(完整word)高中物理选修3-3资料
高中物理-选修3-3知识点
高中物理-选修3-3知识点选修3-3模块:分子动理论物质是由大量分子组成的。
单分子油膜法可以测量分子直径,而1mol任何物质含有的微粒数相同,即NA6.02×1023mol。
对微观量的估算可以采用分子的两种模型:球形和立方体。
球体模型直径d=2V/π,立方体模型边长d=3V/√V。
利用阿伏伽德罗常数联系宏观量与微观量,可以得到微观量:分子体积V、分子直径d、分子质量m,宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度ρ。
分子质量可以通过m=M/ρNA计算得到,分子体积可以通过v=Mv/ρ计算得到,分子数量可以通过n=N/ANA或n=M/AM计算得到。
需要注意的是,固体和液体分子都可以看成是紧密堆集在一起的,分子的体积V适用于液体,对气体不适用,仅估算了气体分子所占的空间。
对于气体分子,d=V的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离。
分子永不停息地做无规则的热运动,即___运动。
布朗运动是悬浮在液体或气体中的固体微粒的无规则运动,是在显微镜下观察到的。
它有三个主要特点:永不停息地无规则运动,颗粒越小,布朗运动越明显,温度越高,布朗运动越明显。
产生布朗运动的原因是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
___运动间接地反映了液体分子的无规则运动,___运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
热运动是分子的无规则运动与温度有关,温度越高,运动越剧烈。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
分子在气体中做无规则的运动,速率大小不一,且时常变化。
大量分子的速率分布规律为“中间多,两头少”。
当温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大,但速率分布规律不变。
玻意耳定律指出,在一定质量的理想气体中,温度保持不变时,分子的平均动能是一定的。
在这种情况下,体积减少时,分子的密集程度增大,气体的压强就增大。
人教版高中物理选修3-3知识点汇总_一册全_
人教版高中物理选修3—3知识点总结第七章 分子动理论第一节 物体是由大量分子组成的一、实验:用油膜法估测分子的大小 二、分子的大小 阿伏加德罗常数1.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为10-10m 。
2.阿伏加德罗常数:N A =6.02×1023_mol -1。
3.两种分子模型 分子 模型意义分子大小或分子间的平 均距离图例球形 模型固体和液体可看成是由一个个紧挨着的球形分子排列而成的,忽略分子间的空隙d =36V 0π(分子大小)立方体 模型 (气体)气体分子间的空隙很大,把气体分成若干个小立方体,气体分子位于每个小立方体的中心,每个小立方体是每个分子占有的活动空间,这时忽略气体分子的大小d =3V 0 (分子间平 均距离)设物质的摩尔质量为M 、摩尔体积为V 、密度为ρ、每个分子的质量为m 0、每个分子的体积为V 0,有以下关系式:(1)一个分子的质量:m 0=MN A=ρV 0。
(2)一个分子的体积:V 0=V N A =MρN A (只适用于固体和液体;对于气体,V 0表示每个气体分子平均占有的空间体积)。
(3)一摩尔物质的体积:V =Mρ。
(4)单位质量中所含分子数:n =N A M 。
(5)单位体积中所含分子数:n ′=N AV 。
(6)气体分子间的平均距离:d = 3VN A 。
(7)固体、液体分子的球形模型分子直径:d =36V πN A ;气体分子的立方体模型分子间距:d = 3VN A。
第二节 分子的热运动一、扩散现象1.定义:不同物质能够彼此进入对方的现象。
2.产生原因:物质分子的无规则运动。
3.意义:反映分子在做永不停息的无规则运动。
二、布朗运动1.概念:悬浮微粒在液体(或气体)中的无规则运动。
2.产生原因:大量液体(或气体)分子对悬浮微粒撞击作用的不平衡性。
3.影响因素:微粒越小、温度越高,布朗运动越激烈。
4.意义:间接反映了液体(或气体)分子运动的无规则性。
物理选修3-3知识点总结
物理选修3-3知识点总结一、电磁场与电磁波的基础概念1. 电磁场的基本概念- 电荷与电场- 电流与磁场- 电磁场的相互作用2. 电磁波的产生- 电磁振荡- 电磁波的产生条件- 电磁波的传播特性3. 电磁波的性质- 电磁波的波长、频率和速度- 电磁波的能量- 电磁波的极化二、电磁感应与电磁波的应用1. 电磁感应现象- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算2. 电磁波的应用- 无线电通信- 微波技术- 电磁波在医学领域的应用三、电磁波的传播与天线1. 电磁波的传播方式- 直线传播- 反射与折射- 衍射与干涉2. 天线的基本原理- 天线的种类与功能- 天线的辐射与接收- 天线的指向性与增益四、电磁兼容性与电磁污染1. 电磁兼容性- 电磁兼容性的定义- 电磁兼容性设计的原则- 电磁兼容性测试与评估2. 电磁污染- 电磁污染的来源- 电磁污染的影响- 电磁污染的防护措施五、电磁波的安全与健康1. 电磁波的生物效应- 电磁场对生物体的影响- 电磁波的热效应与非热效应 - 电磁波对人体健康的影响2. 电磁波的安全标准- 国际电磁波安全标准- 电磁波的安全防护措施- 电磁波的安全使用指南六、电磁波的测量与分析1. 电磁波的测量技术- 电磁场强度的测量- 电磁波功率的测量- 电磁波频率的测量2. 电磁波的分析方法- 时域分析与频域分析- 电磁波的谱分析- 电磁波的相位分析七、电磁波在现代科技中的应用1. 通信技术- 移动通信- 卫星通信- 光纤通信2. 遥感技术- 雷达遥感- 无线电遥感- 红外遥感3. 医疗技术- 磁共振成像(MRI)- 放射治疗- 无线医疗监测八、电磁波的未来发展趋势1. 电磁波技术的创新- 新型天线技术- 高频率电磁波的应用- 量子电磁学2. 电磁波与可持续发展- 电磁波在清洁能源中的应用- 电磁波在环境保护中的作用- 电磁波技术的绿色发展结语电磁波作为现代科技不可或缺的一部分,其理论和应用在不断发展和完善中。
(完整版)高中物理人教版选修3-3全册教案,推荐文档
一、教学目标第七章1、物质是由大量分子组成的1.在物理知识方面的要求:(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
二、重点、难点分析1.使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;2.运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
三、教具1.教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样。
2.演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
四、主要教学过程(一)热学内容简介1.热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
2.热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
3.热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学过程1.分子的大小。
分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
介绍并定性地演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?在学生回答的基础上,还要指出:如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m。
(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m。
如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。
(完整版)物理选修3-3知识点总结
(完整版)物理选修3-3知识点总结
物理选修3-3部分介绍了热学的基本概念,由它派生而来的温度、热量和热流对本质
模型有何影响,以及如何用热传导来解释相关现象。
首先,温度是物质间热量的一种测量,它是一种宏观量。
温度的单位是摄氏度(°C)和华氏度(°F)。
热量是温度变化所伴随而存在的能量,在一定温度条件下,物质中存
在能量不变性。
热流是物质中热量的流动,它决定了热冲击力的大小。
其次,本质模型可以用于解释物质的热量运动以及物体之间的热量传递,以及相应的
热冲击力的变化。
本质模型可以用来评估不同物质间的能量传输,包括热传导、热对流和
热辐射。
它们是物质热量传输的三种主要类型。
热传导是指物质内部在热量分布上的变化,它取决于热传导性能指标,如导热系数,
模拟物质内部能量流和温度分布变化的情况。
热对流指物质间温度非均匀性下,在物体表
面和空气中之间的交换,它取决于对流传热的系数,模拟物体表面和空气之间热流的传递。
热辐射是指热量在物质内部或者在物体表面和空气之间,以光或电磁波的方式传输,它取
决于辐射系数,可以表示物体表面和空气之间光热传递情况。
最后,热学中的概念可以用于研究物质的热量传输,并用本质模型来模拟不同体系中
热量传输的特征,说明不同物质之间的能量传输和物体表面与空气之间的热量传输情况。
另外,传热分析也可以用来衡量热量传输的精确度,从而辅助热学的实际应用,如火力发电、冷藏制冷等。
它们对于热学的理解和分析都很有帮助。
高中物理选修3-3 知识点梳理和总结
选修3-3 热学一、分子动理论1.物体是由大量分子组成的(1)分子的大小①分子直径:数量级是10-10m ; ②分子质量:数量级是10-26kg ;③测量方法:油膜法.(2)阿伏加德罗常数:1 mol 任何物质所含有的粒子数,N A =6.02×1023 mol -1. (3)微观量:分子体积V 0、分子直径d 、分子质量m 0.(4)宏观量:物体的体积V 、摩尔体积V m 、物体的质量m 、摩尔质量M 、物体的密度ρ. (5)关系:①分子的质量:m 0=M N A =ρV mN A②分子的体积:V 0=V m N A =MρN A③物体所含的分子数:N =V V m ·N A =m ρV m ·N A 或N =m M ·N A =ρV M·N A (6)两种模型:①球体模型直径为:d =36V 0π②立方体模型边长为:d =3V 02.分子热运动:一切物质的分子都在永不停息地做无规则运动.(1)扩散现象:相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体、液体、气体中进行.(2)布朗运动:①定义:悬浮在液体(或气体)中的小颗粒的永不停息地无规则运动. ②实质:布朗运动反映了液体分子的无规则运动.③决定因素:颗粒越小,运动越明显;温度越高,运动越剧烈. (3)气体分子运动速率的统计分布:①同一温度下,大多数分子具有中等的速率;随温度升高,占总数比例最大的那些分子速率增大.②气体分子运动速率的“三个特点”某个分子的运动是无规则的,但大量分子的运动速率呈现统计规律,如图所示:横轴表示分子速率,纵轴表示各速率的分子数占总分子数的百分比,图像有三个特点:(1)“中间多,两头少”:同一温度下,特大或特小速率的分子数比例都较小,大多数分子具有中等的速率.(2)“图像向右偏移”:速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大,但速率分布规律不变.(3)“面积不变”:图线与横轴所围面积都等于1,不随温度改变.二、内能1.分子动能(1)分子动能:分子热运动所具有的动能;(2)分子平均动能:所有分子动能的平均值.温度是分子平均动能的标志.2.分子势能:由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.3.物体的内能(1)内能:物体中所有分子的热运动动能与分子势能的总和.(2)决定因素:温度、体积和物质的量.4.分子力(1)分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快.(2)分子力、分子势能与分子间距离的关系分子力曲线与分子势能曲线:分子力F、分子势能E p与分子间距离r的关系图线如图所示(取无穷远处分子势能E p=0):(3)分子力、分子势能与分子间距离的关系①当r>r0时,分子力为引力,当r增大时,分子力做负功,分子势能增加.②)当r<r0时,分子力为斥力,当r减小时,分子力做负功,分子势能增加.③当r=r0时,分子势能最小.5.内能和热量的比较6.分析物体的内能问题应当明确以下四点(1)内能是对物体的大量分子而言的,不存在某个分子内能的说法.(2)决定内能大小的因素为温度、体积、分子数,还与物态有关系.(3)通过做功或热传递可以改变物体的内能.(4)温度是分子平均动能的标志,温度相同的任何物体,分子的平均动能相同.三、温度1.温度的意义(1)宏观上,温度表示物体的冷热程度.(2)微观上,温度是分子平均动能的标志.2.两种温标(1)摄氏温标t:单位℃,把1个标准大气压下,水的冰点作为0 ℃,沸点为100 ℃.(2)热力学温标T:单位K,把-273.15 ℃作为0 K.0 K是绝对零度,低温极限,只能接近不能达到,所以热力学温度无负值.(3)两种温标的关系:T=273.15+t ΔT=Δt第二节固体、液体和气体一、固体1.分类:固体分为晶体和非晶体两类.晶体分单晶体和多晶体.2.晶体与非晶体的比较3.判断晶体与非晶体的“五个要点”(1)只要具有确定熔点的物质必定是晶体,否则为非晶体.(2)只要具有各向异性的物质必定是单晶体,否则为多晶体或非晶体.(3)单晶体只是在某一种物理性质上表现出各向异性.(4)同一物质可能成为不同的晶体或非晶体.(5)晶体与非晶体在一定条件下可以相互转化.二、液体1.液体的表面张力(1)产生原因:表面层中分子间的距离比液体内部分子间的距离大,分子力表现为引力.(2)作用效果:液体的表面张力使液面具有收缩的趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.(3)作用方向:表面张力跟液面相切,跟这部分液面的分界线垂直.(4)影响因素:液体的密度越大,表面张力越大;温度越高,表面张力越小;液体中溶有杂质时,表面张力变小.2.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向上看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.(4)液晶的特点:液晶既不是液体也不是晶体.液晶既有液体的流动性,又有晶体的物理性质各向异性.三、饱和汽湿度1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.2.饱和汽压(1)定义:饱和汽所具有的压强.(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.3.湿度(1)绝对湿度:空气中所含水蒸气的压强.(2)相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比.(3)相对湿度公式相对湿度=水蒸气的实际压强同温度水的饱和汽压⎝⎛⎭⎫B =p p s ×100%(4)对相对湿度的理解人对空气湿度的感觉是由相对湿度决定的.当绝对湿度相同时,温度越高,离饱和状态越远,体表水分越容易蒸发,感觉越干燥;气温越低,越接近饱和状态,感觉越潮湿.第三讲 气体一、气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.2.决定因素(1)宏观上:决定于气体的温度和体积.(2)微观上:决定于分子的平均动能和分子的密集程度. 3.压强单位:国际单位,帕斯卡(P a )常用单位:标准大气压(a tm );厘米汞柱(cmHg ).换算关系:1a tm =76cmHg≈1.0×105 Pa . 4.平衡状态下气体压强的求法(1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.(2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等.5.加速运动系统中封闭气体压强的求法:选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解. 二、理想气体状态方程1.理想气体(1)宏观上讲,理想气体是指在任何温度、任何压强下始终遵从气体实验定律的气体.实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲,理想气体的分子间除碰撞外无其他作用力(因此不计分子势能),分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.2.理想气体的状态方程(1)内容:一定质量的某种理想气体发生状态变化时,压强跟体积的乘积与热力学温度的比值保持不变. (2)公式:p 1V 1T 1=p 2V 2T 2或pV T =C (C 是与p 、V 、T 无关的常量)3.理想气体状态方程与气体实验定律的关系p 1V 1T 1=p 2V 2T 2⎩⎪⎨⎪⎧温度不变:p 1V 1=p 2V 2(玻意耳定律)体积不变:p 1T 1=p 2T 2(查理定律)压强不变:V 1T 1=V 2T2( 盖—吕萨克定律)4.几个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT(2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT(3)理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+……(理想气体状态方程的分态公式)5.体状态变化的图象问题第三节 热力学定律与能量守恒一、热力学第一定律和能量守恒定律 1.改变物体内能的两种方式(1)做功; (2)热传递. 2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和. (2)表达式:ΔU =Q +W 3.对公式ΔU =Q +W 符号的规定4.几种特殊情况(1)若过程是绝热的,则Q =0,W =ΔU ,外界对物体做的功等于物体内能的增加量. (2)若过程中不做功,即W =0,则Q =ΔU ,物体吸收的热量等于物体内能的增加量.(3)若过程的始末状态物体的内能不变,即ΔU =0,则W +Q =0或W =-Q .外界对物体做的功等于物体放出的热量.(4)气体压力做功:体积变化量V P W∆=:做功与热传递在改变内能的效果上是相同的,但是从运动形式、能量转化的角度上看是不同的:做功是其他形式的运动和热运动的转化,是其他形式的能与内能之间的转化;而热传递则是热运动的转移,是内能的转移.5.能的转化和守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.(2)第一类永动机:违背能量守恒定律的机器被称为第一类永动机.它是不可能制成的.二、热力学第二定律1.常见的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.2.第二类永动机:违背宏观热现象方向性的机器被称为第二类永动机.这类永动机不违背能量守恒定律,但它违背了热力学第二定律,也是不可能制成的.3.在热力学第二定律的表述中,“自发地”“不产生其他影响”的涵义(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.4.热力学第二定律的实质:热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能也可以全部转化为机械能,如气体的等温膨胀过程.5.两类永动机的比较1.下列有关扩散现象与布朗运动的叙述中,正确的是()A.扩散现象与布朗运动都能说明分子在做永不停息的无规则运动B.扩散现象与布朗运动没有本质的区别C.扩散现象突出说明了物质的迁移规律,布朗运动突出说明了分子运动的无规则性规律D.扩散现象和布朗运动都与温度有关E.布朗运动是扩散的形成原因,扩散是布朗运动的宏观表现[解析]扩散现象与布朗运动都能说明分子做永不停息的无规则运动,故A正确;扩散是物质分子的迁移,布朗运动是宏观颗粒的运动,是两种完全不同的运动,故B错误;两个实验现象说明了分子运动的两个不同规律,则C正确;两种运动随温度的升高而加剧,所以都与温度有关,D正确;布朗运动与扩散的成因均是分子的无规则运动,两者之间不具有因果关系,故E错误.[答案]ACD2.分子间的相互作用力由引力与斥力共同产生,并随着分子间距的变化而变化,则下列说法正确的是()A.分子间引力随分子间距的增大而减小B.分子间斥力随分子间距的减小而增大C.分子间相互作用力随分子间距的增大而减小D.当r<r0时,分子间作用力随分子间距的减小而增大E.当r>r0时,分子间作用力随分子间距的增大而减小[解析]分子力和分子间距离的关系图象如图所示,根据该图象可判断分子间引力随分子间距的增大而减小,分子间斥力随分子间距的减小而增大,A、B正确;当r<r0时分子力(图中实线)随分子间距的减小而增大,故D 正确;当r>r0时,分子力随分子间距的增大先增大后减小,故E错误.[答案]ABD3.两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变[解析]分子力F与分子间距r的关系是:当r<r0时F为斥力;当r=r0时,F=0;当r>r0时F为引力.综上可知,当两分子由相距较远逐渐达到最近过程中分子力是先变大再变小又变大,A项错误;分子力为引力时做正功,分子势能减小,分子力为斥力时做负功,分子势能增大,故B项正确、D项错误;因仅有分子力作用,故只有分子动能与分子势能之间发生转化,即分子势能减小时分子动能增大,分子势能增大时分子动能减小,其总和不变,C、E项均正确.[答案]BCE4.下列说法正确的是()A.内能不同的物体,温度可能相同B.温度低的物体内能一定小C.同温度、同质量的氢气和氧气,氢气的分子动能大D.一定质量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加E.物体机械能增大时,其内能一定增大[解析]物体的内能大小是由温度、体积、分子数共同决定的,内能不同,物体的温度可能相同,故A正确;温度低的物体,分子平均动能小,但分子数可能很多,故B错误;同温度、同质量的氢气与氧气分子平均动能相等,但氢气分子数多,故总分子动能氢气的大,故C正确;当分子平均距离r≥r0,物体膨胀时分子势能增大,故D正确;机械能增大,若物体的温度、体积不变,内能则不变,故E错误.[答案]ACD5.下列说法正确的是()A.内能大的物体含有的热量多B.温度高的物体含有的热量多C.水结成冰的过程中,放出热量,内能减小D.物体放热,温度不一定降低E.物体放热,内能不一定减小[解析]热量是过程量,故A、B错误;水结成冰,分子动能不变,分子势能减小,即内能减小,放出热量,故C正确;晶体凝固时,放出热量,温度不变,故D正确;改变物体的内能有做功和热传递两种方式,故E正确.[答案]CDE6.(2015·高考全国卷℃)下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变[解析]将一块晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误.单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确.例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确.晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确.熔化过程中,晶体的温度不变,但内能改变,故选项E错误.[答案]BCD7.下列说法不正确的是()A.把一枚针轻放在水面上,它会浮在水面上.这是由于水表面存在表面张力的缘故B .在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力C .将玻璃管道裂口放在火上烧,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故D .漂浮在热菜汤表面上的油滴,从上面观察是圆形的,是因为油滴液体呈各向同性的缘故E .当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是由于水膜具有表面张力的缘故[解析] 水的表面张力托起针,A 正确;B 、D 两项也是表面张力原因,故B 、D 均错误,C 项正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开是因为大气压的作用,E 错误.[答案]BDE8.(2014·高考福建卷)如图为一定质量理想气体的压强p 与体积V 关系图象,它由状态A 经等容过程到状态B ,再经等压过程到状态C .设A 、B 、C 状态对应的温度分别为T A 、T B 、T C ,则下列关系式中正确的是( )A .T A <TB ,T B <T CB .T A >T B ,T B =TC C .T A >T B ,T B <T CD .T A =T B ,T B >T C[解析] 根据理想气体状态方程pV T=k 可知,从A 到B ,温度降低,故A 、D 错误;从B 到C ,温度升高,故B 错误、C 正确.[答案]C9.一定质量的理想气体的状态经历了如图所示的a →b 、b →c 、c →d 、d →a 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( )A .a →b 过程中不断增加B .b →c 过程中保持不变C .c →d 过程中不断增加D .d →a 过程中保持不变E .d →a 过程中不断增大[解析] 由题图可知a →b 温度不变,压强减小,所以体积增大,b →c 是等容变化,体积不变,因此A 、B 正确;c →d 体积不断减小,d →a 体积不断增大,故C 、D 错误,E 正确.[答案]ABE10.如图,一定量的理想气体从状态a 沿直线变化到状态b ,在此过程中,其压强( )A .逐渐增大B .逐渐增小C .始终不变D .先增大后减小[解析] 法一:由题图可知,气体从状态a 变到状态b ,体积逐渐减小,温度逐渐升高,由pV T=C 可知,压强逐渐增大,故A 正确.法二:由pV T =C 得:V =C p T ,从a 到b ,ab 段上各点与O 点连线的斜率逐渐减小,即1p逐渐减小,p 逐渐增大,故A 正确.[答案]A11.关于热力学定律,下列说法正确的是( )A .为了增加物体的内能,必须对物体做功或向它传递热量B .对某物体做功,必定会使该物体的内能增加C .可以从单一热源吸收热量,使之完全变为功D .不可能使热量从低温物体传向高温物体E .功转变为热的实际宏观过程是不可逆过程[解析] 内能的改变可以通过做功或热传递进行,故A 正确;对某物体做功,物体的内能不一定增加,B 错误;在引起其他变化的情况下,可以从单一热源吸收热量,将其全部变为功,C 正确;在有外界影响的情况下,可以使热量从低温物体传向高温物体,D 错误;涉及热现象的宏观过程都具有方向性,故E 正确.[答案]ACE热力学第一定律说明发生的任何过程中能量必定守恒,热力学第二定律说明并非所有能量守恒的过程都能实现.1.高温物体热量Q 能自发传给热量Q 不能自发传给低温物体2.功能自发地完全转化为不能自发地完全转化为热量3.气体体积V 1能自发膨胀到不能自发收缩到气体体积V 2(较大)4.不同气体A 和B 能自发混合成不能自发分离成混合气体AB12.根据你学过的热学中的有关知识,判断下列说法中正确的是( )A .机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能B .凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体C .尽管技术不断进步,热机的效率仍不能达到100%D .制冷机在制冷过程中,从室内吸收的热量少于向室外放出的热量E .第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来解析:选ACD.机械能可以全部转化为内能,而内能在引起其他变化时也可以全部转化为机械能,A正确;凡与热现象有关的宏观过程都具有方向性,在热传递中,热量可以自发地从高温物体传递给低温物体,也能从低温物体传递给高温物体,但必须借助外界的帮助,B错误;尽管科技不断进步,热机的效率仍不能达到100%,C正确;由能量守恒知,制冷过程中,从室内吸收的热量与压缩机做的功之和等于向室外放出的热量,故D正确;第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,而是违背了热力学第二定律,第二类永动机不可能制造出来,E错误.。
(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)
选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯ (3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:molAM m N = b.分子体积:molAV v N = c.分子数量:A A A A mol mol mol molM v M vn N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。
当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
高中物理选修3-3必背资料
高中2021届物理记背资料(选修3-3)〇、知识网络1、理论基础(1)微观——分子动理论↕统计观点——质量、体积、温度、压强、内能,阿伏加德罗常数(2)宏观——热力学定律(〇、一、二、三)2、物质凝聚态(1)固体——晶体(单晶体、多晶体)、非晶体↕液晶(2)液体——表面张力↕汽液共存态——饱和蒸汽(压)、不饱和蒸汽,相对湿度(3)气体——气体实验定律(理想气体:nRT pV =)一、二级结论(一)分子动理论与统计观点1、分子直径数量级为10-10m ,质量数量级为10-26~10-27kg 。
2、微观量和宏观量的关系:(1)分子的质量m 0与摩尔质量M :m 0=M N A =ρV m N A;(2)分子的体积V 0与摩尔体积V m :V 0=V m N A =M ρN A(只适用于固体、液体,不适用于气体);(3)物体所含的分子数:N =n ·N A ,N =V V m ·N A =m ρV m ·N A ,N =m M ·N A =ρV M·N A 。
3、分子热运动的实验依据:扩散现象、布朗运动(1)扩散现象:温度越高,分子平均速率越大,扩散越快;气体最快,液体次之,固体最慢;(2)布朗运动:布朗粒子(固体颗粒)被液体分子撞击的不平衡性而导致的运动;温度越高(液体分子无规则运动越剧烈),布朗粒子越小,液体分子对布朗粒子撞击的不平衡性越明显,布朗运动越剧烈。
4、分子力曲线,分子势能曲线5、麦克斯韦气体分子速率分布律与温度(1)气体温度较高时,较多的分子处于速率较大的区间,温度较低时,较多的分子处于速率较小的区间;但是,无论温度高低,都有分子速率很大和很小的分子;(2)温度是分子平均动能的标志:k 2i E kT =——平均平动动能kT E 23k =。
6、物体的内能,等于物体中所有分子的热运动的动能与分子势能的总和;物体内能的大小由物体的温度、体积和物质的量共同决定。
高考物理总复习 物理选修3-3知识点复习
理想气体
1.定义:在任何温度、任何压强下都严 格遵从气体实验定律的气体。 2.特点(:1)微观:分子大小忽略不计;
分子力忽略不计。 (2)理想气体是不存在的,是一种理想化模型。 (3)在温度不太低(不低于零下几十摄氏度)、 压强不太高(不超过大气压的几倍)时,可以把 实际气体当成理想气体来处理。
n NA M mol
4.单位体积中所含的分子数:
n NA NA
Vmol M mol
5.固体、液体直径:d 3 6V0 3 6Vmol
NA
6.气体分子间的平均距离:d
3 V0
3
Vmol NA
(V0 为气体分子所占据空间的体积)
7.物质的密度: m Mmol
v Vmol
• 在“用油膜法估测分子的大小”的实验中, 有下列操作步骤。
• 考点66 分子热运动 布朗运动 要求:Ⅰ
• 1)扩散现象:不同物质彼此进入对方(分 子热运动)。温度越高,扩散越快。
• 应用举例:向半导体材料掺入其它元素
• 扩散现象直接说明:组成物体的分子总是 不停地做无规则运动,温度越高分子运动 越剧烈;
• 间 接 说 明:分子间有间隙
• 2)布朗运动:悬浮在液体中的固体微粒的 无规则运动,不是液体分子的无规则运动 因微粒很小,所以要用光学显微镜来观察.
从宏观上看:物体内能的大小由物体的物质的量、 温度和体积三个因素决定.
• 内能 • 1)内能是物体内所有分子无规则运动的动
能和分子势能的总和,是状态量.
• 改变内能的方法有做功和热传递,它们是 等效的.三者的关系可由热力学第一定律 得到 ΔU=W+Q.
(word完整版)高中物理-选修3-3知识点总结,推荐文档.docx
选修 3—3 考点汇编一、分子动理论1、物质是由大量分子组成的( 1)单分子油膜法测量分子直径油膜法估测分子大小: V=Sd (S —单分子油膜的面积, V —滴到水中的纯油酸的体积 ) ( 2)阿伏伽德罗常数 : 1mol 任何物质含有的微粒数相同 N A 6.02 1023 mol 1( 3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)36VⅠ .球体模型直径 d =π.Ⅱ .立方体模型边长 d = 3V 0. ②利用阿伏伽德罗常数联系宏观量与微观量Ⅰ.微观量: 分子体积 V 0、分子直径 d 、分子质量m 0.Ⅱ.宏观量: 物体的体积 V 、摩尔体积 Vm ,物体的质量 m 、摩尔质量 M 、物体的密度 ρ.联系:m Mv V Aa.分子质量: m 0M mol = V molN A N Ab.分子体积: v 0Vmol =M (气体分子除外)N AρN Ac.分子数量:MN AvMvnN AN AN AMmolMmolVmolVmol特别提醒: 1、固体和液体分子都可看成是紧密堆集在一起的。
分子的体积 V 0=V m,仅适用于固体和液体,N A对气体不适用,仅估算了气体分子所占的空间。
2 、对于气体分子, d = 3V 0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离 .2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)( 1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动, 同时还说明分子间有空隙, 温度越高扩散越快。
可以发生在固体、 液体、气体任何两种物质之间( 2)布朗运动:它是悬浮在液体(或气体)中的固体小微粒的无规则运动,是在 显微镜下观察 到的。
①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因: 它是由于液体分子无规则运动对固体微小颗粒 各个方向撞击的不均匀...... 性造成的。
高中物理选修3-3
选修3-3第十一章热学命题规律本部分考点内容的要求全部是Ⅰ级,即理解物理概念和物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用,且绝大多数只要求定性分析.本部分考查内容侧重于分子动理论、内能、热力学定律、气体的状态参量及其相互关系等,将多个知识点综合在一起进行考查,多以选择题和填空题的形式出现;对气体的状态参量及其相互关系的考查多以计算题的形式出现,着重考查热力学状态方程的应用是现行高考热学试题命题的特点之一.同时,本考点还可以与生活、生产的实际相关联起来,考查热学知识在实际中的应用.解决此类问题要求应用相关知识进行正确的分析和评价,得出正确的选择.知识结构第1讲 分子动理论 物体的内能重点难点突破规律方法技巧一、微观量估算的基本方法1.微观量:分子体积V 0、分子直径d 、分子质量m 0.2.宏观量:物体的质量M 、体积V 、密度ρ、摩尔质量M A 和摩尔体积V A ,阿伏加德罗常数N A 是联系宏观物理量与微观物理量的桥梁.3.微观量与宏观量间的关系(1)分子的质量:m 0=M A N A =ρV A N A(适用于固、液、气三态); (2)分子的体积:V 0=V A N A =M A ρN A(只适用于固体、液体分子的体积,对于气体则表示一个气体分子所占空间的大小);(3)分子的大小:球体模型直径d =36V 0π,立方体模型边长d =3V 0; (4)物体所含的分子数:N =nN A =M M A N A =V V A N A (n =M M A =V V A ).如图所示,分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快.①r=r0时,F引=F斥,分子力F=0;②r<r0时,F引和F斥都随距离的减小而增大,但F斥比F引增大得更快,分子力F表现为斥力;③r>r0时,F引和F斥都随距离的增大而减小,但F斥比F引减小得更快,分子力F表现为引力;④r>10r0(10-9 m)时,F引、F斥迅速减弱,几乎为零,分子力F≈0.分子力是一种短程作用力,当分子间距离的数量级大于10r0时,分子间的相互作用力已变得很小,可以忽略不计,可以认为此时分子间相互作用的引力和斥力都为零,这时物体处于气态并可以当成理想气体.在标准状态下,气体分子间的相互作用力可以忽略不计,就是因为这时气体分子间的距离远大于分子直径的缘故.四、物体内能的理解1.分子动能做热运动的分子所具有的动能叫做分子动能.在热现象的研究中,由于单个分子运动的无规则性,研究单个分子的动能是不可能的,也是毫无意义的,有意义的是分子热运动的平均动能.温度是物体分子热运动的平均动能的标志.理解要点:①温度是大量分子的平均动能的标志,对个别分子来讲是无意义的;②温度相同的不同种类的物质,它们分子的平均动能相同,但由于不同种类物质的分子质量不同,所以它们分子的平均速率不同;③分子的平均动能与物体运动的速度无关.2.分子势能与分子力做功和分子间距的关系(1)选取分子间距离为无穷远处分子势能为零,则分子势能与分子间距离的关系如图所示.(2)分子力做正功,分子势能减小;克服分子力做功,分子势能增大.①当r>r0时,分子力表现为引力,随着r的增大,分子引力做负功,分子势能增加;②当r<r0时,分子力表现为斥力,随着r的减小,分子斥力做负功,分子势能增加;③r=r0时,分子势能最小,但不为零,为负值,因为选两分子相距无穷远时的分子势能为0.3.关于物体的内能要注意:(1)物体的体积越大,分子势能不一定就越大,如0 ℃的水结成0 ℃的冰后体积变大,但分子势能却减小了.(2)理想气体分子间相互作用力为零,故分子势能忽略不计,一定质量的理想气体内能只与温度有关.(3)机械能、内能是对宏观物体而言的,不存在某个分子的内能和机械能的说法.高频考点突破考点一、阿伏加德罗常数和微观量估算的基本方法【例1】用放大600倍的显微镜观察布朗运动,估计放大后的小颗粒(碳)体积为0.1×10-9m3,碳的密度为 2.25×103kg/m3,摩尔质量是 1.2×10-2kg/mol,阿伏加德罗常数为6.02×1023 mol-1,则:(1)该小碳粒含分子数约为多少个?(2)假设小碳粒中的分子是紧挨在一起的,试估算碳分子的直径.(结果均保留一位有效数字)【解析】(1)设小颗粒边长为a ,放大600倍后,则其体积为V =(600a )3=0.1×10-9 m 3实际体积为V ′=a 3=10-16216m 3 质量为m =ρV ′=1.0×10-15 kg含分子数为n =m M A N A =1.0×10-151.2×10-2×6.02×1023个=5×1010个. (2)将碳分子看成球体模型,则有V ′n =43π(d 2)3=πd 36解得d = 36V ′n π= 36×10-162165×1010×3.14m =3×10-10 m. 【思维提升】微观量的估算问题的关键是:(1)牢牢抓住阿伏加德罗常数,它是联系微观物理量和宏观物理量的桥梁.(2)估算分子质量时,不论是液体、固体还是气体,均可用m =M A N A. (3)估算分子大小和分子间距时,对固体、液体与气体,应建立不同的微观结构模型.固体、液体分子可忽略分子间的间隙;固体、液体分子可建立球形模型,估算分子直径;气体分子可建立正方体模型,估算分子间距.【拓展1】已知汞的摩尔质量为M =200.5×10-3 kg/mol ,密度为ρ=13.6×103 kg/m 3,阿伏加德罗常数N A =6.0×1023 mol -1.求:(1)一个汞原子的质量;(用相应的字母表示即可)(2)一个汞原子的体积;(结果保留一位有效数字)(3)体积为1 cm 3的汞中汞原子的个数.(结果保留一位有效数字)【解析】(1)一个汞原子的质量为m 0=M N A. (2)一个汞原子的体积为 V 0=V mol N A =M ρN A =200.5×10-313.6×103×6.0×1023 m 3=2×10-29 m 3. (3)1 cm 3的汞中含汞原子个数n =V V 0=1×10-62×10-29=5×1022 考点二、布朗运动和分子的热运动【例2】分子动理论较好地解释了物质的宏观热学性质,据此可判断下列说法中错误的是( )A.显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大C.分子势能随着分子间距离的增大,可以先减小后增大D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素【解析】A 选项中小炭粒做布朗运动反映了液体分子的无规则热运动,故A 是正确的;B 选项中分子间的相互作用力在间距r <r 0的范围内,随分子间距的增大而减小,而从r =r 0开始,随分子间距的增大而先增大后减小,故B 是错误的;C 选项中分子势能在r <r 0时,分子势能随r 的增大而减小;r 0处最小,在r >r 0时,分子势能随r 的增大而增大,故C 选项是正确的;D 选项中真空环境是为防止其他杂质的介入,而高温条件下,分子热运动剧烈,有利于所掺入元素分子的扩散,故错误选项为B.【答案】B【思维提升】本题主要考查对布朗运动产生的原因及其与颗粒大小、温度高低的关系,以及运动轨迹记录等方面的全面理解,启示我们对物理现象应该从产生的原因出发,通过观察、分析及正确记录和描述等方面去全面认识.【拓展2】关于分子的热运动,以下叙述正确的是( C )A.布朗运动就是分子的热运动B.布朗运动是分子的无规则运动,同种物质的分子的热运动激烈程度相同C.气体分子的热运动不一定比液体分子激烈D.物体运动的速度越大,其内部的分子热运动就越激烈【解析】布朗运动是指固体小颗粒的运动,A错.温度越高,分子无规则运动越激烈,与物质的种类无关,B错,C对.物体的宏观运动速度大小与微观分子的热运动无关,D错.考点三、分子力与分子势能【例3】如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F>0为斥力,F<0为引力,a、b、c、d为x轴上四个特定的位置.现把乙分子从a处由静止释放,则()A.乙分子由a到b做加速运动,由b到c做减速运动B.乙分子由a到c做加速运动,到达c时速度最大C.乙分子由a到b的过程中,两分子间的分子势能一直增加D.乙分子由b到d的过程中,两分子间的分子势能一直增加【解析】由题意可知,乙分子由a到c的过程中,两分子间表现为引力,分子力做正功,动能一直增大,分子势能一直减少,到c点时加速度为零,速度达最大,因此A、C错误,B 正确;b到c分子间表现为引力,分子力做正功,分子势能减少,c到d分子间表现为斥力,斥力做负功,分子势能增加,因此D错误.【答案】B【思维提升】解答此题应把握以下几点:①熟知分子力作用的范围及特点.②根据力和运动的关系分析分子速度和动能的变化.③由分子力做功的特点判断分子势能的变化.【拓展3】(多选)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0,相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是( ACE )A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变-r图可知:在r>r0阶段,当r减小时F做正功,分子【解析】由E势能减小,分子动能增加,故选项A正确;在r<r0阶段,当r减小时F做负功,分子势能增加,分子动能减小,故选项B错误;在r=r0时,分子势能最小,动能最大,故选项C正确;在r=r0时,分子势能最小,但不为零,故选项D错误;在整个相互接近的过程中分子动能和势能之和保持不变,故选项E正确.考点四、温度是分子平均动能的标志,内能的比较【例4】(多选)当氢气和氧气的质量和温度都相同时,下列说法正确的是()A.两种气体分子的平均动能相等B.氢气分子的平均速率大于氧气分子的平均速率C.两种气体分子热运动的总动能相等D.两种气体的内能相等【解析】因温度是气体分子平均动能的标志,所以A正确.因为氢气分子的质量小于氧气分子的质量,平均动能又相等,所以分子质量大的平均速率小,故B正确.虽然气体质量和分子平均动能都相等,但由于气体摩尔质量不同,分子数目就不同,因此C、D错误.【答案】AB【思维提升】本题主要考查分子的平均动能及内能大小概念,要求掌握分子平均动能及内能大小相关因素,才能作出正确的判断.【拓展4】关于物体的内能,下列说法正确的是( D )A.热水的内能一定比冷水的大B.当温度等于0 ℃时,分子动能为零C.分子间距离为r 0时,分子势能为零D.温度相等的氢气和氧气,它们的分子平均动能相等【解析】物体的内能与温度、体积及物质的量有关,因此热水的内能不一定比冷水的内能大,A 项错误;分子永不停息地做无规则运动,分子的动能不可能为零,B 项错误;分子间距离为r 0时,分子势能最小,但不为零,C 项错误;温度是分子平均动能的标志,D 项正确.易错门诊对统计规律和内能的涵义理解不深导致错误【例5】下列说法正确的是( )A.温度低的物体内能小B.温度低的物体分子运动的平均速率小C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大D.温度低的铜块与温度高的铁块相比,分子平均动能小【错解】ABC ,因为温度低,平均动能就小,所以内能就小, A 正确.由动能公式 E k =12mv 2可知,速率越小动能就越小,而温度低的物体分子平均动能小,所以速率也小,B 正确.由加速运动的规律我们了解到,物体的速度大小由初速度、加速度和时间决定,随着时间的推移,速度越来越快再由动能公式 E k =12mv 2可知,物体动能也越来越大, C 正确. 【错因】对内能的涵义和分子平均动能的影响因素理解不深导致错选.【正解】内能是物体内所有分子的动能和势能的总和.温度是分子平均动能的标志,任何物质只要温度低则物体分子平均动能就一定小,D 正确;但温度低不表示内能一定也小,也就是所有分子的动能和势能的总和不一定就小,A 错误;温度低,物体分子平均动能小,但不同物质的分子质量不同,所以无法确定温度低时分子运动的平均速率是否一定小, B 错误;微观分子无规则运动与宏观物体运动不同,分子的平均动能只是分子无规则热运动的动能,而物体加速运动时,物体内所有分子均参与物体的整体、有规律的运动,这时物体整体运动虽然越来越快,但并不能说明分子无规则运动的情况就加剧.从本质上说,分子无规则运动的剧烈程度只与物体的温度有关,而与物体的宏观运动情况无关,C 错误.【答案】D【思维提升】要理解温度是平均动能的标志,但是内能包含的是所有分子的热运动动能与分子势能的总和.第2讲 固体、液体与气体重点难点突破规律方法技巧一、晶体的微观结构(1)晶体的微观结构特点:组成晶体的物质微粒有规则地、周期性地在空间排列.二、气体分子运动的特点和气体压强1.气体分子运动的特点2.气体压强的计算方法(1)系统处于平衡状态下的气体压强计算方法a.液体封闭的气体压强的确定平衡法:选与气体接触的液柱为研究对象进行受力分析,利用它的受力平衡,求出气体的压强.取等压面法:根据同种液体在同一水平液面处压强相等,在连通器内灵活选取等压面,由两侧压强相等建立方程求出压强.液体内部深度为h 处的总压强为p =p 0+ρgh .b.固体(活塞或汽缸)封闭的气体压强的确定由于该固体必定受到被封闭气体的压力,所以可通过对该固体进行受力分析,由平衡条件建立方程来找出气体压强与其他各力的关系.(2)加速运动系统中封闭气体压强的计算方法:一般选与气体接触的液柱或活塞为研究对象,进行受力分析,利用牛顿第二定律列方程求解.特别注意:①气体压强与大气压强不同,大气压强由重力而产生,随高度增大而减小,气体压强由大量气体分子频繁碰撞器壁而产生,大小不随高度而变化.②求解液体内部深度为h 处的总压强时,不要忘记液面上方气体的压强.③封闭气体对器壁的压强处处相等.三、力学气体状态方程和理想气体T >T T 2>T 1有关图象的认识和处理对于一定质量的理想气体,的线作辅助线去分析同质量、不同温度的两条等温线,不同体积的两条等容线,不同压强的两条等压线的关系,根据pV =CT (C 为常数,与物质的量有关)来认识图象的斜率与面积的物理意义.例如p -V 图中V 1对应虚线为等容线,A 、B 是等容线与T 2、T 1两线的交点,由图可知状态A 与坐标轴围成的面积大,pV 值大,据pV =CT 可知状态A 对应的T 2大,即T 2>T 1;又如V -T 图中T 1为等温线,从A 状态到B 状态体积增大,图中OA 、OB连线表示等压线,由pV =CT 可知A 状态压强p A 大于B 状态压强p B ,即压强减小,由B 状态到C 状态是等压过程,温度升高,体积增大.在正确认识图象的基础上,利用图象提供的信息来判断理想气体状态参量的变化,以及外界对热力学系统的做功和系统的吸放热情况的分析判断.2.理想气体(1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体.①理想气体是一种经科学抽象而建立的理想化模型,实际上不存在;②实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可当做理想气体来处理.(2)一定质量理想气体的状态方程:pV T =C (恒量),即p 1V 1T 1=p 2V 2T 2. (3)应用状态方程解题的一般步骤①明确研究对象,即某一定质量的理想气体;②确定气体在始末状态的参量p 1、V 1、T 1及p 2、V 2、T 2;③由状态方程列式求解;④讨论结果的合理性.高频考点突破考点一、固体的微观结构、晶体和非晶体【例1】关于晶体和非晶体的说法,正确的是( )A.所有的晶体都表现为各向异性B.晶体一定有规则的几何形状,形状不规则的金属一定是非晶体C.大粒盐磨成细盐,就变成了非晶体D.所有的晶体都有确定的熔点,而非晶体没有确定的熔点【解析】晶体分为单晶体和多晶体,一些物理性质表现为各向异性,但多晶体没有规则的几何形状,也不显各向异性,所以A 、B 错误;大粒盐是多晶体,磨成细盐后就变成了小晶体,C 错误;正确区分晶体与非晶体是看它们有无确定的熔点,D 正确.【答案】D【思维提升】 晶体和非晶体在物理性质上的异同在于:晶体在外观上有规则的几何形状,有确定的熔点,有一些物理性质表现为各向异性,非晶体在外观上没有规则的几何形状,没有确定的熔点,一些物理性质表现为各向同性.【拓展1】(多选)甲、乙、丙三种固体薄片上涂上蜡,由烧热的针接触其上一点,蜡熔化的范围如图甲、乙、丙所示,而甲、乙、丙三种液体在熔解过程中温度随加热时间变化的关系如图丁所示,下列说法正确的是( BD )A.甲、乙为非晶体,丙是晶体B.甲、丙为晶体,乙是非晶体C.甲、丙为非晶体,乙是晶体D.甲为多晶体,乙为非晶体,丙为单晶体【解析】由图甲、乙、丙可知:甲、乙各向同性,丙各向异性;由图丁可知:甲、丙有固定熔点,乙无固定熔点,所以甲、丙为晶体,乙是非晶体.其中甲为多晶体,丙为单晶体.考点二、液体的微观结构、液体的表面张力现象和液晶【例2】关于液体表面现象的说法中正确的是( )A.把缝衣针小心放在水面上,针可以把水面压弯而不沉没,是因为针受到重力小,又受液体的浮力的缘故B.在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力C.玻璃管道的裂口放在火上烧熔,它的尖端就变圆,是因为熔化的玻璃,在表面张力的作用下,表面要收缩到最小的缘故D.飘浮在热菜汤表面上的油滴,从上面观察是圆形的,是因为油滴液体各向同性的缘故【解析】由于液体表面张力的作用,缝衣针放在水面上不沉没,失重状态下的一大滴水银会成球状,飘浮在热菜汤表面上的油滴成圆形,故A 、B 、D 错误.【答案】C【思维提升】 清楚分子力与分子间距离的关系,熟知“表层”与“内部”的差异是解决此类问题的切入点.【拓展2】(多选)下列现象中,能说明液体存在表面张力的有( AB )A.水黾可以停在水面上B.叶面上的露珠呈球形C.滴入水中的红墨水很快散开D.悬浮在水中的花粉做无规则运动【解析】由于液体表面层分子引力,使得液体表面具有收缩的趋势,露珠表面张力使表面面积收缩到最小,水面的张力给水黾向上的弹力,选项A 、B 正确;红墨水散开是扩散现象,选项C 错误;悬浮在水中的花粉做无规则运动,是水分子对花粉颗粒碰撞不均衡造成的,选项D 错误.考点三、气体压强的计算【例3】若已知大气压强为p0,图中各装置均处于静止状态,求被封闭气体的压强.[重力加速度为g ,图(1)、(2)中液体的密度为ρ,图(3)中活塞的质量为m ,活塞的横截面积为S ]【解析】在图(1)中,选B 液面为研究对象,由二力平衡得F 下=F 上,即p 下S ′=p 上S ′(S ′为小试管的横截面积),所求气体压强就是A 液面所受压强p A .B 液面所受向下的压强p 下是p A 加上液柱h 所产生的液体压强,由连通器原理可知B 液面所受向上的压强为大气压强p 0,故有p A +ρgh =p 0,所以p A =p 0-ρgh在图(2)中,以B 液面为研究对象,由平衡方程F 上=F 下有p A S ″+p h S ″=p 0S ″(S ″为U 型管的横截面积),所以p A =p 0-ρgh .在图(3)中,以活塞为研究对象,由平衡条件得pS =mg +p 0S ,所以p =p 0+mg S. 【思维提升】 求气体的压强,可以选择受气体压力作用的活塞或者某液面为研究对象,根据平衡条件列出平衡方程求解.【拓展3】如图所示,一个横截面积为S 的圆筒型容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M ,不计圆板A 与容器内壁之间的摩擦,若大气压强为p 0,则被圆板封闭在容器中气体的压强p 等于( D )A.p 0+Mg cos θSB.p 0cos θ+Mg S cos θC.p 0+Mg cos 2θSD.p 0+Mg S【解析】 以金属圆板A 为研究对象,分析其受力情况,从受力图可知,圆板A 受竖直向下的力有重力Mg 、大气压力p 0S ,竖直向上的力为气体压力pS ′在竖直方向的分力pS ′cos θ,其中S ′=S cos θ,所以p S cos θcos θ=Mg +p 0S ,故p =Mg S+p 0. 考点四、理想气体及气体实验定律【例4】如图,由U 形管和细管连接的玻璃泡A 、B 和C 浸泡在温度均为0 ℃的水槽中,B 的容积是A 的3倍.阀门S 将A 和B 两部分隔开.A内为真空,B 和C 内都充有气体.U 形管内左边水银柱比右边的低60 mm.打开阀门S ,整个系统稳定后,U 形管内左右水银柱高度相等.假设U 形管和细管中的气体体积远小于玻璃泡的容积.(1)求玻璃泡C 中气体的压强(以mmHg 为单位);(2)将右侧水槽的水从0 ℃加热到一定温度时,U 形管内左右水银柱高度差又为60 mm ,求加热后右侧水槽的水温.【解析】(1)在打开阀门S 前,两水槽水温均为T 0=273 K.设玻璃泡B 中气体的压强为p 1,体积为V B ,玻璃泡C 中气体的压强为p C ,依题意有p 1=p C +Δp ①式中Δp =60 mmHg.打开阀门S 后,两水槽水温仍为T 0,设玻璃泡B 中气体的压强为p B .依题意有,p B =p C② 玻璃泡A 和B 中气体的体积为V 2=V A +V B③ 根据玻意耳定律得p 1V B =p B V 2④ 联立①②③④式,并代入题给数据得p C =V B V AΔp =180 mmHg. ⑤ (2)当右侧水槽的水温加热到T ′时,U 形管左右水银柱高度差为Δp .玻璃泡C 中气体的压强为p ′C =p B +Δp ⑥玻璃泡C 中的气体体积不变,根据查理定律得p C T 0=p ′C T ′⑦ 联立②⑤⑥⑦式,并代入题给数据得T ′=364 K. ⑧【思维提升】分析气体状态变化的问题要抓住三点:(1)阶段性:即弄清一个物理过程分为哪几个阶段.(2)联系性:即找出几个阶段之间是由什么物理量联系起来的.(3)规律性:即明确哪个阶段应遵循什么实验定律.【拓展4】一活塞将一定质量的理想气体封闭在汽缸内,初始时气体体积为3.0×10-3 m 3.用DIS 实验系统测得此时气体的温度和压强分别为300 K 和1.0×105 Pa.推动活塞压缩气体,稳定后测得气体的温度和压强分别为320 K 和1.6×105 Pa.(1)求此时气体的体积.(2)保持温度不变,缓慢改变作用在活塞上的力,使气体压强变为8.0×104 Pa ,求此时气体的体积.【解析】(1)对缸内封闭气体初态:p 1=1×105 Pa ,V 1=3.0×10-3 m 3,T 1=300 K ,末态:p 2=1.6×105 Pa ,V 2=?,T 2=320 K由理想气体状态方程可知p 1V 1T 1=p 2V 2T 2,所以V 2=p 1V 1T 2T 1p 2=2×10-3 m 3,即末态时气体体积为2×10-3 m 3.(2)当气体保持T 2不变,气体压强变为8.0×104 Pa 时最后状态:p 3=0.8×105 Pa ,V 3=?,T 3=T 2=320 K所以p 2V 2=p 3V 3,即V 3=p 2V 2p 3=1.6×105×2×10-30.8×105 m 3=4×10-3 m 3. 易错门诊对气体状态变化图象认识不清导致错误【例5】如图所示,已知一定质量的理想气体,从状态 1 变化到状态 2.则下列说法正确的是( )A.气体对外做正功B.气体对外不做功C.气体对外做负功D.无法判定气体是否对外做功【错解一】D ,因为判断不了气体体积情况,所以无法确定.【错因】不会应用等容线,不知道如何利用 p -T 图比较两个状态的体积,因而感到无从下手.【错解二】B ,因为 1 状态与 2 状态在一条直线上.而 p -T 坐标上的等容线是直线.所以状态 1 与状态 2 的体积相等,气体对外不做功.【错因】把等容线的概念弄错了,虽然状态 1 和状态 2在一条直线上,但并不是说 p -T 图上的所有直线都是等容线.只有延长线过原点的直线才表示一个等容过程.而此题的状态 1与状态 2 所在的直线就不是一条等容线.【正解】如图所示,分别作出过 1 和 2 的等容线Ⅰ和Ⅱ,由图可知,直线Ⅰ的斜率大于直线Ⅱ的斜率,即 V 2>V 1,所以,从状态 1 变化到状态 2,气体膨胀对外做正功,故选A.。
高中物理选修3-3知识点整理(20210122223027)
物理选修3-3 知识点总结—czt选修3—3 考点汇编一、分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同23 1N 6.02 10 molA(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量a.分子质量:m M mol ANb.分子体积:v VmolNAM v M vc.分子数量:n N A N A N A N AM M V Vmol mol mol mol2、分子永不停息的做无规则的热运动(布朗运动扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地- 1 -做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图 1 中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图 1 图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
当两个分子间距在图象横坐标r 距离时,分子间的引力与斥力平衡,分子间作用力为零,r0 的数量级为01010 m,相当于r0 位置叫做平衡位置。
当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
高中物理,选修3---3,全册课件汇总
3.31027 (kg)
同理:一个水分子质量 m=M/NA=1.8×10-2/ 6.02×1023=3×10-26kg.
例5.若已知铁的原子量是56,铁的密度是7.8×103kg/m3,试 求质量是1g的铁块中铁原子的数目(取1位有效数字)及 一个铁原子的体积.
解: 1g铁的物质量是1/56mol,设其中铁原子的数目是n :
n=1/56× NA=1/56×6×1023≈1×1022个. 1g铁的体积v: v =m/ρ=1×10-3/7.8×103 ≈1×10 –7m3 .
一个铁原子的体积vo: v o=v/n= (1×10 –7)/ (1×1022 ) ≈ 1×10 –29 m3.
例题6:
已知空气的摩尔质量是M A 29103kg/mol ,
二、阿伏伽德罗常数
问: 在化学课上学过的阿伏伽德罗常数是什么意义? 数值是多少?
意义: 1mol任何物质中含有的微粒数(包括原子数,分子
数,离子数……)都相同,此数叫阿伏伽德罗常数, 可用符号NA表示此常数.阿伏加德罗常数是联系微观
世界和宏观世界的桥梁.
数值: 1986年X射线法 NA=6.0221367×1023个/ mol(mol-1 ).
(2)油膜法:
将一滴体积已知的小油滴, 滴在水面上, 在重力作用下 尽可能的散开形成一层极薄的油膜, 此时油膜可看成单 分子油膜,油膜的厚度看成是油酸分子的直径, 所以只要 再测定出这层油膜的面积, 就可求出油分子直径的大小
78cm2
简化处理: (1)把分子看成一个个小球; (2)油分子一个紧挨一个整齐排列; (3)认为油膜厚度等于分子直径.
高中物理人教版选修3---3 全册课件汇总
§第七章: 分子动理论 §第八章: 气体 §第九章: 固体、液体和物态变化 §第十章: 热力学定律
高中高中物理选修3-3资料
分子动理论二、典型例题例1、铜的摩尔质量是6.35×10-2kg,密度是8.9×103kg/m3 。
求(1)铜原子的质量和体积;(2)铜1m3所含的原子数目;(3)估算铜原子的直径。
例2、下面两种关于布朗运动的说法都是错误的,试分析它们各错在哪里。
(1) 大风天常常看到风沙弥漫、尘土飞扬,有时在室内也能看到飘浮在空气中的尘埃的运动,这些都是布朗运动。
(2)布朗运动是由于液体分子对固体小颗粒的撞击引起的,固体小颗粒的体积越大,液体分子对它的撞击越多,布朗运动就越明显。
例3、如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中的曲线所示,F>0为斥力,F<0为引力四个特定的位置.现把乙分子从a处由静止释放,则()A.乙分子从a到b做加速运动,由b到c做减速运动B.乙分子从a到c做匀加速运动,到达c时速度最大C.乙分子从a到b的过程中,两分子间的分子势能一直减小D.乙分子到达c时,两分子间的分子势能最小为零例4 相同质量的氧气和氢气温度相同,下列说法正确的是()A.每个氧分子的动能都比氢分子的动能大 B.每个氢分子的速率都比氧分子的速率大C.两种气体的分子平均动能一定相等 D.两种气体的分子势能一定相等例5、以下说法正确的是( )A.机械能为零,内能不为零是可能的 B.温度相同,质量相同的物体具有相同内能C.温度越高,物体的内能越大 D.0℃的冰的内能比等质量的0℃的水内能大针对训练1.分子动理论较好地解释了物质的宏观热力学性质。
据此可判断下列说法中错误的是A、显微镜下观察到墨水中的小炭粒在不停的作无规则运动,这反映了液体分子运动的无规则性B、分子间的相互作用力随着分子间距离的增大,一定先减小后增大C、分子势能随着分子间距离的增大,可能先减小后增大D、在真空、高温条件下,可以利用分子扩散向半导体材料掺入其它元素2.关于布朗运动,下列说法正确的是()A、布朗运动用眼睛可直接观察到;B、布朗运动在冬天观察不到;C、布朗运动是液体分子无规则运动的反映;D、在室内看到的尘埃不停的运动是布朗运动μ表示水的摩尔质量,v表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下3.若以水蒸气的密度,N A 为阿伏加德罗常数,m 、△分别表示每个水分子的质量和体积,下面是四个关系式:①m v N A ρ= ②∆=A N μρ ③A N m μ= ④A N v =∆ 其中( )A .①和②都是正确的;B .①和③都是正确的;C .②和④都是正确的;D .①和④都是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理选修3-3复习专题定位本专题用三讲时分别解决选修3-3、3-4、3-5中高频考查问题,高考对本部分内容考查的重点和热点有:选修3-3:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小等内容.选修3-4:①波的图象;②波长、波速和频率及其相互关系;③光的折射及全反射;④光的干涉、衍射及双缝干涉实验;⑤简谐运动的规律及振动图象;⑥电磁波的有关性质.选修3-5:①动量守恒定律及其应用;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等.应考策略选修3-3内容琐碎、考查点多,复习中应以四块知识(分子动理论、从微观角度分析固体、液体、气体的性质、气体实验定律、热力学定律)为主干,梳理出知识点,进行理解性记忆.选修3-4内容复习时,应加强对基本概念和规律的理解,抓住波的传播和图象、光的折射定律这两条主线,强化训练、提高对典型问题的分析能力.选修3-5涉及的知识点多,而且多是科技前沿的知识,题目新颖,但难度不大,因此应加强对基本概念和规律的理解,抓住动量守恒定律和核反应两条主线,强化典型题目的训练,提高分析综合题目的能力.第1讲热学高考题型1热学基本知识解题方略1.分子动理论(1)分子大小①阿伏加德罗常数:N A=6.02×1023 mol-1.②分子体积:V0=V molN A(占有空间的体积).③分子质量:m0=M molN A.④油膜法估测分子的直径:d=VS.(2)分子热运动的实验基础:扩散现象和布朗运动.①扩散现象特点:温度越高,扩散越快.②布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈.(3)分子间的相互作用力和分子势能①分子力:分子间引力与斥力的合力.分子间距离增大,引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快.②分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增大;当分子间距为r0(分子间的距离为r0时,分子间作用的合力为0)时,分子势能最小.2.固体和液体(1)晶体和非晶体的分子结构不同,表现出的物理性质不同.晶体具有确定的熔点.单晶体表现出各向异性,多晶体和非晶体表现出各向同性.晶体和非晶体在适当的条件下可以相互转化.(2)液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.液晶具有流动性,在光学、电学物理性质上表现出各向异性.(3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张力的方向跟液面相切.例1关于热学基本知识的易错点辨析(正确的打“√”号,错误的打“×”号)(1)布朗运动是液体分子的无规则运动()(2)布朗运动并不是液体分子的运动,但它说明分子永不停息地做无规则运动()(3)液体温度越高,布朗运动会越激烈()(4)布朗运动反映了悬浮颗粒中分子运动的不规则性()(5)悬浮在液体中的固体微粒越小,布朗运动就越明显()(6)悬浮在液体中的微粒越小,受到液体分子的撞击就越容易平衡()(7)布朗运动是由于液体各部分温度不同而引起的()(8)在较暗的房间里,看到透过窗户的“阳光柱”里粉尘的运动不是布朗运动()(9)布朗运动是指在显微镜下观察到的液体分子的无规则运动()(10)显微镜下观察到墨水中的小炭粒在不停的做无规则运动,这反映了液体分子运动的无规则性()(11)悬浮在空气中做布朗运动的PM2.5微粒,气温越高,运动越剧烈()(12)扩散运动就是布朗运动()(13)扩散现象与布朗运动都与温度有关()(14)扩散现象不仅能发生在气体和液体中,固体中也可以()(15)“酒香不怕巷子深”与分子热运动有关()(16)水不容易被压缩说明分子间存在分子力()(17)用力拉铁棒的两端,铁棒没有断,说明此时分子间只存在引力而不存在斥力()(18)分子间引力总是随着分子间的距离减小而减小()(19)将一个分子从无穷远处无限靠近另一个分子,则这两个分子间的分子力先增大后减小最后再增大()(20)当分子间距离增大时,分子间的引力减少,斥力增大()(21)若两分子间距离减小,分子间斥力增大,引力减小,合力为斥力()(22)当两分子间距离大于平衡位置的间距r0时,分子间的距离越大,分子势能越小()(23)分子间同时存在着引力和斥力,当分子间距增加时,分子间的引力增大,斥力减小()(24)分子间引力总是随着分子间的距离减小而减小()(25)分子间的相互作用力随着分子间距离的增大,先减小后增大()(26)分子间距离增大时,分子间的引力、斥力都减小()(27)随着分子间距离增大,分子间作用力减小,分子势能也减小()(28)分子间的距离为r0时,分子间作用力的合力为零,分子势能最小()(29)同种物质可能以晶体和非晶体两种不同的形态出现()(30)大颗粒的盐磨成了细盐,就变成了非晶体()(31)单晶体的某些物理性质具有各向异性,而多晶体和非晶体是各向同性的()(32)单晶体和多晶体都有确定的熔点,非晶体没有确定的熔点()(33)晶体在各个方向上的导热性能相同,体现为各向同性()(34)单晶体的物理性质具有各向异性()(35)太空中水滴成球形,是液体表面张力作用的结果()(36)漂浮在热菜汤表面上的油滴,从上面的观察是圆形的,是油滴液体呈各向同性的缘故()(37)液体与大气相接触,表面层内分子所受其他分子的作用表现为相互吸引()(38)由于液体表面分子间距离大于液体内部分子间的距离,液面分子间只有引力,没有斥力,所以液体表面具有收缩的趋势()(39)液体表面张力的方向与液面垂直并指向液体内部()(40)液体表面的分子距离大于分子间的平衡距离,使得液面有表面张力()(41)叶面上的小露珠呈球形是由于液体表面张力的作用()(42)肥皂水的水面能托住小的硬币主要与液体的表面张力有关()(43)雨水没有透过布雨伞是因为液体表面存在张力()(44)液晶具有液体的流动性,同时具有晶体的各向异性特征()(45)液晶显示器是利用了液晶对光具有各向异性的特点()(46)当人们感到潮湿时,空气的绝对湿度一定较大()(47)空气相对湿度越大时,空气中水蒸气压强越接近饱和汽压,水蒸发越快()(48)只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数()(49)用阿伏加德罗常数和某种气体的密度,就可以求出该种气体的分子质量()(50)已知某气体的摩尔体积V,再知道阿伏加德罗常数N A,就可以求出一个气体分子的体积()(51)只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积()(52)用阿伏加德罗常数和某种气体的密度,就一定可以求出该种气体的分子质量()(53)达到热平衡的两个物体具有相同的热量()(54)物体的温度越高,分子热运动越剧烈,分子的平均动能越大()(55)温度升高时物体内的每个分子的运动速率一定增大()(56)物体中所有分子的热运动动能的总和叫做物体的内能()(57)物体的内能是物体内所有分子动能和分子势能的总和()(58)温度升高,物体内每个分子的动能一定增大()(59)相同质量0 ℃的水的分子势能比0 ℃的冰的分子势能大()(60)气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力()(61)单位体积的气体分子数增加,气体的压强一定增大()(62)气体的压强是由于大量分子频繁撞击器壁产生的()(63)若气体的温度不变,压强增大,说明每秒撞击单位面积器壁的分子数增多()(64)一定质量的理想气体压强不变时,气体分子单位时间内对器壁单位面积的平均碰撞次数随着温度升高而减少()(65)从微观角度看气体压强只与分子平均动能有关()(66)气体分子单位时间内与单位面积器壁发生碰撞的次数,与单位体积内气体的分子数和气体温度都有关()(67)单位时间内气体分子对容器壁单位面积上碰撞次数减少,气体的压强一定减小() 预测1(2015·新课标全国卷Ⅰ·33)下列说法正确的是________.A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变预测2(2015·东北三省三模)下列说法正确的是________.A.布朗运动反映了液体分子在永不停息的做无规则热运动B.气体分子的平均动能增大,压强也一定增大C.不同温度下,水的饱和汽压都是相同的D.完全失重状态下悬浮的水滴呈球状是液体表面张力作用的结果E.分子动理论认为,单个分子的运动是无规则的,但是大量分子的运动仍然有一定规律高考题型2热力学定律的理解解题方略1.物体内能变化的判定:温度变化引起分子平均动能的变化;体积变化,分子间的分子力做功,引起分子势能的变化.2.热力学第一定律(1)公式:ΔU=W+Q;(2)符号规定:外界对系统做功,W>0;系统对外界做功,W<0.系统从外界吸收热量,Q>0;系统向外界放出热量,Q<0.系统内能增加,ΔU>0;系统内能减少,ΔU<0.3.热力学第二定律的表述:①热量不能自发地从低温物体传到高温物体(按热传递的方向性表述).②不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响(按机械能和内能转化的方向性表述).③第二类永动机是不可能制成的.例2关于热力学定律的理解,下列说法是否正确(正确的打“√”号,错误的打“×”号)(1)外界对系统做功,其内能一定增加()(2)系统从外界吸收热量,其内能一定增加()(3)一定质量的理想气体发生绝热膨胀时,其内能不变()(4)一定质量的理想气体,在等压膨胀过程中,气体分子的平均动能增大()(5)在轮胎爆裂这一短暂过程中,气体膨胀,温度下降()(6)密闭有空气的薄塑料瓶因降温而变扁,此过程外界对其做功,瓶内空气内能增加()(7)热量能够自发地从高温物体传导到低温物体,但不能自发地从低温物体传导到高温物体()(8)利用浅层海水和深层海水之间的温度差制造一种热机,将海水的一部分内能转化为机械能是可能的()(9)自然界进行的涉及热现象的宏观过程都具有方向性,是不可逆的()(10)功转变为热的实际宏观过程一定是可逆过程()(11)空调既能制热又能制冷,说明热传递不存在方向性()(12)不断改进工艺,热机的效率可能达到100%()(13)热量不可以自发地从低温物体传递到高温物体,是因为违背了热力学第一定律()(14)“第一类永动机”不可能制成,是因为它违反了能量守恒定律()(15)“第二类永动机”不可能制成是因为它违反了能量守恒定律()预测3(2015·呼伦贝尔一模)下列说法中正确的是________.A.随着科学技术的发展,制冷机的制冷温度可以降到-280 ℃B.随着科学技术的发展,热量可以从低温物体传到高温物体C.随着科学技术的发展,热机的效率可以达到100%D.无论科技怎样发展,第二类永动机都不可能实现E.无论科技怎样发展,都无法判断一温度升高的物体是通过做功还是热传递实现的预测4(2015·湖北八校联考) 一定质量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态,其V-T图象如图1所示,P a、P b、P c分别表示状态a、b、c的压强,下列判断正确的是________.图1A.过程ab中气体一定吸热B.P c=P b>P aC.过程bc中分子势能不断增大D.过程bc中每一个分子的速率都减小E.过程ca中气体吸收的热量等于对外做的功高考题型3气体实验定律的应用解题方略1.气体实验定律(1)等温变化:pV=C或p1V1=p2V2;(2)等容变化:p T =C 或p 1T 1=p 2T 2; (3)等压变化:V T =C 或V 1T 1=V 2T 2; (4)理想气体状态方程:pV T =C 或p 1V 1T 1=p 2V 2T 2. 2.应用气体实验定律的三个重点环节:(1)正确选择研究对象:对于变质量问题要保证研究质量不变的部分;对于多部分气体问题,要各部分独立研究,各部分之间一般通过压强找联系.(2)列出各状态的参量:气体在初、末状态,往往会有两个(或三个)参量发生变化,把这些状态参量罗列出来会比较准确、快速的找到规律.(3)认清变化过程:准确分析变化过程以便正确选用气体实验定律.例3 (2015·新课标全国Ⅰ·33) 如图2,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m 1=2.50 kg ,横截面积为S 1=80.0 cm 2;小活塞的质量为m 2=1.50 kg ,横截面积为S 2=40.0 cm 2;两活塞用刚性轻杆连接,间距为l =40.0 cm ;汽缸外大气的压强为p =1.00×105 Pa ,温度为T =303 K .初始时大活塞与大圆筒底部相距l 2,两活塞间封闭气体的温度为T 1=495 K .现汽缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g 取 10 m/s 2.求:图2(ⅰ)在大活塞与大圆筒底部接触前的瞬间,汽缸内封闭气体的温度;(ⅱ)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.预测5(2015·烟台二模) 如图3所示,一汽缸质量为M=60 kg(汽缸的厚度忽略不计且透热性良好),开口向上放在水平面上,汽缸中有横截面积为S=100 cm2的光滑活塞,活塞质量m=10 kg.汽缸内封闭了一定质量的理想气体,此时气柱长度为L1=0.4 m.已知大气压为p0=1×105 Pa.现用力缓慢向上拉动活塞,若使汽缸能离开地面,气柱的长度至少是多少?(取重力加速度g=10 m/s2)图3预测6(2015·黄冈市4月模拟)如图4,上粗下细且上端开口的薄壁玻璃管内有一部分水银封住密闭气体,横截面积分别为S1=1 cm2、S2=2 cm2,细管内水银长度为h1=4 cm,封闭气体长度为L=6 cm.大气压强为p0=76 cmHg,气体初始温度为T1=288 K,上管足够长.图4(1)缓慢升高气体温度,求水银刚好全部进入粗管内时的温度T2;(2)气体温度保持T2不变,为使封闭气体长度变为8 cm,需向开口端注入的水银柱的体积为多少?高考题型4热学中的综合问题例4(2015·新课标全国Ⅱ·33(2)) 如图5,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度为l=10.0 cm,B侧水银面比A侧的高h=3.0 cm.现将开关K打开,从U形管中放出部分水银,当两侧水银面的高度差为h1=10.0 cm时将开关K关闭.已知大气压强p0=75.0 cmHg.图5(ⅰ)求放出部分水银后A侧空气柱的长度;(ⅱ)此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管内的长度.预测7(2015·石家庄二模) 1 mol 理想气体的压强p与体积V的关系如图6所示.气体在状态A时的压强为p0,体积为V0,热力学温度为T0,在状态B时的压强为2p0,体积为2V0,AB为直线段.已知该气体内能与温度成正比U=C V T(C V为比例系数).求:图6(1)气体在B状态时的热力学温度;(2)气体从状态A变化到状态B的过程中吸收的热量.预测8(2015·日照二模)在某高速公路发生一起车祸,车祸系轮胎爆胎所致.已知汽车行驶前轮胎内气体压强为2.5 atm,温度为27 ℃,爆胎时胎内气体的温度为87 ℃,轮胎中的空气可看做理想气体.(1)求爆胎时轮胎内气体的压强;(2)从微观上解释爆胎前胎内气体压强变化的原因;(3)爆胎后气体迅速外泄,来不及与外界发生热交换,判断此过程胎内原有气体内能如何变化?简要说明理由.提醒:完成作业专题八第1讲学生用书答案精析专题八选考部分(3-3、3-4、3-5)第1讲热学高考题型1热学基本知识例1(1)×(2)√(3)√(4)×(5)√(6)×(7)×(8)√(9)×(10)√(11)√(12)×(13)√(14)√(15)√(16)√(17)×(18)×(19)√(20)×(21)×(22)×(23)×(24)×(25)×(26)√(27)×(28)√(29)√(30)×(31)√(32)√(33)×(34)√(35)√(36)×(37)√(38)×(39)×(40)√(41)√(42)√(43)√(44)√(45)√(46)×(47)×(48)√(49)×(50)×(51)×(52)×(53)×(54)√(55)×(56)×(57)√(58)×(59)√(60)√(61)×(62)√(63)√(64)√(65)×(66)√(67)×预测1BCD预测2ADE高考题型2热力学定律的理解例2(1)×(2)×(3)×(4)√(5)√(6)×(7)√(8)√(9)√(10)×(11)×(12)×(13)×(14)√(15)×预测3BDE预测4ABE高考题型3 气体实验定律的应用例3 (ⅰ)330 K (ⅱ)1.01×105 Pa解析 (ⅰ)大小活塞在缓慢下移过程中,受力情况不变,汽缸内气体压强不变,由盖—吕萨克定律得V 1T 1=V 2T 2初状态V 1=l 2(S 1+S 2),T 1=495 K 末状态V 2=lS 2代入可得T 2=23T 1=330 K (ⅱ)对大、小活塞受力分析则有m 1g +m 2g +pS 1+p 1S 2=p 1S 1+pS 2可得p 1=1.1×105 Pa缸内封闭的气体与缸外大气达到热平衡过程中,气体体积不变,由查理定律得p 1T 2=p 2T 3T 3=T =303 K解得p 2=1.01×105 Pa预测5 1.1 m解析 初状态p 1=p 0+mg S=1.1×105 Pa ,V 1=0.4S 汽缸脱离地面有F =mg +Mg =700 Np 2=p 0+mg S -F S=0.4×105 Pa ,V 2=L 2S 由玻意耳定律得p 1V 1=p 2V 2解得L 2=1.1 m即气柱的长度至少是1.1 m.预测6 (1)468 K (2)37 cm 3解析 (1)初状态:p 1=p 0+p h 1,V 1=LS 1末状态:p 2=p 0+p h 2,V 2=(L +h 1)S 1又有:S1h1=S2h2根据p1V1T1=p2V2T2由以上各式并代入数据解得:T2=468 K.(2)气体等温变化有:p2V2=p3V3解得p3=97.5 cmHg,设此时水银柱的液面高度差为h3,有:h3=97.5 cm-76 cm=21.5 cm注入的水银柱体积V注=(21.5-2)×2 cm3+2×1 cm3-4×1 cm3=37 cm3.高考题型4热学中的综合问题例4(ⅰ)12.0 cm(ⅱ)13.2 cm解析(ⅰ)以cmHg为压强单位.设A侧空气柱长度l=10.0 cm时的压强为p;当两侧水银面的高度差为h1=10.0 cm时,空气柱的长度为l1,压强为p1.由玻意耳定律得pl=p1l1①由力学平衡条件得p=p0+h②打开开关K放出水银的过程中,B侧水银面处的压强始终为p0,而A侧水银面处的压强随空气柱长度的增加逐渐减小,B、A两侧水银面的高度差也随之减小,直至B侧水银面低于A侧水银面h1为止.由力学平衡条件有p1=p0-h1③联立①②③式,并代入题给数据得l1=12.0 cm④(ⅱ)当A、B两侧的水银面达到同一高度时,设A侧空气柱的长度为l2,压强为p2.由玻意耳定律得pl=p2l2⑤由力学平衡条件有p2=p0⑥联立②⑤⑥式,并代入题给数据得l 2=10.4 cm ⑦设注入的水银在管内的长度Δh ,依题意得Δh =2(l 1-l 2)+h 1⑧联立④⑦⑧式,并代入题给数据得Δh =13.2 cm预测7 (1)4T 0 (2)3C V T 0+3p 0V 02解析 (1)根据理想气体状态方程p 0V 0T 0=2p 0×2V 0T B,解得T B =4T 0. (2)根据热力学第一定律,ΔU =W +Q ,根据图象可知W =-(p 0+2p 0)(2V 0-V 0)2, ΔU =C V (4T 0-T 0)解得:Q =3C V T 0+3p 0V 02. 预测8 (1)3 atm (2)(3)见解析解析 (1)初状态:p 1=2.5 atm ,T 1=(27+273) K =300 K末状态:T 2=(87+273) K =360 K爆胎之前气体状态变化为等容变化,由气体实验定律得,p 1T 1=p 2T 2, 解得p 2=3 atm.(2)气体体积不变,分子密集程度不变,温度升高时,分子平均动能增大,单位时间内撞击单位面积器壁的分子数增多,分子的平均撞击力增大,所以气体压强增大.(3)气体迅速膨胀对外做功,但短时间内与外界几乎不发生热量传递,由热力学第一定律ΔU =W+Q得,ΔU<0,气体的内能减少.。