汽机主再蒸汽系统及旁路系统

合集下载

汽轮机各系统

汽轮机各系统

4.3 热力系统方案4.3.1 主蒸汽系统主蒸汽系统采用切换母管制,主蒸汽从锅炉过热器出口集箱接出,经电动闸阀一路接至主蒸汽母管,另一路接至汽轮机。

为确保供热的可靠性,主蒸汽母管的一端接减温减压器,通过其向热网管道供汽。

锅炉主蒸汽出口电动闸阀和进入汽轮机自动主汽门前的电动闸阀均设有小旁路,在暖管和暖机时使用。

4.3.2 主给水系统主给水热母管采用切换制系统。

设低压给水母管、高压给水热母管。

给水经低压给水母管分别进入四台给水泵,一台定速泵和一台调速泵为一组,每组给水泵加压后,分别送至两台高加去加热,加热后热水采用切换母管制,一路直接送至锅炉,另一路与高压给水热母管相接。

系统配置四台电动给水泵,二台运行,一台备用。

为防止给水泵在低负荷时产生汽化,另设给水再循环管与再循环母管。

高压加热器设有电动旁路,当高压加热器发生故障时,高加旁路自动开启,系统经由高加旁路直接向省煤器供水。

为保证给减温减压器提供减温水,系统设置了一根减温水母管,分别接自每台电动给水泵出口管道。

4.3.3 回热抽汽系统汽机回热系统,设有二级非调整抽汽及一级调整抽汽,非调整抽汽分别向一台高压加热器和一台除氧器供汽。

在调整抽汽管道上接一路供低压加热器用汽,另一路接至热网母管送至换热站。

为了防止在机组甩负荷时蒸汽倒入汽缸,而使汽轮机超速,以及防止因加热器水位过高而使汽轮机进水,在各级抽汽管道上分别装有抽汽逆止阀和闸阀,并且在调整抽汽管道上加装了抽汽速关阀,以此保证运行安全。

4.3.4 除氧系统为保证锅炉给水除氧可靠性,本工程设置二台150t/h的旋膜式热力除氧器,水箱容积40m3。

可以保证本期工程锅炉给水的除氧。

进入除氧器的汽水管道均采用母管制,两台除氧器之间设置汽、水平衡母管。

进入除氧器前的除盐水管道、加热蒸汽管道、热网疏水管道上均设置自动调节阀。

4.3.5 抽真空系统为保证汽轮机凝汽器运行时的真空度,本工程设置二台射水抽气器(一运一备)一个射水箱和两台射水泵。

汽机旁路系统简介

汽机旁路系统简介

汽机旁路系统简介概述汽机旁路系统首先用于欧洲的直流炉中,几乎所有的欧洲国家均使用了高低压汽机旁路系统,包括汽包炉。

高压旁路把来自锅炉过热器的蒸汽排到再热器,低压旁路把来自再热器的蒸汽排到凝汽器,欧洲国家的旁路通常为100%的容量,中国的系统主要容量多选用在40%MCR,并且具有安全保护功能。

为了满足大型汽轮机组启动运行和安全的需要,给机组配置旁路装置和切实可行的控制系统是十分必要的,旁路系统主要有电动和液动两大流派,气动系统主要应用于中小型机组。

旁路系统装置是火电机组重要的辅助设备,旁路系统设备的可靠性对电厂安全和经济运行影响较大,而系统设备的设计、安装、调试对旁路的运行效果有很大的影响。

因此,选择一套启闭及调节特性好的阀门、操作灵活便于维护且可靠性高的执行机构、经济实用且组态灵活型的控制系统从投资性价比的角度来看已是广大用户的共识。

1 旁路系统设计概况1. 功能设置1.1.1旁路系统有启动、溢流和安全三个主要功能(即三用阀功能),此外还有回收工质、暖管、清洗、减少汽阀和叶片侵蚀等功能。

A启动功能:其目的是为改善机组的启动特性而设置的。

可以提高锅炉在启动过程中的燃烧率;使蒸汽温度与汽轮机缸温得到最佳匹配;从而缩短机组启动的时间,减少寿命损耗。

B溢流功能:其目的实际为吸收机、炉之间的不平衡负荷而设置的。

可以排泄机组在负荷瞬变过度过程中的剩余蒸汽;调整稳定蒸汽压力;维持锅炉在不投油情况下的最低稳燃负荷。

C安全功能:取代锅炉安全阀的功能1.1.2采用高、低两极串联的旁路系统设有启动或溢流功能,可以分为如下两类:A以启动功能为旁路设置的主要功能,并附有稳定蒸汽压力,以及在事故工况下的保护功能。

可适应机组冷、热态等各种条件下的启动要求;定压、滑压运行;负荷变化过程的压力调节;保护过热、减少安全阀动作、回收工质等。

B以启动功能为旁路设置的基本功能,并设有溢流功能。

除能满足第A类功能外,还可适应:汽轮机甩负荷维持空负荷运行:汽轮机跳闸实现停机不停炉;电网故障机组带厂用电运行等各种运行方案。

主再热蒸汽及旁路系统流程

主再热蒸汽及旁路系统流程

主再热蒸汽及旁路系统流程一、主蒸汽系统流程。

1.1 主蒸汽的产生。

咱们先来说说主蒸汽是咋来的哈。

那是在锅炉里,水经过一系列复杂的加热过程,就像小火慢炖似的,一点点升温、升压。

燃料在炉膛里熊熊燃烧,就像一个大火炉,给水提供热量,水变成蒸汽后,压力和温度不断升高,最后就形成了主蒸汽。

这主蒸汽可不得了,就像一个充满力量的小巨人,憋着一股劲儿呢。

1.2 主蒸汽的输送。

这充满能量的主蒸汽啊,从锅炉出来后,就沿着管道开始它的旅程了。

这管道就像小巨人的专用通道,它得把主蒸汽安全、高效地送到汽轮机那里去。

这一路上啊,管道得保证密封性良好,不能让蒸汽偷偷溜走,要是有泄漏那可就像竹篮打水一场空了,能量都浪费了。

二、再热蒸汽系统流程。

2.1 再热蒸汽的形成原因。

为啥要有再热蒸汽呢?这就像人干活累了需要休息一下再接着干一样。

主蒸汽在汽轮机里做了一部分功之后,压力和温度都降低了,就像一个泄了气的皮球。

但是咱不能让它就这么没劲儿下去啊,所以把它再送回锅炉里重新加热,这就形成了再热蒸汽。

这过程就像是给这个“泄了气的皮球”重新打气,让它又充满活力。

2.2 再热蒸汽的循环过程。

再热蒸汽从锅炉再热器出来后,又雄赳赳气昂昂地奔向汽轮机了。

它再次进入汽轮机,就像一个满血复活的战士,继续在汽轮机里做功。

这个循环过程就像是一个接力赛,主蒸汽先跑一段,再热蒸汽接着跑一段,这样就能充分利用蒸汽的能量,不会造成能源的浪费,这就叫物尽其用嘛。

三、旁路系统流程。

3.1 旁路系统的作用。

旁路系统啊,就像是一个备用的小道。

当汽轮机不需要那么多蒸汽的时候,或者是机组启动、停机的时候,旁路系统就发挥作用了。

它就像一个贴心的小助手,能够调节蒸汽的流量,避免蒸汽在不需要的时候硬往汽轮机里挤,不然就会造成汽轮机的负担过重,就像一个人吃撑了难受一样。

3.2 旁路系统的工作方式。

旁路系统有自己的一套管道和阀门呢。

当需要启动旁路的时候,阀门就像忠诚的卫士一样,按照指令打开或者关闭,让蒸汽按照预定的路线走。

T16主蒸汽、再热蒸汽和汽轮机旁路系统图(最终) Model (1)

T16主蒸汽、再热蒸汽和汽轮机旁路系统图(最终) Model (1)
32LBC10 AA001 30MAL10 AA001
30MAL10 AA101
高排通风阀至凝汽器 事故减温水流量孔板
至疏水集箱
A
水压试验堵阀
水压试验堵阀 来自给水泵中间抽头 疏水至疏水扩容器F
30LBC11 AA402
30LBC11 AA401
去#2高压加热器
30LBC12 AA401
32LBC12 AA402
左 侧 导 汽 管 疏 水 至 本 扩 右 侧 导 汽 管 疏 水 至 本 扩
高温过热器
30MAN20 AA101
热再取样门
再热蒸汽出口 管道安全阀 水压试 验堵阀 去汽轮机中压缸 至疏水集箱
右 侧 进 汽 回 路 通 风 至 本 扩
左 侧 进 汽 回 路 通 风 至 本 扩
D
30LBB10 AA403
低旁出口管道
1
180
再热器减温水管道
30LBA11 AA401 30LBA11 AA402
16
180.4
疏水至凝汽器疏水扩容器H1
高旁出口管道
5.24
333.7
疏水至凝汽器疏水扩容器H3
E
凝结水系统来
至凝汽器三级减温器
30MAN10 AA101
至凝汽器三级减温器
至凝汽器三级减温器
至凝汽器三级减温器
D
8
取样
7
6
5
4
3
2
1


设计压力MPa
设计温度( °c)
再热热段管道
4.91
574
再热冷段管道
30LBA13 AA401 30LBA13 AA402
5.24
333.7

汽轮机主辅设备及各系统基本介绍

汽轮机主辅设备及各系统基本介绍
⑷轴封调整器能适应来自回热抽汽、辅助蒸汽两种汽 源向轴封供汽的调节要求,轴封系统上配置简便、可 靠的调压、调温装置,满足轴封的供汽参数要求。
汽封系统

汽封汽源在启动时由新蒸汽供给。汽封系统分为前汽封和后汽
封。前汽封由四段汽封环组成三档汽室;后汽封由三段汽封环组成二
档汽室。其中前汽封第一档送入第二道抽汽备用接口管路,送往除氧
调整抽汽除氧器用,第三级非调整抽汽供低压
加热器用。在一、二级抽汽管道上装有液压止
回阀,以避免蒸汽倒流影响汽轮机运行安全。
当主汽门关闭时,控制油门亦随之动作,泄去
抽汽逆止阀的操纵座活塞压力油,使抽汽逆止
阀在弹簧力作用下自动关闭。第三级非调整抽
汽,由于汽压较低,采用了普通逆止阀。主蒸
汽管路,抽汽管路尽量采用对称布置或增加热
下半隔板在中分面处有密封键和定位销。
转向导叶环采用“拉钩”结构支持在汽缸 上,顶部及底部与汽缸间有定位键,非进汽弧 段带有护套。
前轴承座

装有推力轴承前轴承、主油泵、调速器、
保安装置、转速表、温度表等,前轴承座安放
在前座架上,其结合面上有纵向滑键,前轴承
座可沿轴向滑动。热膨胀指示器装在轴承座下
凝汽器上部;第三档会同后汽封第二档及主汽门、各调节汽阀阀杆漏

凝结水泵出口后有一路凝结水可以进入凝结器上部。在启动时还用于
冷却蒸汽和由主汽门前来的疏水;低负荷运行时,此回水可保持凝汽器内一
定的水位以维持凝结水泵的正常工作。
油系统
⑴油系统主要向汽轮机-发电机组各轴承(包括发电 机轴承)提供润滑油和向调节保安系统提供压力油, 本系统确保汽轮发电机组各轴承在机组正常运行,启 停及升速等工况下正常工作。
高负荷限制:当机组实际负荷大于高负荷限制值时,高负荷限制动作, 逐渐关小调门,使实际负荷小于高负荷限制值。

主、再热蒸汽及旁路系统

主、再热蒸汽及旁路系统
而一级大旁和两级并联旁路只适用于带基本负荷、不经常热态启动的机组,原 因系再热器暖管升温受限)
启动或甩负荷时回收工质,降低对空排汽噪声。(可实现)
2、旁路系统的型式
目前国际上已运行的大容量超超临界机组主要分布在欧洲和日本, 这些机组的旁路可分为:三用阀旁路系统、一级大旁路系统、三级旁路 系统和两级串联旁路系统。其功能比较如下: 华润电力湖北有限公司
用于带基本负荷,不经常热态启动的机组,因再热器暖管升温受限;汽机故障
华润电力湖北有限公司
1000MW超超临界火电机组技术探讨 停机方式:停机停炉),也没有必要采用三用阀等旁路系统(先进旁路,
但投资较大)。所以我公司二期、玉环电厂和泰州电厂1000MW机组均 采用40%BMCR容量的高、低压串联液控旁路系统,即40%BMCR高 压旁路和40%BMCR+高旁喷水量的低压旁路。旁路系统型式:每台机 组设置1套40%BMCR容量的高压旁路装置和2套20%BMCR容量的低 压旁路装置(共40%BMCR流量)。 山东邹县发电厂和海门电厂1000MW超超临界机组锅炉均采用东 锅引进日本日立公司技术生产的Π型直流炉,汽机均采用东汽引进日本
1000MW超超临界火电机组技术探讨
特点 二级串联旁路系统 能适用于基本负荷 机组,也能适用于 调峰负荷机组。 一级大旁路 只适用于带基本负 荷,不经常热态启 动的机组 二级并联旁路系 统 只适用于带基本 负荷,不经常热 态启动的机组 三级旁路系统 能适用于基本负 荷机组,也能适 用于调峰负荷机 组。 三用阀旁路系 统 能适用于基本 负荷机组,也 能适用于调峰 负荷机组。 设 计 容 量 为100 % BMCR ( 高 旁 4×25 % BMCR 阀组成)高压 旁 路 +80 % BMCR 或 65 % BMCR 低 压旁路(低旁2 套) 停机不停炉或停 机停炉 可实现停机不停 炉 可实现停机不 停炉 外高桥电厂三 期工程、浙江 国华宁海电厂 二期、彭城电 厂 三 期 1000MW 机 组 采 用100 % BMCR 高 压 +60 % BMCR 低 压 三 用 阀串联旁路系 统

主蒸汽与再热蒸汽系统培训课件

主蒸汽与再热蒸汽系统培训课件

三、主蒸汽、再热蒸汽及旁路系统流程
1、主蒸汽及再热蒸汽系统(以日照电厂为例) 汽轮发电机组的三大蒸汽管道指主蒸汽管道、再热蒸汽冷段 与热段。主蒸汽通过高压主汽门和调节阀及高压导汽管进入 高压缸。从高压缸做完功的乏汽经冷段回到锅炉再热器。再 热过的蒸汽通过中压再热主汽阀和调节阀经再热导汽管进入 中压缸。中压缸排汽通过中低压联通管直接通往低压缸做功 并排入凝汽器(如图所示)。
在汽轮机甩负荷或锅炉所供蒸汽温度、过热度等不符合进 汽条件时,蒸汽便可通过旁路系统以回收工质,并保证机组的安 全运行。 采用一次中间再热的汽轮机组一般采用一级大旁路系统 和高、低压串联两级旁路系统两种形式。
高压旁路系统一般在以下条件启用: 汽轮机组跳闸、汽轮机组甩负荷、锅炉过热器出口蒸
汽压力超限、锅炉过热器蒸汽升压率超限、锅炉MFT(主燃料 跳闸)动作。
2、旁路系统有如下功能: 在机组启动或停机、阶跃性降负荷或甩负荷等工况下,提供 蒸汽旁路通道并给予降温从而保护锅炉过热器。 在机组阶跃性降负荷或甩负荷等工况时,旁路系统可将主蒸 汽或再热蒸汽排入再热蒸汽冷段(经给水减温)或凝汽器、 除氧器,以回收工质和降低噪音污染,并保能证机组停机不 停炉。 旁路系统应有足够的设计压力、容量、响应能力、调节能力, 与控制系统共同作用下,满足甩负荷和汽机跳闸的响应要求。
主蒸汽、再热蒸汽及旁路系统
汽机专业
目录
一、概述 二、系统功能 三、主蒸汽、再热蒸汽及旁路系统流程 四、主蒸汽、再热蒸汽系统主要设备
一、概述
主蒸汽及再热蒸汽系统是汽轮发电机组蒸汽系统的重要组成 部分,其中主蒸汽系统是指从锅炉过热器联箱出口至汽轮机主汽 阀进口的主蒸汽管道、阀门、疏水管等设备、部件组成的工作系 统;再热蒸汽系统则包括冷段和热段两部分,冷段指从高压缸排 汽至锅炉再热器进口联箱入口处的管道和阀门,热段指锅炉再热 器出口至中联门前的蒸汽管道。

第九章 汽轮机热力系统概述

第九章   汽轮机热力系统概述

汽轮机热力系统概述第一节主、再热蒸汽及旁路系统本机组主蒸汽及再热蒸汽系统采用单元制、一次中间再热型式。

通常我们将进入高压缸的蒸汽称为主蒸汽;高压缸排汽称为冷再热蒸汽;冷再热蒸汽经锅炉再热器重新加热后进入中压缸的蒸汽称为热再热蒸汽;从主蒸汽管道经高压旁路控制阀至冷再热蒸汽管道称为高压旁路管道;从热再热蒸汽管道经低压旁路控制阀以及喷水减温器后至凝汽器的管道称为低压旁路管道。

一、主蒸汽系统1、主蒸汽管道主蒸汽管道采用A335P91优质合金钢。

最大蒸汽流量为锅炉B-MCR工况时的最大连续蒸发量1025t/h。

设计蒸汽压力18.2Mpa,设计蒸汽温度546℃,主蒸汽管道计算压力降约为0.6556MPa(MCR工况)。

主蒸汽从锅炉过热器出口联箱,由单根管道接出通往汽机房。

至汽机主汽门前分成两根支管,各自接到汽轮机高压缸左右侧主汽及调节汽阀。

然后再由四根高压主汽管导入高压缸。

在高压缸内作功后的蒸汽通过两个高压排汽止回阀,在出口不远处汇合成单根管道进入锅炉再热器。

这种单管系统的优点〈比较双管系统〉是简化管道布置,并能节省管材投资费用,同时,还有利于消除进汽轮机的主蒸汽和热再热蒸汽由于锅炉可能产生的热偏差,以及由于管道阻力不同产生的压力偏差。

两个主汽门出口与汽轮机调速汽门阀壳相接。

主汽门的主要功用是在汽轮机故障或甩负荷情况下迅速切断进入缸内的主蒸汽,汽轮机正常停机时,主汽门也用于切断主蒸汽,调速汽门通过各自蒸汽导管进汽到汽轮机第一级喷嘴。

调速汽门用于调节进入汽轮机的蒸汽流量,以适应机组负荷变化的要求。

由过热器出口至汽轮机主汽门入口的范围内,在主蒸汽管道上依次设有两只电动对空排汽阀、一只高整定压力的弹簧安全阀、一只低整定压力的弹簧安全阀和一个电磁释放阀、水压试验堵阀。

水压试验堵阀的作用是当过热器水压试验时,隔离主蒸汽管道,防止由于主汽门密封不严而造成汽轮机进水。

由主汽主管上沿汽流方向依次接出的管道有:汽机高压旁路接管及启动初期向汽机汽封系统及汽机夹层加热的供汽管。

1000MW汽轮机组汽机系统图

1000MW汽轮机组汽机系统图

图 号
图 名 QJ-#5-000
图例 QJ-#5-001
主、再热蒸汽及旁路系统 QJ-#5-002
抽汽系统 QJ-#5-003
凝结水系统 QJ-#5-004
给水系统 QJ-#5-005
汽机轴封及本体疏水系统 QJ-#5-006
辅助蒸汽系统 QJ-#5-007
高加疏水放气系统 QJ-#5-008
低加疏水放气系统 QJ-#5-009
真空系统 QJ-#5-010
原水补给水系统 QJ-#5-011
循环水系统 QJ-#5-012
凝汽器胶球清洗系统 QJ-#5-013
开式冷却水系统 QJ-#5-014
真空泵冷却水、空调冷却水及循环水排污系统QJ-#5-015
闭式冷却水系统 QJ-#5-016
工业水系统 QJ-#5-017
主机润滑油系统 QJ-#5-018 汽机润滑油净化系统
汉川三期#5机组汽机专业系统图目录 图 号 图 名 QJ-#5-019 主机EH 油系统 QJ-#5-020 小机润滑油系统 QJ-#5-021 小机调速保安油系统 QJ-#5-022 小机轴封及本体疏水系统 QJ-#5-023 汽机氮气系统 QJ-#5-024 发电机密封油系统 QJ-#5-025 发电机定子水系统 QJ-#5-026 凝汽器疏水连接系统 QJ-#5-027 空调制冷、加热系统。

汽机主、再蒸汽系统及旁路系统解读

汽机主、再蒸汽系统及旁路系统解读
3/15/2019
二、主、再热汽系统系统流程
• 一般的主蒸汽系统选择原则为:对中间再热凝汽式机组或中间 再热供热式机组的发电厂,其主蒸汽系统应采用单元制。即: 一机配一炉,组成一个独立的单元,与其它机组之间无母管联 系。单元制系统的优点是系统简单,管道短,管道附件少.投 资省,压力损失和散热损失小,系统本身事故率低,便于集中 控制,有利于实现控制和调节操作自动化。当然,与母管制相 比。也有其缺点,因为相邻单元不能互相支援。锅炉之间也不 能切换运行,单元内与蒸汽管道相连的主要设备或附件发生故 障,整个单元都要被迫停止运行。此系统部分环节采用单管, 可以抵消单纯双管系统由于锅炉到汽轮机侧距离过长产生的温 度偏差。同时,大部分采用的双管连接方式,可以减少由于单 管系统的单管直径过大造成的应力集中、布置困难等问题。
3/15/2019
一、汽轮机主要技术名词
9、循环水浓缩倍率:循环水中氯根与补充水中氯根的比值。 10、循环水不结垢系数:循环水浓缩倍率-(循环水中钙离子与补 充水中钙离子的比值)。 11、临界转数:是指当汽轮机升到一转速时,汽轮机转速与转子 自振频率重合,汽轮机转子与轴承发生较为强烈的振动,而越 过这一转速后,振动将大大减小至正常范围。这一转速称为临 界转速。 12、最佳真空与极限真空:蒸汽在汽轮机末级叶片中膨胀达到最 大值时,与之对应的真空称为极限真空;最佳真空是指真空提 高后所多得到的电力与提高真空所消耗的电力之差为最大时的 真空值。
3/15/2019
二、主、再热汽系统系统流程
• 锅炉来主蒸汽,经一根主蒸汽管道送至汽轮机主汽门前,分成 两路进入主汽门、调门、高压缸。主汽门前的管道上接引一路 高压汽源,向轴封供汽,还有一路高压旁路进入再热器冷段。 高压缸有两根排汽管路,布置两只高排逆止门,集成了一根排 汽母管,排汽进入再热器冷段经再热器加热后汇集成一根再热 蒸汽管路,在中压主汽门前分成两根管路,经中压联合汽门进 入中压缸做功。在中联门前分出一路低压旁路系统,再分成两路 低旁经减温后分别进入 A、B凝汽器。中压缸排汽经一单列连通 管分流至两个低压缸,低压缸排汽经四个排汽口进入凝汽器。 另外,系统还布置了三只特殊用途的阀门:倒暖阀、VV 阀和 BDV阀。详见下图。主、再热蒸汽管道采用单元制2-1-2布置。

主再热蒸汽及旁路系统介绍

主再热蒸汽及旁路系统介绍

主再热蒸汽及旁路系统介绍本机组的主蒸汽系统采用双管一单管-双管布置. 主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。

汽轮机高压缸两侧分别设一个主汽门。

主汽门直接与汽轮机调速汽门蒸汽室相连接.主汽门的主要作用是在汽轮机故障或甩负荷时迅速切断进入汽轮机的主蒸汽。

汽轮机正常停机时,主汽门也用于切断主蒸汽,防止水或主蒸汽管道中其它杂物进入主汽门区域。

一个主汽门对应两个调速汽门。

调速汽门用于调节进入汽轮机的蒸汽流量,以适应机组负荷变化的需要。

汽轮机进口处的自动主汽门具有可靠的严密性,因此主蒸汽管道上不装设电动隔离门。

这样,既减少了主蒸汽管道上的压损,又提高了可靠性,减少了运行维护费用。

在锅炉过热器的出口左右主蒸汽管上各设有一只弹簧安全阀,为过热器提供超压保护.该安全阀的整定值低于屏式过热器入口安全阀,以便超压时过热器出口安全阀的开启先于屏式过热器入口安全阀,保证安全阀动作时有足够的蒸汽通过过热器,防止过热器管束超温。

所有安全阀装有消音器。

在过热器出口主汽管上还装有两只电磁泄压阀,作为过热器超压保护的附加措施.设置电磁泄压阀的目的是为了避免弹簧安全阀过于频繁动作,所以电磁泄压阀的整定值低于弹簧安全阀的动作压力。

运行人员还可以在控制室内对其进行操作。

电磁泄压阀前装设一只隔离阀,以供泄压阀隔离检修。

主蒸汽管道上设有畅通的疏水系统,它有两个作用。

其一是在停机后一段时间内,及时排除管道内的凝结水。

另一个更重要的作用是在机组启动期间使蒸汽迅速流经主蒸汽管道,加快暖管升温,提高启动速度.疏水管的管径应作合适选择,以满足设计的机组启动时间要求。

管径如果太小,会减慢主蒸汽管道的加热速度,延长启动时间,而如果太大,则有可能超过汽轮机的背包式疏水扩容器的承受能力。

本机组的冷再热蒸汽系统也采用双管一单管—双管布置。

第12章 汽轮机自启动旁路和旁路控制系统(王4万字)

第12章 汽轮机自启动旁路和旁路控制系统(王4万字)

第一章汽轮机自启停和旁路控制系统第一节汽轮机自启停系统一、概述汽轮机自启动指汽轮机启动过程中的各步序都自动完成,即从暖阀到日标负荷,包括选择目标转速、升速率、高低速暖机时间、初负荷保持时间、目标负荷、升负荷率等。

汽轮机在启动过程中要测定和控制转子热应力、汽缸及主要阀门的有关温差,使其在允许条件下,以最快速度升速,以缩短启动时间;在给机组加载或减载时,应根据应方是否在允许范围内,决定加裁或减载速率,尽可能地提高机组响应外界负荷的能力,又将汽轮机的寿命消耗控制在正常范围以内;还要控制汽轮机各辅助系统和辅机的运行。

在升速期间,机组升速到第一次保持转速时,一方面进行速度保持,一方面定时计算转子最大应力,直到计算出的结果小于允许应力时便中断保持,将速度升到上一档并保持转速。

在给机组加载或减载时,随着应力的增加,加载率就会自动降低,如果超过了允许应力水平时,就保持负荷,允许应力是可以由操作员选择的,其数值相对于寿命消耗而变化。

高、正常和低的寿命消耗对应的应力限值不一样,当采用较高的应力限值时就意味着选择了较高的寿命消耗。

在启动全过程中,还要监视汽缸及主要阀门的有关温差,如果有任何温差接近其限值,就要开始保持加热量不变或者负荷不变。

因此汽轮机启动和加载/减载是一个极其复杂的测定和控制过程.对于大型再热机组其任务尤为繁重。

汽轮机自启动系统(TAS)又称自动汽轮机控制(A TC),要具有极其复杂的测定、计算和控制功能,一般要通过使用计算机方能实现。

平圩电厂、北仑港电厂的600MW机组汽轮机自启动功能是内汽轮机的DEH系统来实现的;华能上海石洞口二厂600MW超临界机组的自启动系统的功能扩大到整个单元机组的自启动.从锅炉点火前的机、炉辅机的启动、锅炉点火、升温升压、制粉系统(磨煤机组)的投运等,直到带满负荷,均由机组自动管理系统(UAM),即机组自动启动系统发出指令,在操作人员少量干预下自动完成。

例如,磨煤机组启动台数需操作员预先手动设置后自动完成启动。

汽机旁路系统简介

汽机旁路系统简介

汽机旁路系统简介概述汽机旁路系统首先用于欧洲的直流炉中,几乎所有的欧洲国家均使用了高低压汽机旁路系统,包括汽包炉。

高压旁路把来自锅炉过热器的蒸汽排到再热器,低压旁路把来自再热器的蒸汽排到凝汽器,欧洲国家的旁路通常为100%的容量,中国的系统主要容量多选用在40%MCR,并且具有安全保护功能。

为了满足大型汽轮机组启动运行和安全的需要,给机组配置旁路装置和切实可行的控制系统是十分必要的,旁路系统主要有电动和液动两大流派,气动系统主要应用于中小型机组。

旁路系统装置是火电机组重要的辅助设备,旁路系统设备的可靠性对电厂安全和经济运行影响较大,而系统设备的设计、安装、调试对旁路的运行效果有很大的影响。

因此,选择一套启闭及调节特性好的阀门、操作灵活便于维护且可靠性高的执行机构、经济实用且组态灵活型的控制系统从投资性价比的角度来看已是广大用户的共识。

1 旁路系统设计概况1.功能设置1.1.1旁路系统有启动、溢流和安全三个主要功能(即三用阀功能),此外还有回收工质、暖管、清洗、减少汽阀和叶片侵蚀等功能。

A启动功能:其目的是为改善机组的启动特性而设置的。

可以提高锅炉在启动过程中的燃烧率;使蒸汽温度与汽轮机缸温得到最佳匹配;从而缩短机组启动的时间,减少寿命损耗。

B溢流功能:其目的实际为吸收机、炉之间的不平衡负荷而设置的。

可以排泄机组在负荷瞬变过度过程中的剩余蒸汽;调整稳定争气压力;维持锅炉在不投油情况下的最低稳燃负荷。

C安全功能:取代锅炉安全阀的功能1.1.2采用高、低两极串联的旁路系统设有启动或溢流功能,可以分为如下两类:A以启动功能为旁路设置的主要功能,并附有稳定蒸汽压力,以及在事故工况下的保护功能。

可适应机组冷、热态等各种条件下的启动要求;定压、滑压运行;负荷变化过程的压力调节;保护过热、减少安全阀动作、回收工质等。

B以启动功能为旁路设置的基本功能,并设有溢流功能。

除能满足第A类功能外,还可适应:汽轮机甩负荷维持空负荷运行:汽轮机跳闸实现停机不停炉;电网故障机组带厂用电运行等各种运行方案。

汽机系统简介,主蒸汽系统

汽机系统简介,主蒸汽系统

●循环水系统
为汽轮机排汽提供足够的冷却水。
★指标:凝汽器端差、循环水温升,循环水泵电 耗,胶球装置收球率。 ▲凝汽器端差:凝汽器排汽压力对应的饱和温 度与循环水排水温度之差。 一般用排汽温度与循环水排水温度之差代替。 ▲循环水温升:凝汽器循环水出口温度与入口 温度之差。 ●抽汽疏水系统 从汽轮机内抽出做过功的部分蒸汽,用来加 热凝水或给 水,以提高机组的循环热效率。 ★指标:加热器(高、低加)端差。
汽轮机主要技术规范型式额定功率蒸汽压力蒸汽温度蒸汽流量回热级数给水温度设计背压冷却水温度热耗保证值工作转速旋转方向调节方式或运行方式补水率型号
一、汽机专业热力系统简 介及运行指标
热力系统的定义
将热力设备按照热力循环的顺序用 管道及附件(如阀门)连接起来的一 个有机整体,统称为热力系统。
汽轮机主要技术规范
●轴封及抽真空系统
为汽轮机端部的密封供汽,高压端部分防止 蒸汽外漏,低压端部分防止空气内漏。
真空泵—抽出凝汽器内不凝结气体及漏 入的空气,维持凝汽器真空。 ★指标:真空,真空度,真空系统严密性。 ▲真空度—凝汽器真空值与当地大气压力 比值的百分数。 ▲真空系统严密性—真空系统在抽真空设 备停止运行的情况下,真空每分钟下降 的数值。
■高压缸排汽温度 ■中压缸排汽压力 ■中压缸排汽温度


■再热蒸汽温度
■第一级后压力


■低压缸排汽压力
■低压缸排汽温度
■第一级后温度
■各调门开度
(1)改善机组启动条件,缩短启动时间, 延长汽轮机寿命; (2)溢流(泄压)作用,蒸汽压力因故突 升时可以通过旁路泄压; (3)保护再热器,启动或甩负荷时,开启 旁路使再热器有蒸汽流过,避免干 烧; (4)回收工质,消除噪音。

第五讲-主再热蒸汽系统和旁路系统

第五讲-主再热蒸汽系统和旁路系统

描述:冷再热蒸汽从高压汽 轮机的排汽口经一根管道通 往锅炉,靠近锅炉再热器处, 分成两根管道分别接到再热 器入口联箱的两个接口上。
二、单元制主蒸汽及再热蒸汽系统
(二)再热蒸汽系统 3.双管-单管-双管系统 描述:从高压缸(图中略) 两侧排汽口引出两根管道, 汇总成单管,到再热器减 温器前,分成双管进入再 热器进口联箱。 再热热段管道系统, 在锅炉侧双管并成单管和 汽轮机侧单管分成双管处 均用了斜三通,并且靠近 中压联合汽门处串联了两 只斜三通,它们的斜插支 管分别至对称布置的中压 缸再热汽门,后一只斜三 通直通管到低压旁路装置。
特点:介于双管与单管-双管 系统之间。
二、单元制主蒸汽及再热蒸汽系统
(一)主蒸汽系统 4.阀门及管道附件 说明:(1)取消电动主汽门,水压试验时自动主汽门处加临时堵板; (2)取消主蒸汽流量喷嘴,减少节流损失,用调节级前后压差估算; (3)高压缸排汽口设逆止门,投旁路时防止高压缸进汽。 (4)过热蒸汽出口联箱设置向空排汽门,减少安全门动作次数。 (5)再热器出口联箱设置向空排汽门,真空系统故障时开启。
特点:输送工质流量大,参数高,用的金属材料质量高,对发电厂运行的安 全性、可靠性、经济性影响大。
要求:系统简单,工作安全可靠;运行调度灵活,能进行各种切换,便于维 修、安装和扩建;投资费用少,运行费用低。
一、主蒸汽管道系统
1.集中母管制系统 描述:发电厂所有锅炉生产的蒸汽都 送到集中母管中,再由集中母管把蒸 汽引到各汽轮机和辅助用汽设备去的 蒸汽管道系统。
二、单元制主蒸汽及再热蒸汽系统
(一)主蒸汽系统 2.单管-双管系统
描述:过热蒸汽出口联箱 经一根主管引出,到自动 主蒸汽门或中压联合汽门 前又分叉为两根。
特点:布置简单,混温好, 投资较大。

主、再热蒸汽及旁路系统剖析

主、再热蒸汽及旁路系统剖析
华润电力湖北有限公司
1000MW超超临界火电机组技术探讨 两只大容量的安全阀,一旦机组甩负荷,再热器安全阀将动作,排掉低
旁系统无法输送的多余蒸汽。(先进旁路配置:能实现启动调节阀、安全
阀和截止阀的功能)
满足电网对机组各种负荷的需求,特别当电网要求机组负荷低于锅
炉稳定燃烧的负荷时。(能适用于基本负荷机组,也能适用于调峰负荷机组。
及消音器(共2只) ,在过热器出口主汽管上设置2只电磁泄放阀及消音器
(共2只);在二只启动分离器蒸汽引出管的连通管中各有3只过热器进口 弹簧安全门及消音器(共6只) 。
再热器超压保护措施:锅炉再热器进口集箱前的两根冷再热蒸汽支
管上,分别装有4只弹簧安全阀及消音器(共8只)。在锅炉再热器出口的 支管上各装有1只弹簧安全阀及消音器(共2只)。 。
1000MW超超临界火电机组技术探讨
特点 二级串联旁路系统 一级大旁路 二级并联旁路系 统 三级旁路系统 三用阀旁路系 统
描述
两级串联旁路系统 由高压旁路和低压 旁路串联组成
一级大旁路系统又 称 单 级 整 机 旁 路 , 两级并联旁路系 新 蒸 汽 绕 过 汽 轮 机 统由高压旁路和 的 高 、 中、 低 压缸 , 整机旁路并联组 经整机大旁路排入 成 凝汽器。
量设计,主蒸汽系统管道的设计压力为锅炉过热器出口额定主蒸汽压
力,设计温度为锅炉过热器出口额定主蒸汽温度+锅炉正常运行时的 允许温度正偏差5℃。
冷再热蒸汽系统管道的设计压力为机组VWO工况热பைடு நூலகம்衡图中汽轮
机高压缸排汽压力的1.15倍,设计温度为VWO工况热平衡图中汽轮机 高压缸排汽参数等熵求取在管道设计压力下相应温度。热再热蒸汽系
1000MW超超临界火电机组技术探讨

汽机主、再蒸汽系统及旁路系统

汽机主、再蒸汽系统及旁路系统
4/11/2015
一、汽轮机主要技术名词
6、凝汽器过冷度:凝汽器排汽压力所对应的饱和蒸汽温度与凝结 水温度的差值。 7、水击(水锤):当液体在压力管道中流动时,由于意外原因(如 阀门突然开启或关闭,或者水泵突然启动或停运及其它一些停 运情况)造成液体流动速度突然改变,引起管道中的压力产生反 复的、急剧的变化,这种现象叫做水击(水锤)。 8、水冲击:水或者冷蒸汽进入汽轮机造成水滴与高速旋转的叶片 相撞击,导致推力轴承磨损、叶片损伤、汽缸和转子热应力裂 纹、动静摩擦、高温金属部件永久性热变形,以及由此而来的 机组振动。水冲击是现代汽轮机发生较多且对设备损伤较严重 的恶性事故之一。
4/11/2015
一、汽轮机主要技术名词
1、热耗率:汽轮发电机组每生产1kWh电能所消耗的热量,它比较全 面地反映汽轮发电机组的性能特性 2、汽耗率:汽轮发电机组每生产1kWh电能所消耗的蒸汽量,它是一 项汽轮机系统性能的综合性经济技术指标。可用于发电厂热力系 统的汽水平衡计算或同类型机组间的经济性比较。 3、汽轮机转子寿命:汽轮机从初次投运到转子表面出现第一条宏观 裂纹的时间。 4、加热器端差:加热器正常疏水温度与进水温度的差值称为下端差 ;加热器进汽压力下的饱和温度与出水温度的差值称为上端差。 5、凝汽器端差:凝汽器排汽压力所对应的饱和蒸汽温度与循环水出 水温度的差值。
4/11/2015
二、主、再热汽系统系统流程
• 一般的主蒸汽系统选择原则为:对中间再热凝汽式机组或中间 再热供热式机组的发电厂,其主蒸汽系统应采用单元制。即: 一机配一炉,组成一个独立的单元,与其它机组之间无母管联 系。单元制系统的优点是系统简单,管道短,管道附件少.投 资省,压力损失和散热损失小,系统本身事故率低,便于集中 控制,有利于实现控制和调节操作自动化。当然,与母管制相 比。也有其缺点,因为相邻单元不能互相支援。锅炉之间也不 能切换运行,单元内与蒸汽管道相连的主要设备或附件发生故 障,整个单元都要被迫停止运行。此系统部分环节采用单管, 可以抵消单纯双管系统由于锅炉到汽轮机侧距离过长产生的温 度偏差。同时,大部分采用的双管连接方式,可以减少由于单 管系统的单管直径过大造成的应力集中、布置困难等问题。

旁路系统的作用

旁路系统的作用

--汽轮机旁路系统的主要作用有:1. 保护再热器。

机组正常运行中,汽轮机高压缸排汽进入再热器,再热器可以得到充分冷却。

但在启动过程中,汽轮机冲车前,或在机组甩负荷而高压缸无排汽时,再热器因无蒸汽流过或蒸汽流量不足,就有超温烧坏的危险。

设置旁路系统,使蒸汽流过再热器,便达到冷却再热器的目的;2. 改善启动条件,加快启动速度。

单元机组普遍采用滑参数启动方式,为了适应汽轮机启动过程中在不同阶段(暖管、冲车、暖机、升速、带负荷)对蒸汽参数的要求,锅炉要不断地调整汽压、汽温和蒸汽流量。

单纯调整锅炉燃烧或运行压力,很难达到上述要求。

采用旁路系统就可改善启动条件,尤其在机组热态启动时,利用旁路系统能很快地提高主蒸汽和再热蒸汽的温度,缩短启动时间,延长汽轮机寿命。

对于大容量机组,当发电机负荷减少、解列或只带厂用电负荷,以及汽轮机甩负荷时,旁路系统能在几秒钟内完全打开,使锅炉逐渐调整负荷,并保持在最低稳定燃烧负荷下运行,而不必停炉,在故障消除后可快速恢复发电,从而减少停机时间和锅炉的启停次数,大大缩短了单元机组的重新启动时间,有利于系统稳定;3. 回收工质,消除噪声。

机组在启停过程中,锅炉的蒸发量大于汽轮机的消耗量,在负荷突降和甩负荷时,有大量的蒸汽需要排出。

多余的蒸汽若直接排向大气,不仅损失了工质,而且对环境产生很大的噪声污染。

设置旁路系统,可以达到回收工质和消除噪声的目的。

另外,在机组突降负荷或甩负荷时,利用旁路系统排放蒸汽,可减少锅炉安全门的动作。

4利用旁路实现中压缸启动。

高、低压旁路系统有如下功能:(1)改善机组启动性能。

机组冷态或热态启动初期,当锅炉给出的蒸汽参数尚未达到汽轮机冲转条件时,这部分蒸汽就由旁路系统流到凝汽器,以回收工质,适应系统暖管和储能的要求。

特别是在热态启动时,锅炉可用较大的燃烧率和较高的蒸发量运行,加速提高蒸汽温温,使之与汽轮机的金属温度匹配,从而缩短启动时间。

(2)能够适应机组定压和滑压运行的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11/26/2018
一、汽轮机主要技术名词
6、凝汽器过冷度:凝汽器排汽压力所对应的饱和蒸汽温度与凝结 水温度的差值。 7、水击(水锤):当液体在压力管道中流动时,由于意外原因(如 阀门突然开启或关闭,或者水泵突然启动或停运及其它一些停 运情况)造成液体流动速度突然改变,引起管道中的压力产生反 复的、急剧的变化,这种现象叫做水击(水锤)。 8、水冲击:水或者冷蒸汽进入汽轮机造成水滴与高速旋转的叶片 相撞击,导致推力轴承磨损、叶片损伤、汽缸和转子热应力裂 纹、动静摩擦、高温金属部件永久性热变形,以及由此而来的 机组振动。水冲击是现代汽轮机发生较多且对设备损伤较严重 的恶性事故名词
9、循环水浓缩倍率:循环水中氯根与补充水中氯根的比值。 10、循环水不结垢系数:循环水浓缩倍率-(循环水中钙离子与补 充水中钙离子的比值)。 11、临界转数:是指当汽轮机升到一转速时,汽轮机转速与转子 自振频率重合,汽轮机转子与轴承发生较为强烈的振动,而越 过这一转速后,振动将大大减小至正常范围。这一转速称为临 界转速。 12、最佳真空与极限真空:蒸汽在汽轮机末级叶片中膨胀达到最 大值时,与之对应的真空称为极限真空;最佳真空是指真空提 高后所多得到的电力与提高真空所消耗的电力之差为最大时的 真空值。
11/26/2018
一、汽轮机主要技术名词
17、一次调频和二次调频:当电网负荷变化引起电网频率变化时 ,并列运行的汽轮机按照各自的静态特性分担变化的负荷,使 变化了的电网频率有所恢复,这个过程称为一次调频,可在数 秒内完成。但这时频率仍又偏差,可通过调整电网中的某些机 组的调节系统,使电网输出功率超过负荷需求以使电网恢复到 额定值。这一过程称为二次调频,可在数分钟内完成。 18、氢气的露点温度:氢气在等压下进行冷却时,其中水蒸汽开 始凝结时的温度。 19、差胀:轴相对于汽缸的基准点变化情况,即汽轮机转子与汽 缸膨胀的差值。 20、水幕保护:为使低旁排入凝汽器的蒸汽不致于倒流入汽机低 压缸,在它排入的上方设置有喷水,形成水幕。
11/26/2018
一、汽轮机主要技术名词
13、半速涡动与油膜振荡:当转子受力均匀的时候,转子中心在 轴承中处于一个稳定的平衡位置。转子在绕转子中心点旋转的 同时,转子中心点还围绕平衡位置沿某种轨迹运行,即为涡动 。涡动频率约为转子转动频率的一半,又称半速涡动。当转子 的半速涡动与转子轴系的临界转速相遇时,涡动振幅将急剧增 大,即为油膜振荡。油膜振荡时振幅很大,将使油膜损坏而引 起轴承损坏甚至轴系的损坏等严重事故。 14、转子扭振:当汽轮发电机的原动力与输出功率失衡时,将在 转子两端产生一种促使扭转变化的力量,随着失衡的变化,扭 转的幅度与方向也出现相应变化,即形成扭振。
11/26/2018
二、主、再热汽系统系统流程
• 锅炉来主蒸汽,经一根主蒸汽管道送至汽轮机主汽门前,分成 两路进入主汽门、调门、高压缸。主汽门前的管道上接引一路 高压汽源,向轴封供汽,还有一路高压旁路进入再热器冷段。 高压缸有两根排汽管路,布置两只高排逆止门,集成了一根排 汽母管,排汽进入再热器冷段经再热器加热后汇集成一根再热 蒸汽管路,在中压主汽门前分成两根管路,经中压联合汽门进 入中压缸做功。在中联门前分出一路低压旁路系统,再分成两路 低旁经减温后分别进入 A、B凝汽器。中压缸排汽经一单列连通 管分流至两个低压缸,低压缸排汽经四个排汽口进入凝汽器。 另外,系统还布置了三只特殊用途的阀门:倒暖阀、VV 阀和 BDV阀。详见下图。主、再热蒸汽管道采用单元制2-1-2布置。
11/26/2018
二、主、再热汽系统系统流程
• 一般的主蒸汽系统选择原则为:对中间再热凝汽式机组或中间 再热供热式机组的发电厂,其主蒸汽系统应采用单元制。即: 一机配一炉,组成一个独立的单元,与其它机组之间无母管联 系。单元制系统的优点是系统简单,管道短,管道附件少.投 资省,压力损失和散热损失小,系统本身事故率低,便于集中 控制,有利于实现控制和调节操作自动化。当然,与母管制相 比。也有其缺点,因为相邻单元不能互相支援。锅炉之间也不 能切换运行,单元内与蒸汽管道相连的主要设备或附件发生故 障,整个单元都要被迫停止运行。此系统部分环节采用单管, 可以抵消单纯双管系统由于锅炉到汽轮机侧距离过长产生的温 度偏差。同时,大部分采用的双管连接方式,可以减少由于单 管系统的单管直径过大造成的应力集中、布置困难等问题。
11/26/2018
一、汽轮机主要技术名词
15、汽蚀和汽化:工作泵进口叶轮处的介质压力低于介质温度所 对应的饱和压力,从而引起一部分介质蒸发,发生汽化;汽化 后的介质进入压力较高的区域时,突然凝结,四周的介质就向 凝结处迅速补充,造成压力急剧地高频变化,严重时会使附近 金属表面局部剥落,发生汽蚀。 16、调速系统的静态和动态特性:汽轮机在稳定运行时,在调节 系统的作用下,其转速变化与功率输出变化的对应关系被称为 静态特性。转速变动率和迟缓率是衡量静态特性的两个重要指 标。汽轮机在稳定运行中当负荷突然变化后所表现出来的过渡 品质称为动态特性。一般着重把汽轮机突然甩去满负荷后所表 现出来的转速飞升状态表征为汽轮机的动态特性。
• 一、汽轮机主要技术名词 • 二、主、再热汽系统系统流程 • 三、旁路系统 • 四、主蒸汽、再热蒸汽管道疏水系统 • 五、汽轮机冲转前暖缸
11/26/2018
一、汽轮机主要技术名词
1、热耗率:汽轮发电机组每生产1kWh电能所消耗的热量,它比较全 面地反映汽轮发电机组的性能特性 2、汽耗率:汽轮发电机组每生产1kWh电能所消耗的蒸汽量,它是一 项汽轮机系统性能的综合性经济技术指标。可用于发电厂热力系 统的汽水平衡计算或同类型机组间的经济性比较。 3、汽轮机转子寿命:汽轮机从初次投运到转子表面出现第一条宏观 裂纹的时间。 4、加热器端差:加热器正常疏水温度与进水温度的差值称为下端差 ;加热器进汽压力下的饱和温度与出水温度的差值称为上端差。 5、凝汽器端差:凝汽器排汽压力所对应的饱和蒸汽温度与循环水出 水温度的差值。
相关文档
最新文档