC=150°,≌ABD=40°,则≌ABE的度数是()A.70°B.65°C.60°D.55°【答案】A【解析】解:≌≌DBC=150°,≌ABD=40°,≌≌ABC=110°,≌≌ABC≌≌DBE,≌≌DBE=≌ABC=110°,≌≌ABE=≌DBE﹣≌ABD=70°,故选:A.小结注意旋转型全等形的识别,旋转的角度也可以有很多种,两个图形可以没有公共的部分,这也是旋转的一种典型情况,在授课过程中注意帮助学生建立这种模型意识.例3.如图,已知≌ABC≌≌DCB,AB=10,≌A=60°,≌ABC=80°,那么下列结论中错误的是()A.≌D=60°B.≌DBC=40°C.AC=DB D.BE=10【答案】D【解析】解:≌≌A=60°,≌ABC=80°,≌≌ACB=40°,≌≌ABC≌≌DCB,≌≌D=≌A=60°,≌DBC=≌ACB=40°,AC=BD,故A,B,C正确,故选D.练习1.如图,点E,F在线段BC上,≌ABF与≌DEC全等,其中点A与点D,点B与点C 是对应顶点,AF与DE交于点M,则≌DEC等于()A.≌B B.≌A C.≌EMF D.≌AFB【答案】D【解析】解:≌≌ABF与≌DEC全等,点A与点D,点B与点C是对应顶点,≌≌ABF≌≌DCE,≌≌DEC=≌AFB,故选:D.小结注意翻折型全等形的识别,翻折的本质是轴对称,其中轴对称的知识会在下一章中学到,其中对称轴的位置决定了翻折前后形成的两个图形的位置关系,建议老师在讲解旋转、翻折、平移这三个模型时,要以动态的思想来分析、帮助学生理解不同的形式产生的原因,在授课过程中注意帮助学生建立这种模型意识.例4.如图,≌ABD≌≌CDB,下面四个结论中不正确的是()A.≌ABD和≌CDB的面积相等B.≌ABD和≌CDB的周长相等C.≌A+≌ABD=≌C+≌CBD D.AD≌BC,且AD=BC【答案】C【解析】解:≌≌ABD≌≌CDB,≌≌ADB=≌CBD,AD=BC,≌ABD和≌CDB的面积相等,≌ABD和≌CDB的周长相等,≌AD≌BC,则选项A,B,D一定正确.由≌ABD≌≌CDB不一定能得到≌ABD=≌CBD,因而≌A+≌ABD=≌C+≌CBD不一定成立.故选C.练习1.如图,≌ABC≌≌BAD,若AB=6、AC=4、BC=5,则≌BAD的周长为.【答案】15【解析】解:≌≌ABC≌≌BAD,≌AD=CB=5,BD=AC=4,≌AB=6,≌≌BAD的周长为:5+4+6=15,故答案为:15.小结对调型的全等也有不同的位置、不同的情况,其中有一条边完全重合的情况构成的是平行四边形(在人教版初二下学期的课本中会学到),对于这种类型的全等,一定要注意区分其对应点和对应边分别是什么.例5.如图:若≌ABE≌≌ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.5【答案】B【解析】解:≌≌ABE≌≌ACF,AB=5,≌AC=AB=5,≌AE=2,≌EC=AC﹣AE=5﹣2=3,故选B.练习1.如图,≌ABE≌≌ACF.若AB=5,AE=2,BE=4,则CF的长度是()A.2B.5C.4D.3【答案】C【解析】解:≌≌ABE≌≌ACF,≌CF=BE=4,故选:C.练习2.已知如图,≌OAD≌≌OBC,且≌O=70°,≌C=25°,则≌OAD=()A.95°B.85°C.75°D.65°【答案】B【解析】解:≌≌OAD≌≌OBC,≌≌D=≌C=25°,≌≌O=70°,≌≌OAD=180°﹣25°﹣70°=85°,故选:B.●小结共角模型其本质也是翻折的一种,由于它有一个公共角,其情况比较特殊,所以单独拿出来分析,此种模型在下一节的全等判定中出现的频率很高,其中蕴藏着两组全等三角形,两者之间的转化很经典.例6.如图,≌ABC≌≌DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.5【答案】A【解析】解:≌≌ABC≌≌DCB,≌BD=AC=7,≌BE=5,≌DE=BD﹣BE=2,故选A.练习1.如图,已知≌ABC≌≌BAD,A和B,C和D分别是对应顶点,且≌C=60°,≌ABD=35°,则≌BAD的度数是()A.60°B.35°C.85°D.不能确定【答案】C【解析】解:≌≌ABC≌≌BAD,≌C=60°,≌≌D=≌C=60°,≌≌ABD=35°,≌≌BAD=180°﹣≌D﹣≌ABD=180°﹣60°﹣35°=85°,故选C.●小结共边型全等其本质也是翻折型,是翻折的一个特殊情况.例7.如图,E为线段AB上一点,AC≌AB,DB≌AB,≌ACE≌≌BED.(1)试猜想线段CE与DE的位置关系,并证明你的结论;(2)求证:AB=AC+BD.【答案】(1)CE≌DE,证明:≌AC≌AB,DB≌AB,≌≌A=≌B=90°,≌≌C+≌CEA=90°,≌≌ACE≌≌BED,≌≌C=≌DEB,≌≌CEA+≌DEB=90°,≌≌CED=180°﹣90°=90°,≌CE≌DE;(2)证明:≌≌ACE≌≌BED,≌AC=BE,BD=AE,≌AB=AE+BE=AC+BD.【解析】(1)求出≌A=≌B=90°,推出≌C+≌CEA=90°,根据全等得出≌C=≌DEB,推出≌CEA+≌DEB=90°即可;(2)根据全等三角形的性质得出AC=BE,BD=AE,即可得出答案.练习1.如图,已知Rt≌ABC≌Rt≌CDE,≌B=≌D=90°,且B,C,D三点共线.试说明≌ACE=90°.【答案】证明:≌Rt≌ABC≌Rt≌CDE,≌≌BCA=≌CED,≌≌DCE是直角三角形,≌≌CED+≌ECD=90°,≌≌BCA+≌ECD=90°,≌≌ACE=180°-90°=90°.【解析】根据Rt≌ABC≌Rt≌CDE可得≌BCA=≌CED,再根据直角三角形两锐角互余可得≌CED+≌ECD=90°,进而得到≌BCA+≌ECD=90°,再根据角之间的关系可得≌ACE=90°. 小结三垂直模型其本质也是一种旋转,由于其旋转中心不容易确定,所以将此类情况单独拿出来分析,而三垂直的更一般的情况是一线三等角,它是初三相似中非常重要的一个模型.➢当堂总结本次课重点讲解三角形全等的性质及其相关计算,其中需要学生特别关注的就是一些常见的全等的模型,这也为下一节讲解三角形全等的判定作铺垫,在学习全等三角形章节一定要着重关注常见的全等模型,这对计算和证明都有很好的帮助.➢课后作业1、如图,≌ADE≌≌BDE,若≌ADC的周长为12,AC的长为5,则CB的长为()A.8B.7C.6D.5【答案】B【解析】解:≌≌ADE≌≌BDE,≌DA=DB,≌ADC的周长=AC+CD+AD=AC+CD+BD=AC+BC=12,又AC=5,≌BC=7,故选:B.2、若≌ABC≌≌DEF,且≌ABC的周长为20,AB=5,BC=8,则DF长为()A.5B.8C.7D.5或8【答案】C【解析】解:≌≌ABC的周长为20,AB=5,BC=8,≌AC=20﹣5﹣8=7,≌≌ABC≌≌DEF,≌DF=AC=7,故选:C.3、如图,已知≌ABE≌≌ACD,≌1=≌2,≌B=≌C,不正确的等式是()A.AB=AC B.≌BAE=≌CAD C.BE=DC D.AD=DE【答案】D【解析】解:≌≌ABE≌≌ACD,≌1=≌2,≌B=≌C,≌AB=AC,≌BAE=≌CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4、如图,≌ABD≌≌ACE,点B和点C是对应顶点,AB=8,AD=6,BD=7,则CE的长是()A.1B.2C.4D.7【答案】D【解析】解:≌≌ABD≌≌ACE,≌BD=CE=7.故选:D.5、如图,CD≌AB于点D,BE≌AC于点E,≌ABE≌≌ACD,≌C=42°,AB=9,AD=6,G 为AB延长线上一点.(1)求≌EBG的度数.(2)求CE的长.【答案】解:(1)≌≌ABE≌≌ACD,≌≌EBA=≌C=42°,≌≌EBG=180°﹣42°=138°;(2)≌≌ABE≌≌ACD,≌AC=AB=9,AE=AD=6,≌CE=AC﹣AE=9﹣6=3.6、如图所示,已知≌ABC≌≌DCB,≌A=32°,≌BCD=115°,求≌BOC.【答案】解:≌≌ABC≌≌DCB,≌≌DBC=≌ACB,≌A=≌D,≌ABC中,≌A=32°,≌≌D=32°,≌≌DBC=≌ACB=180°﹣≌D﹣≌BCD=33°,≌≌OBC=≌OCB=33°,≌≌BOC=180°﹣33°﹣33°=114°.【解析】根据三角形内角和定理可求≌DBC=33°,根据全等三角形的性质可证≌DBC=≌ACB,即可求≌BOC.7、如图,E为线段BC上一点,AB≌BC,≌ABE≌≌ECD,判断AE与DE的关系,并证明你的结论.【答案】解:AE≌DE.≌AB≌BC,≌≌B=90°.≌≌ABE≌≌ECD,≌≌A=≌DEC,≌AEB=≌EDC,≌B=≌C=90°.≌≌A+≌AEB=90°,≌DEC+≌D=90°,≌≌AEB+≌DEC=90°,≌≌AED=90°,即AE≌DE.。
数学中考总复习:全等三角形—知识讲解
数学中考总复习:全等三角形一知识讲解【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2•探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形2.全等三角形的性质(1)全等三角形对应边相等; (2 )全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等( ASA;(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL). 考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来. 应用三角形全等的判别方法注意以下几点:1.条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2.条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件•解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边 或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:① 遇到等腰三角形, 可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的② 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③ 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④ 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤ 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明•这种作法,适合于证明线段的和、差、 倍、分之类的题目.【典型例题】类型一、全等三角形 1.如图,BD CE 分别是△ ABC 的边AC 和AB 上的高,点 P 在BD 的延长线上,BP=AC . 上,CQ=AB 求证:(1) AP=AQ (2) API AQ 【思路点拨】 本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)T BD CE 分别是△ ABC 的边AC 和AB 上的高,•••/ 1 + Z CAE=90,/ 2+Z CAE=90 .•••/ 仁/2,•••在△ AQC^A PAB 中,“对折”;Q 在CECQ = AB-Zl= Z2AC^BP:.△PAB ••• AP=AQ.(2) •/ AP=AQ / QAC2 P,•••/ PAD+Z P=90°,•••/ PAD+Z QAC=90,即/ PAQ=90• API AQ【总结升华】在确定全等条件时,注意隐含条件的寻找举一反三:【变式】(2015?永州)如图,在四边形ABCD中,Z A=Z BCD=90 , BC=DC延长AD到E点,使DE=AB (1)求证:Z ABC玄EDCABCD 中,T Z BAD= Z BCD=90 °,•90 ° Z B+90 ° Z ADC=360 ° °•Z B+ Z ADC=180 °又 T Z CDE+ Z ADC=180 °•Z ABC= Z CDE ,(2)连接人。
全等三角形的知识点归纳
全等三角形的知识点归纳1.全等三角形的定义:如果两个三角形的对应的边相等,对应的角也相等,则这两个三角形是全等三角形。
2.全等三角形的符号表示:通常使用三个粗体字母表示全等三角形,例如△ABC≌△DEF,表示△ABC全等于△DEF。
3.全等三角形的性质:a.边-边-边(SSS)全等:如果两个三角形的三条边相等,则这两个三角形全等。
b.顶角-底角-顶角(ASA)全等:如果两个三角形中两个顶角和它们的夹边相等,则这两个三角形全等。
c.底边-底角-底边(SAS)全等:如果两个三角形中两条底边和它们夹的角相等,则这两个三角形全等。
d.直角-直角-斜边(RHS)全等:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
e.角-边-角(AAS)全等:如果两个三角形中两个夹角和它们的夹边相等,则这两个三角形全等。
f.边-角-边(ASA)全等:如果两个三角形中一条边和夹角相等,另一条边和夹角的夹边相等,且夹角不是直角,则这两个三角形全等。
4.全等三角形的性质推论:a.如果两个三角形是全等的,则它们对应的边和角是一一对应的。
b.全等三角形的一边等于另一个全等三角形的一边,一角等于另一个全等三角形的一角。
c.全等三角形的对应边和对应角是相等的。
d.全等三角形的对应边平行。
e.全等三角形的对应边垂直。
f.全等三角形的对应角相等。
g.如果一个角等于一个角,两边分别等于两边,那么两个三角形可能全等,也可能不全等。
5.全等三角形的判定方法:a.SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
b.SAS判定法:如果两个三角形的两条边和夹角相等,则这两个三角形全等。
c.ASA判定法:如果两个三角形的两个夹角和一条边相等,则这两个三角形全等。
d.RHS判定法:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
6.全等三角形的性质应用:a.利用全等三角形的性质,可以证明两个三角形的各边之比相等。
全等三角形判定方式和解释
全等三角形判定方式和解释一、全等三角形的基础概念全等三角形是指两个三角形能够完全重合,它们的形状和大小都相等。
全等关系是三角形的一种重要性质,它在几何学中有广泛的应用。
二、全等三角形的判定方式1. 边边边(SSS)判定法如果两个三角形的三边长度分别相等,则这两个三角形全等。
数学表示为:如果△ABC ≌△DEF,当且仅当AB = DE, BC = EF, AC = DF。
解释:这个判定法是基于三角形的定义和性质。
在平面几何中,三角形的定义是一个由三条边和三个角构成的闭合二维多边形。
因此,如果两个三角形的三条边长度相等,那么它们的角度一定相等,从而它们的形状和大小都相等。
2. 边角边(SAS)判定法如果两个三角形的两边长度相等,并且这两边所夹的角相等,则这两个三角形全等。
数学表示为:如果△ABC ≌△DEF,当且仅当AB = DE, BC = EF, 且∠BAC = ∠DEF。
解释:这个判定法也基于三角形的性质。
在一个三角形中,任何一边的长度都受到与其所夹的两个角的影响。
因此,如果两个三角形的两条边长度相等,并且这两条边所夹的角相等,那么它们的形状和大小一定相等。
3. 角边角(ASA)判定法如果两个三角形的两个角相等,并且这两个角所夹的一边相等,则这两个三角形全等。
数学表示为:如果△ABC ≌△DEF,当且仅当∠A = ∠D, ∠B = ∠E, 且AB = DF。
解释:这个判定法同样基于三角形的性质。
在一个三角形中,任何一角的度数都受到与其所夹的两边长度的影响。
因此,如果两个三角形的两个角相等,并且这两个角所夹的一边长度相等,那么它们的形状和大小一定相等。
4. 角角边(AAS)判定法如果两个三角形的两个角相等,并且其中一个角所对的一边相等,则这两个三角形全等。
数学表示为:如果△ABC ≌△DEF,当且仅当∠A = ∠D, ∠B = ∠E, 且AC = DF。
解释:这个判定法也是基于三角形的性质。
在一个三角形中,任何一角的度数都受到与其所夹的两边长度的影响。
全等三角形 知识点总结
全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。
全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。
全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。
本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。
一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。
用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。
全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。
也就是说,在全等三角形中,三个对应角是相等的。
2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。
也就是说,在全等三角形中,三个对应边是相等的。
3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。
二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。
1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。
也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。
2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。
也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。
3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。
也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
全等三角形讲义知识点+典型例题(完美打印版)
BPAa专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA%③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。
已知:如图,线段a . 求作:线段AB ,使AB = a .,【例2】作一个角等于已知角。
已知:如图,∠AOB 。
求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形 已知:如图,线段a ,b ,c.'求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:【例4】已知两边及夹角作三角形 已知:如图,线段m ,n, ∠ .求作:△ABC,使∠A=∠α,AB=m,AC=n.…【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.@随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.3.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角#C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半%C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。
全等三角形全部概念
全等三角形全部概念全等三角形是指具有相同形状和大小的三角形,它们的所有对应边长度相等,所有对应角度相等。
全等三角形的性质和定理在几何学中起着重要作用,对于解决各种三角形相关的问题具有重要意义。
以下是关于全等三角形的全部概念、性质和定理的详细介绍:一、全等三角形的定义:1. 全等三角形定义:如果两个三角形的所有对应边相等,对应角相等,那么这两个三角形就是全等的。
2. 全等三角形的记法:当两个三角形全等时,通常用符号“≌”来表示,如三角形ABC≌三角形DEF。
3. 全等三角形的条件:两个三角形全等的条件是:对应的三边相等,对应的内角相等。
即两个三角形的任意两对边相等,夹角相等或对应角相等,则这两个三角形全等。
二、全等三角形的性质:1. 全等三角形的性质1:全等的三角形的对应边相等,对应角相等。
2. 全等三角形的性质2:全等的三角形的对应角的对边也相等。
3. 全等三角形的性质3:全等的三角形的各边都是对应边的相等。
4. 全等三角形的性质4:如果两个三角形全等,则它们的周长相等。
5. 全等三角形的性质5:如果两个三角形全等,则它们的面积也相等。
6. 全等三角形的性质6:如果三角形ABC≌三角形DEF,则三角形ABC的内角和等于三角形DEF的内角和。
7. 全等三角形的性质7:全等三角形对应边之间的比例相等,即对应边之比相等。
8. 全等三角形的性质8:全等的三角形的顶点到对边的距离相等。
三、全等三角形的定理:1. SSS全等定理:如果一个三角形的三条边分别等于另一三角形的三条边,那么这两个三角形全等。
2. SAS全等定理:如果一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形全等。
3. ASA全等定理:如果一个三角形的两个角和夹边分别等于另一个三角形的两个角和夹边,那么这两个三角形全等。
4. RHS全等定理:如果一个直角三角形的斜边和一个锐角三角形的一个锐角以及两边分别等于另一个锐角三角形的一个锐角以及两边,则这两个三角形全等。
数学8年级上册全等三角形
数学8年级上册全等三角形一、全等三角形的概念。
1. 定义。
- 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
例如,在△ABC和△DEF中,如果把△ABC放到△DEF上,能够使点A与点D、点B与点E、点C与点F完全重合,那么△ABC和△DEF就是全等三角形,记作△ABC≌△DEF,其中“≌”表示全等符号。
2. 全等三角形的性质。
- 全等三角形的对应边相等。
例如,若△ABC≌△DEF,则AB = DE,BC = EF,AC = DF。
- 全等三角形的对应角相等。
即∠A=∠D,∠B = ∠E,∠C=∠F。
二、全等三角形的判定方法(SSS、SAS、ASA、AAS、HL)1. SSS(边边边)- 内容:三边对应相等的两个三角形全等。
- 举例:在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
- 应用:当已知两个三角形的三边长度时,可以直接用SSS判定它们是否全等。
2. SAS(边角边)- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 举例:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。
这里要注意必须是两边的夹角相等才行。
- 应用:如果已知三角形的两条边以及这两条边所夹的角的情况,可以使用SAS 判定全等。
3. ASA(角边角)- 内容:两角和它们的夹边对应相等的两个三角形全等。
- 举例:在△ABC和△DEF中,∠A = ∠D,AB = DE,∠B = ∠E,那么△ABC≌△DEF。
- 应用:当知道两个角以及这两个角所夹的边的相关信息时,用ASA判定全等。
4. AAS(角角边)- 内容:两角和其中一角的对边对应相等的两个三角形全等。
- 举例:在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,BC = EF,那么△ABC≌△DEF。
- 应用:已知两个角和其中一个角的对边时,可通过AAS判定全等。
《三角形全等的判定》 知识清单
《三角形全等的判定》知识清单三角形全等是初中几何中非常重要的一个概念,它在解决几何问题、证明几何定理等方面都有着广泛的应用。
下面我们来详细了解一下三角形全等的判定方法。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等三角形的对应边相等,对应角相等。
二、三角形全等的判定方法1、“边边边”(SSS)判定法如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如,有三角形 ABC 和三角形 DEF,AB = DE,BC = EF,AC= DF,那么三角形 ABC 全等于三角形 DEF。
2、“边角边”(SAS)判定法如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如,在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,则三角形 ABC 全等于三角形 DEF。
3、“角边角”(ASA)判定法如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B=∠E,那么三角形 ABC 全等于三角形 DEF。
4、“角角边”(AAS)判定法如果两个三角形的两个角分别对应相等且其中一组等角的对边相等,那么这两个三角形全等。
例如,三角形 ABC 和三角形 DEF 中,∠A =∠D,∠C =∠F,BC = EF,那么三角形 ABC 全等于三角形 DEF。
5、直角三角形的“斜边、直角边”(HL)判定法对于两个直角三角形,如果斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
比如,在直角三角形 ABC 和直角三角形 DEF 中,∠C =∠F =90°,AB = DE,AC = DF,则直角三角形 ABC 全等于直角三角形DEF。
三、三角形全等判定方法的应用1、证明线段相等如果要证明两条线段相等,可以通过证明它们所在的两个三角形全等,利用全等三角形的对应边相等来得出结论。
全等三角形讲义
ADB C E FO A DEB C F 平移型对称型全等三角形讲义【知识要点】1、全等三角形的定义:(1)操作方式:能够完全重合的两个三角形叫全等三角形; (2)几何描述:大小、形状完全相同的两个三角形叫全等三角形;(几何中就是借助于边、角以及其它可度量的几何量来描述几何图形的大小和形状) 2、全等三角形的几何表示:如图,△ABC ≌△DEF ;(注意对应点、对应边、对应角) 3、全等的性质:(求证线段相等、求证角相等的常规思维方法) 性质1:全等三角形对应边相等; 性质2:全等三角形对应角相等; 几何语言 ∵△ABC ≌△DEF∴AB=DE ;AC=DF ,BC=EF ;∠A=∠D ,∠B=∠E ,∠C=∠F. 性质3:全等三角形的对应边上的高、对应角平分线、对应边上的中线相等 性质4:全等三角形的周长、面积相等 4、三角形全等的常见基本图形【新知讲授】例1、如图,△OAB ≌△OCD ,AB ∥EF ,求证:CD ∥EF.例2、如图,在△ABC 中,AD ⊥BC 于点 D ,BE ⊥AC 于 点E ,AD 、BE 交于点F ,△ADC ≌△BDF (1)∠C=50°,求∠ABE 的度数.(2)若去掉原题条件“AD ⊥BC 于点 D ,BE ⊥AC 于 点E ”,仅保持“△ADC ≌△BDF ”不变,试问:你能证明:“AD ⊥BC 于点 D ,BE ⊥AC ”吗?AD B CE 例3、如图,△ABC ≌△ADE ,延长边BC 交DA 于点F ,交DE 于点G.(1)求证:∠DGB=∠CAE ; (2)若∠ACB=105°,∠CAD=10°,∠ABC=25°,求∠DGB 的度数.例4、如图,Rt △ABC 中,∠C=90°,将Rt △ABC 沿DE 折叠,使A 点与B 点重合,折痕为DE. (1)图中有全等三角形吗?请写出来;(2)若∠A=35°,求∠CBD 的度数;(3)若AC=4,BC=3,AB=5,求△BCD 的周长.例5、如图,△ABF ≌△CDE.(1)求证:AB ∥CD ;AF ∥CE ;(2)若△AEF ≌△CFE ,求证:∠BAE=∠DCF ;(3)在(2)的条件下,若∠B=35°,∠CED=30°,∠DCF=20°,求∠EAF 的度数.AE F C【课后练习】一、选择题1、下面结论是错误的是( ). (A )全等三角形对应角所对的边是对应边 (B )全等三角形两条对应边所夹的角是对应角 (C )全等三角形是一个特殊的三角形(D )如果两个三角形都与另一个三角形全等,那么这两个三角形全等 2、如图,△ABC ≌△AEF ,则下列结论中不一定成立的是( ).(A )AC=AF (B )∠EAB=∠FAC (C )EF=BC (D )EF 平分∠AFB3、如图,已知△ABC ≌△DEF ,AB=DE ,AC=DF ,则下列结论:①BC=EF ;②∠A=∠D ;③∠ACB=∠DEF ;④BE=CF ,其中正确结论的个数是( ).(A )1个 (B )2个 (C )3个 (D )4个4、如图,△ABD ≌△EFC ,AB=EF ,∠A=∠E ,AD=EC ,若BD=5,DF=2.2则CD=( ). (A )2.2 (B )2.8 (C )3.4 (D )4(第2题图) (第3题图) (第4题图) 5、如图,已知△ABD≌△ACD,下列结论: ①△ABC 为等腰三角形;②AD 平分∠BAC ;③AD ⊥BC ;④AD=BC. 其中正确结论的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个二、填空题6、已知:如图,△ACD ≌△AEB ,其中CD=EB ,AB=AD ,则∠ADC 的对边是 ,AC 的对应边是 ,∠C 的对应角是 .7、如图,已知△ABD ≌△DCA ,AB 的对应边是DC ,AD 的对应边是 ,∠BAD 的对应角是 ,AB 与CD 的位置关系是 .8、如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°则∠OAD= .AAFA D C E F(第6题图) (第7题图) (第8题图)三、解答题9、如图,直线l ⊥BC ,将△ABC 沿直线l 翻折得到△DEF ,AB 分别交DF 、DE 于M 、Q 两点,AC 交DF 于点Q.(1)图中共有多少对全等三角形?(不添加其它字母)(2)写出(1)中所有的全等的三角形. 10、如图,△ABC ≌△ADE ,点E 正好在线段BC 上.(1)求证:∠DEB=∠EAC ;(2)若∠1=50°,求∠DEB 的度数.【知识要点】全等三角形判定定理 1、“SAS ”定理:有两边及夹角对应相等的两个三角形全等;①求证全等的格式:(“全等五行”)如:②利用全等进行几何证明的三大环节:预备证明、“全等五行”、全等应用; ③“边边角”不能证明两个三角形全等;DBDA1FB CDAA BC D EO在△ABC 和△DEF 中:AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(SAS )【新知讲授】“SAS”公理的运用例1、如图,C为AB的中点,CD∥BE,CD=BE,求证:∠D=∠E.巩固练习1、如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,AC=CD,求证:BC=DE.2、已知:如图,AB=AC,D、E分别为AB、AC的中点,求证:∠B=∠C.例2、已知:如图,AB=CD,∠ABC=∠DCB,求证:∠ABD=∠ACD.巩固练习:1、已知:如图,AB ∥CD ,AB=CD ,AE=DF ,求证:CE ∥BF.2、已知:如图,AB=AD ,AC=AE ,∠1=∠2,求证:∠DEB=∠2.例3、如图,BD 、CE 为△ABC 的两条中线,延长BD 到G ,使BD=DG ,延长CE 到F ,使CE=EF.(1)求证:AF=AG ;(2)试问:F 、A 、G 三点是否在同一直线线?证明你的结论.巩固练习:1.已知:如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,AB=CD ,BE=DF ,求证:∠EAF=∠ECF.A BC DEF A B C D EF2.已知:如图,AB=AC,AD平分∠BAC,求证:∠DBE=∠DCE.例4、已知:如图,OA=OB,OC=OD,求证:∠ACD=∠BDC. (提示:不能用等腰三角形的性质)巩固练习:1、已知:如图,OD=OE,OA=OB,求证:∠A=∠B.2、已知:如图,AB=CD,BE=CF,∠B=∠C,求证:∠EAF=∠EDF.AD B C EF A D B C EA DC B 【课后作业】1、已知:如图,AB ⊥BD ,CD ⊥BD ,AB=DE ,BE=CD ,试判断△ACE 的形状并说明理由.2、如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE=DF ,AB=DC ,求证:∠ACE=∠DBF.3、已知:如图,OD=OE ,OC 平分∠AOB ,求证:∠A=∠B.4、如图,四边形ABCD 中,AD=BC ,AD ∥BC ,求证:AB=CD ,AB ∥CD.5、如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为 .(用含α的式子表示)ABED C ADBC EF6、如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.2、“SSS ”定理:三边对应相等的两个三角形全等;如:3、①“ASA ”定理:两角及两角所夹的边对应相等的两个三角形全等;②“AAS ”定理:两角及其中一角所对的边对应相等的两个三角形全等; 如:【定理运用】例1、如图,E 、F 两点在线段BC 上,AB=CD ,AF=DE ,BE=CF ,求证:∠AFB=∠DEC.巩固练习:1、如图,已知,AB=AC ,AD=AE ,BD=CE ,延长BD 交CE 于点P ,求证:∠BAC=∠DAE ;在△ABC 和△DEF 中:AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ∽△DEF.(SSS )在△ABC 和△DEF 中: B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ∽△DEF.(ASA ) 在△ABC 和△DEF 中:A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(AAS )C A E BD例2、已知:如图,AB=AC ,AD=AE ,∠1=∠2,求证:AF=AG.巩固练习:1、如图,已知,AB=CD ,BE=DF ,AF=CE ,求证:AD ∥BC.例3、如图,C 为线段AB 的中点,AD ∥CE ,∠D=∠E ,求证:CD=EB.巩固练习1、如图,AD 为△ABC 的高线,E 、F 为直线AD 上两点,DE=DF ,BE ∥CF ,求证:AB=AC.E AF DC B 2、如图,∠ABC=∠DCB,BD 、CA 分别是∠ABC、∠DCB 的平分线,求证:AB=DC.例4、如图,△ABC 中,AB=AC ,D 、E 分别在BC 、AC 的延长线上,∠1=∠2=∠3,求证:AD=AE.巩固练习:1、已知:如图,∠A=∠D ,OA=OD ,求证:∠1=∠2.2、已知:AD ∥BC ,AE ⊥BD ,CF ⊥BD ,AE=CF ,求证:AB=CD.E A D C B 例5、已知:如图,AB=CD ,∠A=∠D ,求证:∠ABC=∠DCB.巩固练习:1、已知:如图,AB=AC ,AD=AE ,求证:∠DBC=∠ECB.2、已知:如图,△ABC 中,∠BAC=∠BCA ,延长BC 边的中线AD 到E 点,使AD=DE ,F 为BC 延长线上一点,且CE=CF ,求证:AF=2AD.例6、在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD ,AC 、BD 交于点P.(1)①如图1,∠AOB=∠COD=60°,则∠APD= ,AC 与BD 的数量关系是 ;②如图2,∠AOB=∠COD=90°,则∠APD= ,AC 与BD 的数量关系是 ;(2)如图3,∠AOB=∠COD=α°,则∠APD 的度数为 (用含α的式子表示),AC 与BD 之间的等量关系是 ;填写你的结论,并给出你的证明;图1 图2 图3AB CE FDO P D C BA O P D CB AααO P D CB AEBCD CEABE A D B CF ADF图1图2图3F巩固练习:点C 为线段AB 上一点,分别以AC 、BC 为腰在直线AB 的同侧作等腰△ACD 和等腰△BCE ,且CA=CD ,CB=CE ,∠ACD=∠BCE ,直线AE 、BD 交于点F.(1)如图1,若∠ACD=60°,则∠AFB= ;(2)如图2,若∠ACD=α°,则∠AFB= ;(用α的代数式表示) (3)如图3,将图2中的△ACD 绕点C 顺时针旋转一个角度,延长BD 交线段AE 于点F ,试探究∠AFB 与α之间的数量关系,并给出你的证明.例7、已知:AB=AC ,AD=AE ,AF ⊥CD ,AG ⊥BE ,求证:AF=AG.巩固练习:1、如图,已知,AB=AD ,AC=AE ,∠1=∠2.(1)求证:BC=DE ;(2)若AF 平分∠BAC ,求证:AF=AC.AB EDC2、已知:如图,AB=AC ,AD=AE ,求证:AO 平分∠BAC.3、如图,等腰Rt △ABC 中AB=AC ,过A 任作直线l ,BD ⊥l 于点D ,CE ⊥l 于点E. (1) 若l 与BC 不相交,求证:BD+CE=DE ;(2) 当直线l 绕A 点旋转到与BC 相交时,其它条件不变,试猜想BD 、CE 和DE 的关系? 画图并给出证明.课后作业:1、如图,等腰Rt △ABC 和等腰Rt △ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE=90°. (1)求证:BD=CE ;(2)求证:BD ⊥CE.A B C D EA B CA BDCOA DBC E AD C B 2、已知:如图,AB=AC ,AD=AE ,BD=CE ,求证:∠BAE=∠CAD.3、如图,四边形ABCD 中,AB=CD ,AD=BC ,求证:AB ∥CD ,AD ∥BC.4、已知:如图,在四边形ABCD 中,AB=CB ,AD=CD ,求证:∠A=∠C.5、已知:如图,AD=BC ,AC=BD ,求证:∠D=∠C.A DBCC M E A BD 6、如图1,等腰△ABC 中AB=AC ,D 、E 分别在AC 、AB 上,且AD 、AE ,M 、N 分别BE 、CD 的中点.(1)CD BE ,AM AN ;(填“>”、“=”、“<”)(2)如图2,把图1中的△ADE 绕A 点逆时针旋转任意一个角度,(1)中的两个结论是否仍然成立?若成立请证明,若不成立请说明理由.7、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,求证:AB=CD ,AD=BC.8、已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。
初中数学全等三角形知识梳理
初中数学全等三角形知识梳理
在数学几何中,将经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,全等的两个三角形对应的边和角相等,对应边上的高、角平分线、中线对应相等,全等三角形面积和周长相等。
扩展资料
判定定理
SSS(边边边):三边对应相等的三角形是全等三角形。
SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。
ASA(角边角):两角及其夹边对应相等的'三角形全等。
AAS(角角边):两角及其一角的对边对应相等的三角形全等。
HL(斜边、直角边):在一对直角三角形中,斜边及另一条直角边相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章全等三角形专题二、全等三角形的判定知识点:三角形全等的条件:1.三边对应相等的两个三角形全等(可写成“边边边”或“SSS”)如图:在△ABC和△A’B’C’中,AB= A’B’,BC=B’C’,AC=A’C’,可以判定△ABC≌△A’B’C’。
2.两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)如图:如图:在△ABC和△A’B’C’中,AB= A’B’,∠ABC=∠A’B’C’,BC=B’C’,可以判定△ABC≌△A’B’C’。
3.两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)如图:在△ABC和△A’B’C’中,∠B=∠B’,BC=B’C’,∠C=∠C’可以判定△ABC≌△A’B’C’。
4.角边角(ASA)公理推论:有两个角和一角所对边对应相等的两个三角形全等。
(简称为“角边角”或“ASA”)。
如图:在△ABC和△A’B’C’中,∠B=∠B’,∠C=∠C’,AC=A’C’。
可以判定△ABC≌△A’B’C’。
5.斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边,直角边”或“HL”)如图:在Rt△ABC和Rt△A’B’C’中,∠B=∠B’=90︒,AB=A’B’,AC=A’C’。
可以判定△ABC≌△A’B’C’。
12补充:1、Rt 中30度所对的直角边等于斜边的一般。
2、Rt 斜边上的中线等于斜边的一半。
典型例题: 1.已知两边⎪⎩⎪⎨⎧→→→SSS HL SAS 找另一边找直角找夹角 例1.如图所示,AD=AE ,点D 、E 在BC 上,BD=CE ,∠1=∠2。
试说明△ABD ≌△ACE 。
B变式练习:1.如图,已知AF=AE ,AC=AD ,CF 与DE 交于点B 。
求证:△ACF ≌△ADE 。
2.如图,AC=BD ,AB=DC ,求证:∠B=∠C 。
33.如图,A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE=BF ,AC=BD ,求证:CF=DE 。
A能力提升:1.如图所示,△ABC 和△ADE 都是等腰直角三角形,且∠BAC=∠EAD= 90,连接BD 、CE. (1)求证:BD=CE ;(2)观察图形,猜想BD 和CE 之间的位置关系,并证明你的结论。
2. 已知如图:BE 、CF 是△ABC 中AC 、AB 上的高,在射线BE 上截取BP=AC ,在射线CF 上截取CQ=AB 。
求证:(1)AP=AQ ;(2)AP ⊥AQ 。
EDCBA42.已知一边一角⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→→→→SAS AASASA AAS 找该角的另一条邻边找这条边的对角找这条边的另一个邻角边为角的邻边找任意一角边为角的对边 例2.如图所示,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C 。
试说明△ABF ≌△DCE 。
DE BCA F变式练习:1.已知:如图,AB=AE ,∠1=∠2,∠B=∠E 。
求证:BC=ED 。
2.如图,点A 、B 、D 、E 在同一直线上,AD=EB ,BC ∥DF ,∠C=∠F 。
求证:AC=EF 。
3.如图4,已知AB=AC,AD=AG,AE⊥BG交BG的延长线于E,AF⊥CD交CD的延长线于F。
求证:AE=AFAF ED GB C图4能力提升:1. 如图:已知在△ABC中,∠BAC=90°,AB=AC。
AE是过点A的直线,BD⊥AE于点D,CE ⊥AE于点E,求证:BD=CE+DE。
2.如图①所示,在正方形ABCD中,点P是CD上一动点,连结PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足为点E、F。
(1)请探索BE、DF、EF这三条线段有怎样的数量关系。
若P在DC的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明。
56①② ③3. 如图①所示在△ABC 中,∠BAC=90°,AB=AC ,AE 是过A 点的一条直线,且B 点和C点在AE 的异侧,BD ⊥AE 于D 点,CE ⊥AE 于E 点。
(1)求证:BD=DE+CE ;(2)若直线AE 绕点A 旋转到图②所示的位置时(BD <CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明;(3)若直线AE 绕点A 旋转到如图③所示位置时(BD >CE ),其余条件不变,BD 与DE 、CE 的关系如何?直接写出结果,不需证明;(4)归纳前三小题,用简捷的语言表述BD 、DE 、CE 之间的关系。
B① ② ③3.已知两角⎩⎨⎧→→AASASA 找任一角的对边找两角的夹边例3.如图所示,AB、CD交于点O,E、F为AB上两点,OA=OB,OE=OF,∠A=∠B,∠ACE=∠BDF,试说明△ACE≌△BDF。
变式练习:1.如图2,已知点A、B、C、D在同一直线上,AC=BD,AM∥CN,BM∥DN。
求证:AM=CN.M NA CB D图22.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点O,且∠1=∠2,求证:BD=CE。
能力提升:78如图,在△ABC 中,∠B=2∠C ,AD 是△ABC 的角平分线,∠1=∠C,求证AC=AB+BD 。
专题三、构造全等三角形1.平移(平行线)构造全等三角形例1、△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ .说明:⑴本题也可以在AB 截取AD=AQ ,连OD ,构造全等三角形,即“截长补短法”. (2)本题利用“平行法”解法也较多,举例如下:①如图(2),过O 作OD ∥BC 交AC 于D ,则△ADO ≌△ABO 来解决.②如图(3),过O 作DE ∥BC 交AB 于D ,交AC 于E ,则△ADO ≌△AQO ,△ABO ≌△AEO 来解决.③如图(4),过P 作PD ∥BQ 交AB 的延长线于D ,则△APD ≌△APC 来解决. ④如图(5),过P 作PD ∥BQ 交AC 于D ,则△ABP ≌△ADP 来解决.O AB C P Q D图(2) A B C P Q D E 图(3) O ABCP Q OAQ DOABCPQD O92.翻折构造全等三角形例2.如图所示,已知△ABC 中,AC=BC ,∠ACB=90°,BD 平分∠ABC ,试说明AB=BC+CD 。
DCAB变式练习1、如图,在四边形ABCD 中,AC 平分∠BAD,过C 作CE ⊥AB 于E ,并且()AD AB AE +=21,求∠ABC+∠ADC 的度数。
2、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE3、如图所示,四边形ABCD 中,AC 平分∠DAB ,若AB >AD ,DC=BC ,试说明∠B+∠D=180°。
10ABDC3.旋转构造全等三角形例3.以△ABC ,AB 、AC 为边分别作正方形ADEB 、ACGF ,连接DC 、BF 。
(1)利用旋转的观点,在此题中,△ADC 绕着 点旋转 度可以得到△ 。
(2)CD 与BF 相等吗?请说明理由。
(3)CD 与BF 互相垂直吗?请说明理由。
变式练习:1、已知:正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点M ,N .当∠MAN 绕点A 旋转到BM =DN 时(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM ,DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM ,DN 和MN 之间又有怎样的数量关系?并说明理由.M BCN图3A DBCNM图2A DB CNM图1A D112.如图,在正方形ABCD 的边BC 、CD 上取E 、F 两点,使∠EAF=45°,AH ⊥EF 于H 。
求证:AH=AB 。
4.截长补短法构造全等三角形例4.如图所示,△ABC 中,∠C=2∠B ,∠1=∠2,试说明AB=AC+CD 。
21BA变式练习:1.如图,在ABC ∆中,BD AB CD C B +⊥∠=∠=。
求证:于且D BC AD ,2。
ACD122.如图,已知正方形ABCD 中,∠BAC 的平分线交BC 于E ,求证:AB+BE=AC3.如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作∠DMN=60°,射线MN 与∠DBA 外角的平分线交于点N ,DM 与MN 有怎样的数量关系?4.操作:如图①所示,△ABC 是正三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以点D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN 。
探究:线段BM 、MN 、NC 之间的关系,并加以证明。
CBM NNCBMN CB MBC① ② ③ ④说明:(1)如果你经过反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经过说明(1)的过程之后,可以从下列①②的条件中选取一个补充或更换已知条件,完成你的证明。
①AN=NC(如图1-22②所示);②DM∥AC(如图1-22③所示)。
附加题:若点M、N分别是射线AB、CA上的点,其他条件不变,再探索线段BM、MN、NC之间的关系,在图1-22④中画出图形,并说明理由。
①②③6.如图1,已知在△ABC中,AB=AC,CG是AB上的高,D是BC上一点,且DE⊥AB于点E,DF⊥AC于点F。
(1)求证:DE+DF=CG;(2)如图2,在△ABC中,AB=AC,D是BC1314延长线上一点,点G 在AC 的延长线上,DG ⊥AC 于点G ,DE ⊥AB 于点E ,CF ⊥AB 于点F 。
求证:CF DG DE =-.7. 如图,梯形ABCD 中,AD∥BC,∠DCB=45°,BD⊥CD.过点C 作CE⊥AB 于E ,交对角线BD 于F ,点G 为BC 中点,连接EG 、AF .求证:CF=AB+AF .5.倍长中线法构造全等三角形例6. 阅读下面的题目及分析过程,并按要求进行证明。
15已知:如图1-23所示,E 是BC 的中点,点A 在DE 上,且∠BAE=∠D 。
求证:AB=CD 。
分析:证明两条线段相等,常用的方法是应用全等三角形的性质公理或等腰三角形的判定定理,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等。