简易数字频率计的设计与仿真

合集下载

数字频率计的课设报告以及仿真电路

数字频率计的课设报告以及仿真电路

河北联合大学2011级本科课程设计简易数字频率计的设计姓名: 张如林学号: 201114050113班级: 11电气1班2013年12月18摘要 (1)一,概述 (2)二,方案设计 (2)1.设计题目 (2)2.设计任务和要求 (2)3.程序设计思路 (2)三,单元电路设计与Multisim仿真分析 (3)1.1Hz时基电路 (4)2.六进制计数器门控电路 (4)3.NE555施密特整形电路 (7)4.计数、锁存、驱动、显示电路 (7)5.整体仿真电路 (7)四,总原理图及元器件清单 (8)1.总原理图 (8)2.元器件清单 (9)五.结论 (10)六.心得体会 (10)七.参考文献 (11)八.附录 (12)在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。

在计算机及各种数字仪表中,都得到了广泛的应用。

在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。

1一、概述频率是周期信号每秒钟内所含的周期数值。

输入电路:由于输入的信号可以是正弦波,方波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益时,被测信号得以放大。

简易数字频率计的设计与仿真

简易数字频率计的设计与仿真

《电子仿真技术》实训报告题目简易数字频率计的设计、仿真所在学院电子信息工程学院专业班级***学生姓名*** 学号***指导教师***完成日期* 年* 月* 日一.设计思路(1)电路简述所谓频率,就是周期性信号在单位时间(1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为fx=N/T 。

因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。

可见数字频率计主要由闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。

数字频率计的主要功能是测量周期信号的频率。

频率是单位时间(1S )内信号发生周期变化的次数。

如果我们能在给定的1S 时间内对信号波形计数,数值保持及自动清零,并将计数结果在显示器上显示出来,就能读取被测信号的频率。

数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。

这就是数字频率计的基本原理。

被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。

时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。

可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键。

(2)任务目标利用multisim9.0软件设计一个简易数字频率计,其基本要求是:1. 被测信号的频率范围1KHZ~100MHZ(理想频率范围);2. 被测信号可以为正弦波、三角波或方波信号;3. 四位数码管显示所测频率,并用发光二极管表示单位。

multisim简易数字频率计

multisim简易数字频率计

w .. . ..哈尔滨工业大学简易频率计的仿真设计目录1.设计要求2. 总电路图及工作原理3.电路组成介绍3.1脉冲形成电路3.2闸门电路3.3时基电路3.4计数译码显示电路4. 电路的测试5. 分析与评价附录:元器件清单1.设计要求本次设计任务是要求设计一个简易的数字频率计,即用数字显示被测信号频率的仪2器,数字频率计的设计指标有:1. 测量信号:正弦信号、方波信号等周期变化的物理信号;2. 测量频率范围:0Hz~9999Hz;3. 显示方式:4位十进制数显示。

2.电路工作原理频率计总电路图如下所示:2频率计的基本原理:通过将被测周期信号整形为同频率的方波信号后,利用555定时器组成的振荡电路所产生的频率为1Hz的标准方波,作为基准时钟,与被整形后的方波信号一起经过闸门电路处理输入计数电路,再利用74LS90N的十进制计数功能进行级联计数,计数后输入8位数据/地址锁存器74LS273N以实现锁存和清零功能,最后输入到译码显示电路中,用BCD7段译码器显示出来,这样就实现了对被测周期信号的频率测量并显示的功能。

频率计的工作原理流程图如下所示:3.电路组成介绍3.1脉冲形成电路脉冲形成电路由信号发生器与整形电路组成,输入信号先经过限幅器,再经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限副作用。

由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。

线路图如下所示:23.2闸门电路闸门电路的作用是控制计数器的输入脉冲,在电路中用一个与非门来实现(如下图所标注)。

当标准信号(正脉冲)来到时闸门开通,被侧信号的脉冲通过闸门进入计时器计数;正脉冲结束时闸门关闭,计数器无时钟脉冲输入。

闸门电路23.3 时基电路时基电路是由555定时器构成的振荡器组成,其功能为产生标准时间为1秒的脉冲,选取振荡器的频率,其中高电平的时间为t1=1秒,低电平时间为0.25秒。

利用t1=0.7(R1+R4)C2,t2=0.7R4C2。

实验六基于Multisim8的简易数字频率计仿真

实验六基于Multisim8的简易数字频率计仿真

闸门
门控
B 放大 整形
S2
1000Tx
1Tx
10Tx 100Tx
÷10
÷10
计数锁存译码 显示系统
÷10
四、实验参考电路
(1)控制时序产生电路
图4.8.5 是由秒脉冲发生器(可由晶体振荡器和 多级分频器组成)和可重触发单稳态74LS123 组成
的控制时序产生电路。秒脉冲发生器产生脉冲宽度 为的定时脉冲,74LS123单稳态电路产生锁存和清 零脉冲。(仿真软件Multisim 8的元件库中,没有 74LS123单稳态电路,可用555定时器组成单稳态 电路)。 5V
4. 闸门电路
闸门电路由与门组成,该电路有两个输入端和一 个输出端,输入端的一端,接门控信号,另一端接 整形后的被测方波信号。闸门是否开通,受门控信 号的控制,当门控信号为高电平“1”时,闸门开启; 而门控信号为低电平“0”时,闸门关闭。显然,只 有在闸门开启的时间内,被测信号才能通过闸门进 入计数器,计数器计数时间就是闸门开启时间。可 见,门控信号的宽度一定时,闸门的输出值正比于 被测信号的频率,通过计数显示系统把闸门的输出 结果显示出来,就可以得到被测信号的频率。
5. 电子计数器测量周期
当被测信号频率比较低时,用测量周期的方法来 测量频率比直接测量频率有更高的准确度和分辨率, 且便于测量过程自动化。该测量方法在许多科学技 术领域中都得到普遍使用。图4.8.4是用电子计数器 测量信号周期的原理方框图。
晶振
Tx
时基 分频
1µs
S1 Tc
10µs 1ms 100µs Tx1
①可控制的计数、锁存、译码显示系统; ②石英晶体振荡器及分频系统(可用Multisim 8中
的函数发生器替代);

数字频率计的设计与仿真分析

数字频率计的设计与仿真分析

广东水利电力职业技术学院电力工程系WXH
第1页
第 2 章 电子设计实训
工作原理简述如下: 工作原理简述如下: 数字频率计的主要功能是测量周期信号的 频率。频率是单位时间(1s)内信号发生周期变化 频率。频率是单位时间 内信号发生周期变化 的次数。如果我们能在给定的1s时间内对信号波 的次数。如果我们能在给定的 时间内对信号波 形计数,并将计数结果显示出来, 形计数,并将计数结果显示出来,就能读取被测 信号的频率。所以, 信号的频率。所以,数字频率计首先必须获得相 对稳定与准确的时间,同时将被测信号转换成幅 对稳定与准确的时间, 度与波形都能被数字电路识别的脉冲信号, 度与波形都能被数字电路识别的脉冲信号,然后 通过计数器计算这一段时间间隔内的脉冲个数, 通过计数器计算这一段时间间隔内的脉冲个数, 并用显示器显示记录的结果。 并用显示器显示记录的结果。
广东水利电力职业技术学院电力工程系WXH
第2页
第 2 章 电子设计实训
设计任务和要求: 设计任务和要求:
1、利用石英晶体振荡电路产生1024Hz的基准频率。 2、位数:计4位十进制数。 3、量程:第一挡:1~9999Hz; 第三挡; 1~999900Hz。 4、显示方式:用七段LED数码管显示读数。 5、显示位数:4位。 6、具有‘自校”功能。 7、画出设计的数字频率计的组成框图。 8、画出设计的数字频率计的电路总图。 9、列出实验设备与器件清单。
广东水利电力职业技术学院电力工程系WXH 第3页
第二挡: 1~99990Hz;
参考电路
第 2 章 电子设计实训
广东水利电力子设计实训
74LS390芯片简介 74LS390芯片简介 LS390 74LS390是集成双十进制计数器,每片芯片 74LS390是集成双十进制计数器, LS390是集成双十进制计数器 中含有两个独立的BCD码十进制计数器。 BCD码十进制计数器 中含有两个独立的BCD码十进制计数器。每个计 数器中包含一个二进制计数器和一个五进制计数 既可单独用于二、五进制计数, 器,既可单独用于二、五进制计数,也可串联成 十进制计数器。用一片74LS390可构成一个一百 74LS390 十进制计数器。用一片74LS390可构成一个一百 进制计数器,若加上少量的门电路则可构成100 进制计数器,若加上少量的门电路则可构成100 以内的任意进制计数器,应用灵活方便。 以内的任意进制计数器,应用灵活方便。 74LS390为高电平清零。 LS390为高电平清零 74LS390为高电平清零。

简单数字频率计的设计与制作

简单数字频率计的设计与制作

简单数字频率计的设计与制作1结构设计与方案选择1.1设计要求(1)要求用直接测量法测量输入信号的频率(2)输入信号的频率为1~9999HZ1.2设计原理及方案数字频率计是直接用十进制的数字来显示被测信号频率的一种测量装置。

它不仅可以测量正弦波、方波、三角波和尖脉冲信号的频率,而且还可以测量它们的周期。

所谓频率就是在单位时间(1s)内周期信号的变化次数。

若在一定时间间隔T内测得周期信号的重复变化次数为N,则其频率为f=N/T(1-1)据此,设计方案框图如图1所示:图1 数字频率计组成框图图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被。

时间基准信号发生器提供标准的时间脉冲信号,若其周期为测信号的频率fX1s,则们控电路的输出信号持续时间亦准确的等于1s。

闸门电路由标准秒信号进行控制当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数器译码显示电路。

秒信号结束时闸门关闭,技计数器得的脉冲数N是在1秒时间内的累计= N Hz。

数,所以被测频率fX被测信号f经整形电路变成计数器所要求的脉冲信号○1,其频率与被测信X号的频率相同。

时基电路提供标准时间基准信号○2,其高电平持续时间t1=1 秒,当l秒信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到l秒信号结束时闸门关闭,停止计数。

若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率f=NHz,如图2(a)所示,即为数字频率计的组成框图。

图2(a)数字频率计的组成框图图2(b)数字频率计的工作时序波形逻辑控制单元的作用有两个:其一,产生清零脉冲④,使计数器每次从零开始计数;其二,产生所存信号⑤,是显示器上的数字稳定不变。

这些信号之间的时序关系如图2(b)所示数字频率计由脉冲形成电路、时基电路、闸门电路、计数锁存和清零电路、译码显示电路组成。

1.3数字频率计的主要技术指标1.3.1 频率准确度:一般用相对误差来表示,本文设计的频率准确度并没有要求。

简易数字频率计设计

简易数字频率计设计

简易数字频率计设计简易数字频率计是一种统计计算工具,用于频率统计,使用适当的算法来测量特定序列中给定元素或者元素组合出现的频率,主要用于数据分析和统计工作,帮助使用者深入分析数据,得到较为精准的结果。

本文将详细说明一种简易的数字频率计的设计实现过程和分步流程。

设计步骤第一步:准备设计简易数字频率计所需要的硬件设备设计简易数字频率计需要的硬件设备有:计算机、网络设备、数据存储器、输入输出设备等。

计算机配备相应的硬件设备和软件,网络设备用于连接多台计算机,数据存储器用于存储数据,输入输出设备允许输入和输出各种不同类型的数据。

第二步:制定相应的算法根据具体情况,应制定出相应的算法,用于计算数据序列中给定元素或者元素组合出现的频率,主要包括排序算法,查找算法,求和算法,概率分布算法等。

比如:可以使用冒泡排序或者快速排序对数据序列进行排序,使用二分查找等技术快速查找元素,在运算时可以使用求和、乘法、平方等算法来计算数据,使用贝叶斯理论等方法来求取概率分布。

第三步:实现数据处理根据设计上的算法,使用计算机及其相应的软件和硬件设备,进行数据处理,对相关的数据序列进行相应的操作,实现频率的统计计算,得到精准的统计结果。

第四步:测试并可视化在完成简易数字频率计的设计之后,应当对数据处理过程进行测试,以验证所编写算法的正确性和可靠性。

完成测试之后,可以通过图表和表格的方式可视化频率计算结果,更加直观地显示出数据之间的关系以及频率变化趋势。

以上就是一种简易数字频率计的设计实现过程,它可以为使用者提供准确的统计数据和频率结果,促进数据深入分析等工作,为企业的发展带来重要的帮助。

multisim简易数字频率计

multisim简易数字频率计

m u l t i s i m简易数字频率计Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998哈尔滨工业大学简易频率计的仿真设计目录3.电路组成介绍1.设计要求本次设计任务是要求设计一个简易的数字频率计,即用数字显示被测信号频率的仪器,数字频率计的设计指标有:1. 测量信号:正弦信号、方波信号等周期变化的物理信号;2. 测量频率范围:0Hz~9999Hz ;3. 显示方式:4位十进制数显示。

2.电路工作原理频率计总电路图如下所示:频率计的基本原理:通过将被测周期信号整形为同频率的方波信号后,利用555定时器组成的振荡电路所产生的频率为1Hz 的标准方波,作为基准时钟,与被整形后的方波信号一起经过闸门电路处理输入计数电路,再利用74LS90N 的十进制计数功能进行级联计数,计数后输入8位数据/地址锁存器74LS273N 以实现锁存和清零功能,最后输入到译码显示电路中,用BCD7段译码器显示出来,这样就实现了对被测周期信号的频率测量并显示的功能。

频率计的工作原理流程图如下所示:3.电路组成介绍脉冲形成电路脉冲形成电路由信号发生器与整形电路组成,输入信号先经过限幅器,再经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限副作用。

由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。

线路图如下所示: 闸门电路闸门电路的作用是控制计数器的输入脉冲,在电路中用一个与非门来实现(如下图所标注)。

当标准信号(正脉冲)来到时闸门开通,被侧信号的脉冲通过闸门进入计时器计数;正脉冲结束时闸门关闭,计数器无时钟脉冲输入。

闸门电路时基电路时基电路是由555定时器构成的振荡器组成,其功能为产生标准时间为1秒的脉冲,=0.8Hz,其中高电平的时间为t1=1秒,低电平时间为秒。

利选取振荡器的频率f0=1t1+t2用t1=(R1+R4)C2,t2=。

简易数字频率计的设计

简易数字频率计的设计
电子技 术 ・ E l e c t r o n i c T e c h n o l o g y
简 易数 字频率计的设计
文/ 廖颖民
— —



‘ ———来自———



时钟 的上升沿触 发工作脉 冲信号。7 4 L S 1 2 3可 完成该部分功能,其脉冲宽度由电路的时间常 成计数器要求的脉冲信号。设计 中采用 的是 由 数决定 ,但为保证系统正常工作,单稳电路产 5 5 5定时器构成 的施 密特触 发器对波形进 行整 生的脉冲宽度不能大于该量程分频器输出信号 形。其工作原理为:当输 入信号电压逐 步升高 的周 期 。 时 ,>施 密特上 的 . 内部触发器 发生翻转 ;当 2 . 5计 数 器 电路 逐步下 降到 < ,电路会再次发生翻转 。施 密特 触发器不仅可将缓变的输入信号转换为边沿陡 计 数器 对经 整形 ( 分 频 ) 后 的 待 测 信 号 峭的矩形波 ,同时在输入信号的上升过程中, 进行脉冲计数 , 计数完毕后送入锁存译码 电路 , 【 关键词 】数字 频率计 时基 电路 闸 门电路 输 出状态转换时对应的输入 电平,与输 入信号 并在 显示器上显示 。电路采用 4位十进制计数 逻 辑 控 制 电路 计 数 器 电路 锁存 译 码 电路 下降过程中输 出状态转换时对应的输入电平数 器 级 联 而 成 ,十 进 制 计 数 器 使 用 7 4 L S 9 0 ,其 值是不 同的 , 亦即存在 所谓的“ 回差 ” 。 利用“ 回 中计数器的清零 由清零脉冲加手动复位开关实 差”可以排 除干扰 的影响 ,得到正确的波 形。 现。 数字 频率 计是用 来测 量频 率 与周期 ,并 2 . 2时基 电路 2 进行计数、测时的重要仪器,在使用上较示波 6锁存译 码 电路 器经 济、便 利,现 已在 许 多领域 得到 广泛 应 时基 电路用 来产 生一个 标准 的时 间信号 锁存 译码 电路 由锁 存器 和译码 器构 成, 用。在产品的研发、实验、生产过程中,许多 以控 制计数器 的计数标准 时间。它可 由定时器 本 设计 采用 C D4 5 1 l来 实现 。C D 4 5 1 1具有锁 情况下并不需要购置贵重的专用测频计数器, 5 5 5构 成 的 多 谐 振 荡 器 、 晶 体 振 荡 器 等 产 生 。 存 、译码和和驱动功能,可直接驱动数码管。 而可灵活采用 自行设计的测频计数电路,这不 由于时钟信 号是控制 计数 器计数 的标准时 间信 若计数器输 出直接接译码显示,则在闸门信号 仅方便工作 需要 、还可 降低成本 。本文论述采 号 , 其 精度 在 很 大程 度上 决 定 了频 率 计 的测 量 为高 电平期 间、频率 的显示将会随着计数值的 用小规模集成块设计数字频率计的方法及相应 精度 。因而要求方波的宽度准确 且稳定。由定 增加而不断变化 。为 防止该现象产生,须在计 电路 ,对于 电子产 品开发 、测试人员具有参考 时器 5 5 5构成的多谐振荡器精度 不高且难 以调 数和 显示之 间加入锁存 。只有当计数器停止计 及应用价值 。 节 ,故本设计采用晶体振荡器经分频获得。设 数后 ( 闸门信 号由高电平变低 电平后 ),才将 计 中时钟 电路采 用 3 2 . 7 6 8 k H z石 英 晶体和 1 4 计 数值锁存 并输 出译码显示 ,锁存信号 由逻辑 1数字频率计测频的基本原理 级 分频 器 C D4 0 6 0构 成 晶 体 振 荡 器 。CD 4 0 6 0 控制电路提供。因 C D4 5 1 1为上升沿锁存 ,低 频 率 的定义 就是周 期性信 号在 单位 时间 内含有 1 4级 的二进 制串行计数 器,可进 行分 电平导通、高 电平保持 ,因而 C D4 5 1 l 的锁存 ( 1 s )内变化 的次数。若在一定 时间间隔 t 内 频 ,3 2 . 7 6 8 k Hz 谐 振 频率 经 内部 1 4级计 数 器 端⑤ 脚接锁存信 号的非端 , 即7 4 L S 1 2 3的④脚 。 测 得这个周期性 信号重复变化的次数 为 n ,则 1 6 3 8 4分 频 后在 CD 4 0 6 0输 出端 可 输 出 2 Hz 这样在跳变的瞬问,锁存器导通,计数 器的数 其 频率可表示为:f - n / t 。本数字频率计 的工作 脉 冲 信 号 , 产 生 脉 冲 宽 度 为 1 s的 方 波 f = l / 值输入锁存器锁存 、并对计数器清零。为防止 原理为:被测信号经放大整形电路转 换成计数 T = I / ( I +I ) = O . 5 Hz 。所 以 2 H z的 信 号 经 两 级 D 显示时出现 闪烁现象,锁存信号的周期必须大 器 所要求 的脉冲信 号, 其频率与被测信号相 同。 触 发器构 成的 四分频可获得 高 电平 为 1 s的脉 于人眼的视觉滞留时间。 时基 电路提供标准 时间信 号 T,其 高电平持续 冲 信号 。D触发器 可 由 7 4 L S 7 4构成 。要注意 时间 =1 s ,当 1 s 信 号到来时 ,闸 门开通 ,被测 在 电路中 C D 4 0 6 0的清零端必须接地 ,否则计 3 设 计 总 结 脉冲信号通过闸门,计数器开始计数 。直到 1 s 数器清零 、同时振荡器停振。 本 简 易数字 频率计 由 多个子 电路 组成, 信 号 结 束 时 闸 门关 闭、 停 止 计 数 ,同 时 保 持 原 2 . 3 闸 门 电路 为保证 电路达到设计的精准度, 电路制作过程 有 的状 态 不 变 。 若 在 闸 门 时 间 1 s内 计 数 器 记 中要注意对元器件兼容性 的检查 ,电路制作完 得 的脉冲 个数为 N,则被测 信号频率 = NHz 。 闸 门电路用 来控 制计 数时 间, 由一个与 成后还应使用示波器等仪器对其进行必要的检 逻辑控制电路的作用有 二: 非门构成。与非门的一端 由时基 电路提供 的秒 查 调 试 。 ( 1 )产生锁 存脉冲 ,使 显示器上 的数 字 脉冲输入,另一端由待测 信号整 形后输 入。电

数字频率计设计与仿真

数字频率计设计与仿真

数字频率计设计一、实验目的1、了解等精度测频的方法和原理。

2、掌握如何在FPGA 内部设计多种功能模块。

3、掌握VHDL 在测量模块设计方面的技巧。

二、实验原理所谓频率就是周期性信号在单位时间(1s)内变化的次数。

若在一定时间间隔T(也称闸门时间)内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N/T由上面的表示式可以看到,若时间间隔T 取1s,则f=N。

由于闸门的起始和结束的时刻对于信号来说是随机的,将会有一个脉冲周期的量化误差。

进一步分析测量准确度:设待测信号脉冲周期为Tx,频率为Fx,当测量时间为T=1s时,测量准确度为δ=Tx/T=1/Fx。

由此可知这种直接测频法的测量准确度与被测信号的频率有关,当待测信号频率较高时,测量准确度也较高,反之测量准确度较低。

因此,这种直接测频法只适合测量频率较高的信号,不能满足在整个测量频段内的测量精度保持不变的要求。

若要得到在整个测量频段内的测量精度保持不变的要求,应该考虑待精度频率测量等其它方法。

等精度频率测频的实现方法,可以用图23-1 所示的框图来实现。

三、实验内容本实验要完成的任务就是设计一个频率计,系统时钟选择核心板上的20M 的时钟,闸门时间为1s(通过对系统时钟进行分频得到),在闸门为高电平期间,对输入的频率进行计数,当闸门变低的时候,记录当前的频率值,并将频率计数器清零,频率的显示每过2 秒刷新一次。

被测频率通过一个拨动开关来选择是使用系统中的数字时钟源模块的时钟信号还是从外部通过系统的输入输出模块的输入端输入一个数字信号进行频率测量。

当拨动开关为高电平时,测量从外部输入的数字信号,否则测量系统数字时钟信号模块的数字信号。

其实现框图如下图在本实验中,用到的模块有数字信号源模块、拨动开关模块、20M 系统时钟源模块、数码管显示模块等。

其中数码管、数字信号源、拨动开关与FPGA的连接电路和管脚连接在以前的实验中都做了详细说明,这里不在赘述。

简易数字频率计设计报告

简易数字频率计设计报告

根据系统设计要求, 需要实现一个 4 位十进制数字频率计, 其原理框 图如图 1 所示。

主要由脉冲发生器电路、 测频控制信号发生器电路、 待测 信号计数模块电路、 锁存器、 七段译码驱动电路及扫描显示电路等模块组 成。

由于是4位十进制数字频率计, 所以计数器CNT10需用4个,7段显示译 码器也需用4个。

频率测量的基本原理是计算每秒钟内待测信号的脉冲个 数。

为此,测频控制信号发生器 F_IN_CNT 应设置一个控制信号时钟CLK , 一个计数使能信号输出端EN 、一个与EN 输出信号反 向的锁存输出信号 LOCK 和清零输出信号CLR 。

若CLK 的输入频率为1HZ ,则输出信号端EN 输出 一个脉宽恰好为1秒的周期信号, 可以 作为闸门信号用。

由它对频率计的 每一个计数器的使能端进行同步控制。

当EN 高电平时允许计数, 低电平时 住手计数,并保持所计的数。

在住手计数期间,锁存信号LOCK 的上跳沿 将计数器在前1秒钟的计数值锁存进4位锁存器LOCK ,由7段译码器译出 并稳定显示。

设置锁存器的好处是: 显示的数据稳定, 不会由于周期性的标准时钟 CLKEN待测信号计数电路脉冲发 生器待测信号F_INLOCK锁存与译 码显示驱 动电路测频控制信 号发生电路CLR扫描控制数码显示清零信号而不断闪烁。

锁存信号之后,清零信号CLR对计数器进行清零,为下1秒钟的计数操作作准备。

时基产生与测频时序控制电路主要产生计数允许信号EN、清零信号CLR 和锁存信号LOCK。

其VHDL 程序清单如下:--CLK_SX_CTRLLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CLK_SX_CTRL ISPORT(CLK: IN STD_LOGIC;LOCK: OUT STD_LOGIC;EN: OUT STD_LOGIC;CLR: OUT STD_LOGIC);END;ARCHITECTURE ART OF CLK_SX_CTRL ISSIGNAL Q: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1')THENIF Q="1111"THENQ<="0000";ELSEQ<=Q+'1';END IF;END IF;EN<=NOT Q(3);LOCK<=Q(3)AND NOT(Q(2))AND Q(1);CLR<=Q(3)AND Q(2)AND NOT(Q(1));END PROCESS;END ART;测频时序控制电路:为实现系统功能,控制电路模块需输出三个信号:一是控制计数器允许对被测信号计数的信号EN;二是将前一秒计数器的计数值存入锁存的锁存信号LOCK;三是为下一个周期计数做准备的计数器清零信号CLR。

数字显示频率计的设计1

数字显示频率计的设计1

模拟电子技术电路设计仿真作业简易数字频率计1.问题的重述数字频率既是一种十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号以及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。

2. 频率计电路分析及设计设计要求:1.测量范围:0~9999Hz2.最大读数9999Hz,闸门信号的采样时间为1s3.采用4位数码显示4.输入信号最大幅值可以扩展设计原理:所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。

若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。

数字频率计测量频率的原理框图如下图。

其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率。

时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确的等于1s。

闸门电路由标准秒信号进行控制,当秒信号到来时,闸门开通,被测脉冲信号通过闸门送到级数译码显示电路。

秒信号结束时闸门关闭,计数器停止计数。

由于计数器记得的脉冲数N是在1s时间内的累计数,所以被测信号ui的频率为NHz。

脉冲形成电路脉冲形成电路是555电路构成的施密特触发器。

为了扩展被测信号的频率范围,输入信号u i先经过限幅器,再经过施密特触发器整形,当输入信号幅值较小时,限幅器的二极管截止,不起限幅作用。

图中电阻R3和R4的作用是将被测信号进行电平移动,因为555构成的施密特触发器的上触发电平U T+=(2/3)U CC,下触发电平U T−=(1/3)U CC。

输入信号的直流电平U IO应满足下列关系:(1/3)U CC<U IO<(2/3)U CC。

输入信号的幅度U im与直流电平幅度U IO和回差∆U T有关,一般来说,∆U T越小,对输入信号的幅度U im要求越小。

若取+U CC=+5V,则回差∆U T=1.67V。

若取U IO=2.5V,则取R3=R4=10kΩ,则输入信号的幅度U im=0.83V。

简易数字频率计课程设计报告

简易数字频率计课程设计报告

简易数字频率计课程设计报告《简易数字频率计课程设计报告》一、设计目的和背景随着科技的不断发展和普及,计算机已经成为人们生活中不可或缺的一部分。

而数字频率计作为一种常见的电子测量仪器,在工业控制、电信通讯等领域有着广泛的应用。

本课程设计旨在通过设计一款简易的数字频率计,以帮助学生深入了解数字频率计的工作原理和设计方法。

二、设计内容和步骤1. 学习数字频率计的基本原理和工作方式:介绍数字频率计的基本功能、硬件组成和工作原理。

2. 设计数字频率计的主要电路:通过研究数字频率计的电路原理图,设计出适用于本设计要求的主要电路。

3. 制作数字频率计的原型:使用电子元器件将电路图中设计的电路进行实际制作,制作出数字频率计的原型。

4. 测试数字频率计的性能:通过对数字频率计进行各种频率波形的测试,验证其测量准确性和稳定性。

5. 优化和改进设计:根据测试结果和用户反馈,对数字频率计的电路和功能进行进一步优化和改进。

三、预期效果和评价标准通过本课程设计,预期学生能够掌握数字频率计的基本工作原理、主要电路设计和制作方法,并且能够针对实际需求进行优化和改进。

评价标准主要包括学生对数字频率计原理的理解程度、电路设计的准确性和创新性,以及对数字频率计性能进行测试和改进的能力。

四、开展方式和时间安排本课程设计可以结合理论学习和实践操作进行,建议分为以下几个阶段进行:1. 第一阶段(1周):学习数字频率计的基本原理和工作方式。

2. 第二阶段(1周):设计数字频率计的主要电路。

3. 第三阶段(2周):制作数字频率计的原型,并进行性能测试。

4. 第四阶段(1周):优化和改进数字频率计的设计。

总共需要约5周的时间来完成整个课程设计。

五、所需资源和设备1. 教材教辅资料:提供数字频率计的基本原理和电路设计方法的教材或教辅资料。

2. 实验设备和工具:数字频率计的主要电路所需的电子元器件、测试仪器和焊接工具等。

3. 实验环境:提供安全、稳定的实验室环境,以及必要的计算机软件支持。

简易数字式频率计仿真设计

简易数字式频率计仿真设计

简易数字频率计仿真设计报告班级学号姓名平时成绩答辩成绩报告成绩总分122039304 杨现涛30122039310 郭慧泽30目录一、设计要求 (2)二、设计过程 (2)三、元器件清单 (3)四、电路连线图 (4)放大整形电路图 (4)单脉冲发生器电路图 (4)闸门电路电路图 (5)计数部分电路图 (5)译码显示电路图 (6)整体电路图 (7)五、实验(仿真结果) (8)六、出现的问题及解决方法 (8)一)设计要求1)设计一个单脉冲发生器,其脉冲宽度t 与手动按钮时间长短无关,与两次按钮的时间间隔无关,仅与时钟脉冲频率有关,且有下列关系:t=1/f12)设计一个四位十进制计数器,实现0000-9999计数。

3)将上述两种电路图组成一个简易数字式频率计。

实现如图效果: F2 F1 0-1 1清零信号1清11111清零清零信号二、设计过程根据实验要求,要完成数字式频率计的设计任务就要了解其中包含的电路以及用到的知识及元器件。

首先经过查阅资料了解数字是频率计的原理和工作过程,下面简单介绍一下数字是频率计。

数字式频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物频率进行测 量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经 过传送带的产品数量等等,这些物理量的变化情况可以有关传感器先转变成周 期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出 来。

闸门电路译码显示电路闸门控制信号产生的电路(t )计数电路其次是了解本次试验设计的频率计的工作原理和具体工作过程,本次的频率计基本上与以往的频率计大同小异,首先要设计的是一个放大整形电路,通过采用555多谐振荡器件把输入到频率计的各种波形整形成标准的方波以便进行取样计数。

然后设计的是一个闸门控制信号产生电路,使其输入1hz基准频率能够产生一个脉冲宽度为1s的单脉冲,同时该电路接上一个0-1手动按钮,按下按钮该电路能够发出两种信号,一种为宽度为1s的单脉冲控制闸门的开启,开启时间为1s,另一种为清零信号,输入到计数器中,使计数器清零。

低频数字频率计设计仿真电路图及报告

低频数字频率计设计仿真电路图及报告

数字频率计设计报告一内容提要:数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器.它的基本功能是测量正弦信号.方波信号,尖脉冲信号及其他各种单位时间内变化的物理量.本文粗略讲述了我在本次实习中的整个设计过程及收获。

二设计内容及要求:要求设计一个简易的数字频率计,其信号是给定的脉冲信号,是比较稳定的。

1.测量信号:方波;2.测量频率范围: 1Hz~999Hz ;3.显示方式: 3位十进制数显示;4.时基电路由 555 定时器产生;三设计思路及原理:数字频率计由四部分组成:时基电路、闸门电路、逻辑控制电路以及可控制的计数、译码、显示电路。

由555 定时器,分级分频系统及门控制电路得到具有固定宽度T的方波脉冲做门控制信号,时间基准T称为闸门时间.宽度为T的方波脉冲控制闸门的一个输入端B.被测信号频率为fx,周期Tx.到闸门另一输入端A.当门控制电路的信号到来后,闸门开启,周期为Tx的信号脉冲和周期为T的门控制信号结束时过闸门,于输出端 C 产生脉冲信号到计数器,计数器开始工作,直到门控信号结束,闸门关闭.单稳1的暂态送入锁存器的使能端,锁存器将计数结果锁存,计数器停止计数并被单稳2暂态清零. (简单地说就是:在时基电路脉冲的上升沿到来时闸门开启,计数器开始计数,在同一脉冲的下降沿到来时,闸门关闭,计数器停止计数.同时,锁存器产生一个锁存信号输送到锁存器的使能端将结果锁存,并把锁存结果输送到译码器来控制七段显示器,这样就可以得到被测信号的数字显示的频率.而在锁存信号的下降沿到来时逻辑控制电路产生一个清零信号将计数器清零,为下一次测量做准备,实现了可重复使用,避免两次测量结果相加使结果产生错误.) 若T=1s,计数器显示fx=N(T时间内的通过闸门信号脉冲个数) 若T=0.1s,通过闸门脉冲个数位N时,fx=10N,(闸门时间为0.1s时通过闸门的脉冲个数).也就是说,被测信号的频率计算公式是fx=N/T.由此可见,闸门时间决定量程,可以通过闸门时基选择开关,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.被测信号频率通过计数锁存可直接从计数显示器上读出.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.因此,可得出数字频率计的原理框图如下:四:设计分析1.时基电路其基本电路图如左:I555定时器组成的振荡器(即脉冲产生电路),要求其产生1S高电平的脉冲.振荡器的频率计算公式为:T1=(R30+R31)*C*ln2,因此,我们可以计算出各个参数通过计算确定了R30取30k欧姆,R31取10k欧姆,电容取47uF.这样我们得到了比较稳定的一秒时基信号。

数字频率计的设计和仿真

数字频率计的设计和仿真

数字频率计的设计和仿真石岩蟒摘要:以单片机为核心器件,实现了数字频率计的设计,并在Proteus软件仿真环境下搭建仿真电路,采用Kell软件进行软硬联调,成功地实现了数字频率计的仿真。

在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

电子计数测频有两种方式,一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,即周期测频法。

直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量[1]。

本次设计的频率测量系统以单片机AT89C52为核心,采用汇编语言和直接测量方法,成功地实现了宽领域,高精度的数字频率计的设计和仿真。

关键词:数字频率计单片机Proteus仿真Kell仿真一、设计思路该频率计首先以信号放大整形后的方波脉冲作为控制闸门信号,然后采用计数器和锁存器对不同频率范围的信号直接进行计数来完成分频功能,分频后的信号由接口电路送给单片机,由单片机的计数器对其进行计数,最后将计数结果通过运算转变为原信号的频率数值,最后通过动态显示电路显示数值。

由于单片机内部振荡频率很高,所以一个机器周期的量化误差相当小,可以有效的提高低频信号的测量准确性。

本设计以单片机AT89C52为核心,通过译码、分频、计数等电路,以及软件程序的编写,实现脉冲频率的显示。

整体设计思路可用框图1表示。

框图中,各部分的作用及所采用的器件说明如下。

二、计数测量部分包括计数器电路和数据锁存器电路计数器电路采用了74LS590芯片完成计数功能。

对于频率较小的输入脉冲可以只让一个74LS590芯片发挥作用,即计数的个数小于256时则只有一74LS590芯片进行计数,对于频率较大的输入脉冲需要让两个74LS590芯片发挥作用,即计数个数大于256小于65535时两个74LS590芯片分别进行高八位、低八位计数。

简易频率计的设计仿真与制作

简易频率计的设计仿真与制作

课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易频率计的设计仿真及制作初始条件:本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统设计。

用数码管显示频率计数值。

要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周内完成对简易频率计的设计、仿真、装配及调试。

2、技术要求:①设计一个频率计。

要求用4位7段数码管显示待测频率,格式为0000Hz。

②测量频率范围:10~9999Hz。

③测量信号类型:正弦波、方波和三角波。

④测量信号幅值:0.5~5V。

⑤设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1S。

⑥确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。

3、查阅至少5篇参考文献。

按《武汉理工大学课程设计工作规范》要求撰写设计报告书。

全文用A4纸打印,图纸应符合绘图规范。

时间安排:1) 2010 年 6 月 26~27 日,查阅相关资料,学习设计原理。

2) 2010 年 6 月 28~30 日,方案选择和电路设计仿真。

3) 2010 年 7 月 1~3 日,电路调试和设计说明书撰写。

4) 2010 年 7 月 4 日上交课程设计成果及报告,同时进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日简易频率计的设计仿真及制作目录1 Protues软件介绍 (3)2 设计要求......... (4)2.1整体功能要求 (4)2.2系统结构要求 (4)2.3测试指标 (4)3单元电路设计及分析 (5)3.1 数字频率计的基本原理 (5)3.2 数字频率的设计 (6)3.2.1 放大整形电路 (6)3.2.2 时基电路 (6)3.2.3 逻辑控制电路 (7)3.2.4 输出实现电路 (8)4整体电路的设计仿真及调试 (10)4.1整机电路图 (10)4.2 元件清单 (12)5课程设计心得 (14)6参考文献 (15)7成绩评定表 (16)1 Protues 软件介绍Proteus 是目前最好的模拟单片机外围器件的工具,它可以仿真51 系列、AVR,PIC 等常用的MCU 及其外围电路(如LCD,RAM,ROM,键盘,马达,LED,AD/DA,部分SPI 器件,部分IIC 器件...)。

简易频率计的设计与仿真

简易频率计的设计与仿真

简易频率计的设计与仿真目录:一、简易频率计的设计要求及任务分析1、设计要求2、任务分析二、简易频率计的设计1、整形电路的设计和仿真2、时基控制电路的设计和仿真3、计数器、锁存器、显示器的设计和仿真三、总结四、心得体会五、参考文献简易频率计的设计与仿真一、简易频率计的设计要求及任务分析1、设计要求(1)设计原理和原理图分析计算(2)仿真过程说明(3)误差分析(4)总结(5)频率范围为1—9999Hz2、任务分析所谓频率就是指周期信号在单位时间内变化的次数。

若在一定时间间隔T内测得周期性信号的重复变化次数为N,则频率可表示为f=N/T(Hz)。

根据设计要求,数字频率计主要由以下几部分组成:放大整形电路、时基电路、闸门控制脉冲、计数器、锁存器、显示器等。

具体组成结构图如图一。

图一简易频率计的组成框图被测信号v x经放大整形电路变成计数器所要求的方波信号,其频率与被测信号v x的频率f x相同。

时基电路是由555定时器构成的振荡器组成,其功能为产生标准时间为1秒的脉冲。

当1s信号来到时,闸门电路开通,被测脉冲信号通过闸门电路,成为计数器的计数脉冲,计数器开始计数直到1s信号结束时闸门电路关闭,停止计数。

若在闸门时间1s内计数器计得的脉冲个数为M,则被测信号频率f=M Hz。

控制脉冲的作用是产生锁存脉冲,使显示器上的数字稳定。

二、简易频率计的设计由于设计的电路较复杂,所以将整个电路的设计分为三个部分:放大整形电路、时基控制电路(包括时基电路、闸门控制电路)、计数显示电路(包括计数器、锁存器、显示器),最后再将各部分组合连接在一起。

1、整形电路的设计和仿真整形电路由信号发生器与整形电路组成,输入信号先经过限幅器,在经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限幅作用。

由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。

线路图如图二,波形图如图三。

图二整形电路元件图图三整形电路波形图注:图中正弦波形为输入信号,方波脉冲为输出信号。

基于Multisim9_0简易数字频率计的设计与仿真

基于Multisim9_0简易数字频率计的设计与仿真
[ 4]
图 3 放大整形电路仿真波形
2 . 2 时基控制电路的设计和仿真 在前述中创建局部电路如图 4所示 , 时基电路由 定时器 555构成的多谐振荡器产生, 通过控制按钮 A 或 Shift+ A 调节电位器 R13 的接入阻值, 使标准时间 [ 5] 信号 C lo ck 高电平的持续时间为 1s 。控制电路是 由单稳态触发器 SN74123N 组成, 在标准时 间信号 C lo ck 结束时, 由两个单稳态触发器 SN74123N 分别 产生锁存信号 CLK, 锁存信号 CLK 结束时产生清 0 信号 RD, 它们的脉冲宽度由电路的时间常数决定。 并且锁存信号 CLK 和清 0 信号 RD 的脉宽之和不 能超过标准时间信号 C lo ck 的低电平持续时间。另 外, 清零信号也可以由手动复位开关 J1 的按钮 B 来 控制, 开关 J1 闭合时 , 计数电路清 0 。两种方式清 零信号加在 U2A 与非门 74LS00N 的两个输入端 , 与 非门 74LS00N 的输出 即为 计数 电路 的清 0 信号 RD。电路中 U 2B 与非门 74LS00N 组成闸门电路, 其 作用是产生计数脉冲 CP。 当手动复位开关 J1 闭合 , 再打开时, 各信号之 间的时序关系如图 5 所示, 4 踪示波器的测量波形 为: A 通道是标准时间信号 C lock 的波形 , 其高电平 的持续时间为 1s; B 通道是锁存信号 CLK 的波形; C 通道是清 0 信号 RD 的波形 , 其波形第一个清零信 号正脉冲是由手动复位开关 J1 给出的 ; D 通道是计

( 下转第 18 页 )
18




[ 2]


第 19 卷
5 结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子仿真技术》实训报告题目简易数字频率计的设计、仿真
所在学院电子信息工程学院
专业班级***
学生姓名*** 学号***
指导教师***
完成日期* 年* 月* 日
一.设计思路
(1)电路简述
所谓频率,就是周期性信号在单位时间(1s) 变化的次数.若在一定时间间隔T测得这个周期性信号的重复变化次数为N,则其频率可表示为fx=N/T 。

因此,可以将信号放大整形后由计数器累计单位时间的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。

可见数字频率计主要由闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。

数字频率计的主要功能是测量周期信号的频率。

频率是单位时间(1S )信号发生周期变化的次数。

如果我们能在给定的1S 时间对信号波形计数,数值保持及自动清零,并将计数结果在显示器上显示出来,就能读取被测信号的频率。

数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔的脉冲个数,将其换算后显示出来。

这就是数字频率计的基本原理。

被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。

时基电路提供标准时间基准信号Ⅱ,具有固定宽度T 的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。

可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,
测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键。

(2)任务目标
利用multisim9.0软件设计一个简易数字频率计,其基本要:
1. 被测信号的频率围1KHZ~100MHZ(理想频率围);
2. 被测信号可以为正弦波、三角波或方波信号;
3. 四位数码管显示所测频率,并用发光二极管表示单位。

二、设计电路原理框图
设计方案框图如图所示:
如图所示此频率计的主体电路由时基电路、整形电路、锁存器电路和计数显示电路组成。

它的工作过程是由时基电路产生一标准时间信号控制阀门,调节时基电路中的电阻可产生需要的标准时间信号。

信号输入整形电路中,经过整形,输出一方波,通过阀门后,计时器对其计数。

当计数完毕,时基电路输出一个上升
沿,使锁存器打开,计数器计数结果输入译码器,从而让显示器显示。

三.单元电路设计与分析
1.时基电路模块的设计
时基信号控制计数器计数的标准时间信号,其精度在很大程度上决定了频率计的频率测量精度。

要求较高时,一般使用晶体振荡器通过分频获得。

在本设计中依然使用了555定时器构成了单稳态触发器,输入单脉冲,输出一标准时间信号,从而在时间上控制计数器计数的时间。

在此频率计中,时钟信号采用由555构成的单稳态触发器。

由一个按钮开关来产生脉冲源,其原理为悬空为高电平,按下开关产生低电平,松开又为高电平,从而产生一单脉冲。

2. 逻辑控制电路的设计
控制电路是数字频率计正常工作的中枢部分。

在这一部分的设计构思过程中,认真对各种频率信号的组合及搭配进行分析,可以分别得到用采控制计数译码的锁存信号和清零信号。

控制电路的时序电路如图所示:
X1
X2gate hold
图:子电路
控制部分的工作原理:当清零信号由0变为1时,此时计数器的清零
工作已经完成。

闸门开始打开,当闸门打开时,即闸门信号为高电平时,计数器开始计数我们所设计的闸门的高电平时间为1S,在此时间计数器计数被测信号的变化次数,所得结果便是被测信号的频率。

3.十进制计数器模块设计
十进制计数器具体的电路图如图所示
将十进制计数器封装为子电路,如下图所示:
X1
X1clock load cten QA1QB1QC1QD1QA2QB2QC2QD2QA3QB3QC3QD3QA4QB4QC4QD4QA5QB5QC5QD5
4. 总体电路设计与调试
搭建好以上电路以后,进行调试,首先分模块进行调试,待每一个模块调试正确后,再进行不规则联调。

四.仿真
数字频率计总体电路如图所示:
五.分析与总结
在本次《电子仿真技术》课程设计中,我了解到了数字频率计的工作原理,并且进一步学习了模拟电路仿真技术。

同时还发现了自己的很多不足,在理论知识上的很多漏洞,认识到自己的思维还是不够活跃。

本次课程设计过程中虽然遇到一些阻碍,但通过我的努力,最终还是克服了这些困难,让我体味到设计电路、连接电路、调测电路过程中的乐趣,提高了独立思考以及克服困难的能力。

设计是我们将来必需的技能,这次设计恰恰给我们提供了一个应用自己所学知识的机会。

在实习的过程中发现了以前学的数字电路的知识掌握的不牢,同时在设计的过程中,遇到了一些以前没有见到过的元件,但是通过查找资料来学习这些元件的功能和使用,让自己的知识面更加的开阔。

因此,电子课程设计使我们获益匪浅,希望还有机会学习更多有关此类课程设计的知识。

通过这次课程设计实践,巩固了学过的知识并能够较好的利用,对自己是一次很好的实践锻炼机会。

课程设计实践不单是将所学的知识应用于实际,在设计的过程中,只拥有理论知识是不够的。

逻辑思维、电路设计的步骤和方法、考虑问题的思路和角度等也是很重要,是需要我们着重锻炼的能力。

相关文档
最新文档