Matlab上机实验答案 (1)

合集下载

matlab上机习题详细讲解-试题答案解析

matlab上机习题详细讲解-试题答案解析

学习指导参考P 第一次实验答案1. 设要求以0.01秒为间隔,求出y 的151个点,并求出其导数的值和曲线。

clc clearx=0:0.01:1.5;y=sqrt(3)/2*exp(-4*x).*sin(4*sqrt(3)*x+pi/3) y1=diff(y) subplot(2,1,1) plot(x,y)subplot(2,1,2) plot(x(1:150),y1)2绘制极坐标系下曲线(a,b,n 自定数据)clc clear a=10; b=pi/2; n=5;theta=0:pi/100:2*pi; rho=a*cos(b+n*theta); polar(theta,rho)3. 列出求下列空间曲面交线的程序clc clearx=[-5:0.5:5];[X,Y]=meshgrid(x); z1=X.^2-2*Y.^2;z2=X.*2-Y.*3; xlabel('x') ylabel('y') zlabel('z') surf(X,Y,z1) hold onsurf(X,Y,z2)k=find(abs(z1-z2)<0.5); x1=X(k) y1=Y(k)z3=x1.^2-2*y1.^2 hold onplot3(x1,y1,z3,'*')4、设 ⎥⎦⎤⎢⎣⎡++=)1(sin 35.0cos 2x x x y 把x=0~2π间分为101点,画出以x 为横坐标,y 为纵坐标的曲线,要求有图形标注。

clc clearx=-2*pi:0.1: 2*pi;y=cos(x).*(0.5+sin(x)*3./(1+x.^2)); plot(x,y,'b*-'); title('绘图'); xlabel('x 坐标'); ylabel('y 坐标'); legend('原函数')gtext('y=cos(x)(0.5+3*sin(x)/(1+x^2))')5、求下列联立方程的解 81025695832475412743-=+-+-=-+-=++-=--+w z y x w z x w z y x w z y xclc cleara=[3,4,-7,-12;5,-7,4,2;1,0,8,-5;-6,5,-2,10]; b=[4,-3,9,-8]; c=b/a; x=c(1,1) y=c(1,2) z=c(1,3) w=c(1,4)6. 假设一曲线数据点为x = 0:2:4*pi;y = sin(x).*exp(-x/5);试将x 的间距调成 0.1,采用不同插值方法进行插值,并通过子图的形式将不同插值结果和原始数据点绘制在同一图形窗口。

(完整版)MATLAB)课后实验[1]

(完整版)MATLAB)课后实验[1]

实验一 MATLAB 运算基础1. 先求以下表达式的值,尔后显示 MATLAB 工作空间的使用情况并保存全部变量。

(1)2sin 85 z1 21 e(2) 12z ln( x 1 x ) ,其中22 x2 1 2i5(3)ae e az sin( a 0.3) ln , a 3.0, 2.9, L , 2.9, 32 22t 0 t 1(4) 2z t 1 1 t 242t 2t 1 2 t 3,其中解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成以下操作:(1) 求[100,999] 之间能被 21 整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建立一个字符串向量比方:ch='ABC123d4e56Fg9'; 那么要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch =123d4e56g9实验二 MATLAB矩阵解析与办理1. 设有分块矩阵 A E R3 3 3 2O S2 3 2 2,其中 E、R、O、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试经过数值计算考据 2A E R RS2O S。

matlab上机实验答案

matlab上机实验答案

三、假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数行提取出来,赋给B 矩阵,用magic(8)A =命令生成A 矩阵,用上述命令检验一下结果是不是正确。

>> A=magic(8) A =64 2 3 61 60 6 7 57 9 55 54 12 13 51 50 16 17 47 46 20 21 43 42 24 40 26 27 37 36 30 31 33 32 34 35 29 28 38 39 25 41 23 22 44 45 19 18 48 49 15 14 52 53 11 10 56 8 58 59 5 4 62 63 1 >> B=A(2:2:end,:)B =9 55 54 12 13 51 50 16 40 26 27 37 36 30 31 33 41 23 22 44 45 19 18 48 8 58 59 5 4 62 63 1五、选择合适的步距绘制出下面的图形。

(1))/1sin(t ,其中)1,1(-∈t ; (2))tan(sin )sin(tan t t -,其中),(ππ-∈t 。

1.>> t=[-1:0.0001:1];y=sin(1./t);plot(t,y) Warning: Divide by zero. >>2.>> t=[-pi:0.001:pi];y=sin(tan(t))-tan(sin(t));plot(t,y) >>七、试求出如下极限。

(1)x xx x 1)93(lim +∞→; (2)11lim00-+→→xy xy y x ; (3)22)()cos(1lim222200yx y x ey x y x +→→++-。

(1)>> syms x;f=(3^x+9^x)^(1/x);limit(f,x,inf)ans =9(2)>> syms x y;f=x*y/(sqrt(x*y+1)-1);limit(limit(f,x,0),y,0) ans =2(3)>> syms x y;f=(1-cos(x^2+y^2))/(x^2+y^2)*exp(x^2+y^2);limit(limit(f,x,0),y,0) ans =0九、假设⎰-=xytt ey x f 0d ),(2,试求222222yf yx f xf y x ∂∂+∂∂∂-∂∂。

matlab上机实验答案-整理版

matlab上机实验答案-整理版

第一次实验答案1. 设要求以0.01秒为间隔,求出y 的151个点,并求出其导数的值和曲线。

clcclearx=0:0.01:1.5;y=sqrt(3)/2*exp(-4*x).*sin(4*sqrt(3)*x+pi/3)y1=diff(y)subplot(2,1,1)plot(x,y)subplot(2,1,2)plot(x(1:150),y1)2绘制极坐标系下曲线(a,b,n 自定数据)clccleara=10;b=pi/2;n=5;theta=0:pi/100:2*pi;rho=a*cos(b+n*theta);polar(theta,rho)3. 列出求下列空间曲面交线的程序clcclearx=[-5:0.5:5];[X,Y]=meshgrid(x);z1=X.^2-2*Y.^2;z2=X.*2-Y.*3;xlabel('x')ylabel('y')zlabel('z')surf(X,Y,z1)hold onsurf(X,Y,z2)k=find(abs(z1-z2)<0.5);x1=X(k)y1=Y(k)z3=x1.^2-2*y1.^2hold onplot3(x1,y1,z3,'*')⎪⎭⎫ ⎝⎛+⋅=-334sin 234πt e y t ()θρn b a +=cos 2212y x z -=y x z 322-=4、设 ⎥⎦⎤⎢⎣⎡++=)1(sin 35.0cos 2x x x y 把x=0~2π间分为101点,画出以x 为横坐标,y 为纵坐标的曲线,要求有图形标注。

clcclearx=-2*pi:0.1: 2*pi;y=cos(x).*(0.5+sin(x)*3./(1+x.^2));plot(x,y,'b*-');title('绘图');xlabel('x 坐标');ylabel('y 坐标');legend('原函数')gtext('y=cos(x)(0.5+3*sin(x)/(1+x^2))')5、求下列联立方程的解81025695832475412743-=+-+-=-+-=++-=--+w z y x w z x w z y x w z y x clccleara=[3,4,-7,-12;5,-7,4,2;1,0,8,-5;-6,5,-2,10];b=[4,-3,9,-8];c=b/a;x=c(1,1)y=c(1,2)z=c(1,3)w=c(1,4)6. 假设一曲线数据点为x = 0:2:4*pi;y = sin(x).*exp(-x/5);试将x 的间距调成 0.1,采用不同插值方法进行插值,并通过子图的形式将不同插值结果和原始数据点绘制在同一图形窗口。

MATLAB上机答案

MATLAB上机答案

X
1
2
3
4
5
6
7
8
9
10
Y
16
32
70
142 260 436 682 1010 1432 1960
>> x=1:10;y=[16 32 70 142 260 436 682 1010 1432 1960];
>> p1=polyfit(x,y,1)
>>
p1 =
p2=polyfit(x,y,2),y2=polyval(p2,9.5)
0.01
0.005
0
-0.005
-0.01
-0.015
0
1
2
3
4
5
6
7
(3)大气压强 p 随高度 x 变化的理论公式为
,为验证这一公式,
测得某地大气压强随高度变化的一组数据如表所示。试用插值法和拟合法进行计算并绘图,
看那种方法较为合理,且总误差最小。
高度/m
0
300
600
1000
1500
2000
压强/Pa
equally spaced points between X1 and X2. 以 X1 为首元素,X2 为末元素平均生成 100 个元素的行向量。
LINSPACE(X1, X2, N) generates N points between X1 and X2. For N < 2, LINSPACE returns X2.
ans =
pi =
ans =
5
0
3.1416
答:3 次执行的结果不一样。exist()函数是返回变量搜索顺序的一个函数。在第一次

Matlab上机作业部分参考答案.ppt

Matlab上机作业部分参考答案.ppt
>> A=[16,2,3,13; 5,11,10,8; 9,7,6,12; 4,14,15,1];B=[1; 3; 4; 7];
[rank(A), rank([A B])]
ans =
34 由得出的结果看,A, [A;B] 两个矩阵的秩不同,故方程是
矛盾方程,没有解。
5. 试求下面齐次方程的基础解系
7. 建立如下一个元胞数组,现在要求计算第一个元胞第4行第 2列加上第二个元胞+第三个元胞里的第二个元素+最后一个元 胞的第二个元素。
a={pascal(4),'hello';17.3500,7:2:100}
解: >> a={pascal(4),'hello';17.3500,7:2:100} a=
[ 173/34, 151/34]
6. 求解方程组的通解
x1 2x2 4x3 6x4 3x5 2x6 4 2x1 4x2 4x3 5x4 x5 5x6 3
3x1 6x2 2x3 5x5 9x6 1 2x1 3x2 4x4 x6 8
4x2
5x3
2x4
x5
参考答案: (1) >> limit(sym('(tan(x) - sin(x))/(1cos(2*x))')) ans = 0 (2) >> y = sym('x^3 - 2*x^2 + sin(x)'); >> diff(y) ans = 3*x^2-4*x+cos(x) (3) >> f = x*y*log(x+y); >> fx = diff(f,x) fx = y*log(x+y)+x*y/(x+y)

北京交通大学matlab上机实验1

北京交通大学matlab上机实验1

>> x=1x =1>> y=2y =2>> z=3z =3>> whoYour variables are:x y z>> whos xName Size Bytes Class Attributes x 1x1 8 double>> whos zName Size Bytes Class Attributes z 1x1 8 double>> clear>>>> x=2x =2>> y=5y =5>> z=0z =>> which xx is a variable. >>QuitExit是退出>> cdC:\Documents and Settings\dell\My Documents\MATLAB>>addpath('C:\Program Files\MATLAB\R2008a\work')>>>> format long>> pians =3.141592653589793>> epsans =2.220446049250313e-016>> format short e>> pians =3.1416e+000>> epsans =2.2204e-016>> format long e>> pians =3.141592653589793e+000>> epsans =2.220446049250313e-016>> format short g>> pians =3.1416>> epsans =2.2204e-016>> format long g>> pians =3.14159265358979>> epsans =2.22044604925031e-016>> format hex>> pians =400921fb54442d18>> epsans =3cb0000000000000>> format rat>> pians =355/113>> epsans =1/4503599627370496>> copyfile D:\121\1.txt D:\232>> dir D:\232. .. 1.txt>> dir. .. 1.txt>> pwdans =C:\Documents and Settings\dell\My Documents\MATLAB >> dir. .. 1.txt>> delete D:\121\1.txt>> mkdir D:\234>> lookfor zoomzoom - Zoom in and out on a 2-D plot.camzoom - Zoom camera.scopezoom - GUI interface for zoom functionpanzoom - Pan and zoom on map axesmv_zoom - Mouse-based zooming for axespdezoom - Zoom in and out on a 2-D plot.vzoom - function vzoom('axis')createsignalzoom - Create the zoom object given a figurerender_zoombtns - Render the Zoom In and Zoom Out toggle buttons. render_zoommenus - Render the Zoom In and Zoom Out menus.setzoomstate - Function to set or reset the axes state.>> which rguizoom'rguizoom' not found.>> help rguizoomrguizoom not found.Use the Help browser Search tab to search the documentation, ortype "help help" for help command options, such as help for methods.>> what>> ver signal-------------------------------------------------------------------------------------MATLAB Version 7.6.0.324 (R2008a)MATLAB License Number: 161051Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 3)Java VM Version: Java 1.6.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM mixed mode-------------------------------------------------------------------------------------Signal Processing Toolbox V ersion 6.9 (R2008a) >>phase(5+16i)ans =2920/2303>> magic(4)ans =16 2 3 135 11 10 89 7 6 124 14 15 1>> magic(6)ans =35 1 6 26 19243 32 7 21 232531 9 2 22 27208 28 33 17 101530 5 34 12 14164 36 29 13 1811t=[0:0.05:2*pi]; y=t.*sin(t*2); plot(t,y)1234567-6-5-4-3-2-101234>> [x,y]=meshgrid(-3:0.1:3); z=(x.^2+y).*exp(-x.^2-1/2*y.^2); >> surf(x,y,z),colorbar401-0.6-0.4-0.20.20.40.6>>。

Matlab上机实验题及参考解答

Matlab上机实验题及参考解答

Matlab上机实验题及参考解答目录实验一Matlab初步实验 (2)一matlab基本功能介绍 (2)二Matlab扩展功能 (2)三练习 (2)四练习题参考解答 (3)实验二概率模型实验 (5)一复习 (5)二事件的响应 (5)三Matlab中随机数字的生成与处理 (5)四练习 (5)五练习题参考解答 (5)实验三插值与拟合 (7)实验四线性规划与非线性规划 (8)4.1 实验目的 (8)4.2 实验内容 (9)4.3 综合练习 (10)4.4 课外作业 (11)实验五数值计算 (12)5.1 实验目的 (12)5.2 实验内容 (12)4.3 综合练习 (15)4.4 课外作业 (15)实验六计算机图像处理 (16)6.1 实验目的 (16)6.2 实验内容 (16)6.3 综合练习 (17)6.4 课外作业 (19)实验七综合练习 (19)7.1 实验目的 (19)7.2 实验内容 (19)7.3 综合练习 (20)7.4 课外作业 (21)实验一 Matlab 初步实验 一 matlab 基本功能介绍1 编程环境2语法规范:for … end; if …else if …end; 3 矩阵运算 4 图形绘制二 Matlab 扩展功能1 编程练习:(1) 绘出序列kk x x r r 0(1),0.2083=+=;(2) 绘出曲线rtx t x e t 0(),0=>2 扩展功能(1) 矩阵中全部数据、部分数据的截取、更改; (2) 矩阵的初始化与赋值如:A=zeros(5,5); A(2:2:)=[1,2 3 4 5] 3 微积分基础(见实验4) 符号计算三 练习(课上编程完成下列练习,课后上机验证) 1 求和S=1+2+3+…+100; 2 求和e 1111!2!10!1...=++++3求和S 1112310!1...=++++4设A 234576138⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 求A 的逆、特征值和特征向量;验证Ax=λx 5 画函数图()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭6 展开 (x-1)(x-2)…(x-100)7 因式分解 x 8—y 8; 因数分解200520068 求极限312lim +∞→⎪⎭⎫⎝⎛++n n n n9 )](sin[cos 22x x y += 求dxdy10 求积分x xdx 10ln ⎰11 求积分3⎰并且画出所求的平面区域12 设x+2y=1, 2x+3y=6, y=2x 2, 画出各个方程图形,求出曲线交点.四 练习题参考解答%MatlabTrain1.m clear all % 2nd e=1; temp=1; for I=1:1:10temp=temp*I; e=e+1/temp; end e%%%%%%%%%%% clear all % 3nd S=0; temp=1;for I=1:1:100temp=temp*I; endfor J=1:1:temp S=S+1/J; end S%%%%%%%%%%%%%% clear all % 11ndx=linspace(0,4); y=1./sqrt(x.^5+1); plot(x,y) for t=1:0.1:3yt=1./sqrt(t.^5+1);hold online([t,t],[0,yt]);end%fill(t,yt,'b') %%%%%%%%%%%%% clear all% 12ndx=linspace(-2,2);y=[0.5-0.5*x; 2-2/3.*x; 2*x.^2]; plot(x,y)grid实验二概率模型实验一复习1 小结上次编程练习中存在的问题,讲述部分习题答案2 画图命令介绍:line二事件的响应(1) 获取鼠标的位置%MatlabTrain2.mclear all% 鼠标响应p=ginput(3)plot(p(:,1),p(:,2),'r*')(2) 键盘输入相应t=input('How many apples? t=');m=t+3三Matlab中随机数字的生成与处理1 随机数的生成2 产生随机数字3 产生某区间的整数4 生日模拟问题的Montecaro法设计技术、思路学生尝试编程四练习(1) 编程验证人数在不同年龄段的生日的概率计算(2) 编程实现游戏”聪明伶俐100分”(3) 编程实现两家电影院的座位数问题(4) 编程实现某图形面积的计算五练习题参考解答(1) 生日问题程序示例:%birthPro.mn=0;nStudents=30;for I=1:1000 %how many times testy=0;x=1+floor(365*rand(1,nStudents));%get nStudents random numbersfor J=1:nStudents-1for K=J+1:nStudentsif x(J)==x(K)y=1;break;endendendn=n+y;%count, n times of that there are two people's dirthday in the same dayendfreq=n/I % caculating the frequently(2) 编程实现游戏”聪明伶俐100分”参考答案%MatlabTrain2.mclear all% 鼠标响应x=floor(10*rand(1,4))t=input('填入四个数字[n1 n2 n3 n4]=');flag=0;A=0;B=0;for I=1:1:8flag=flag+1;A=0;B=0;if t==xswitch flagcase 1disp('聪明绝顶!');case 2disp('聪明!');case 3disp('有点聪明!');case 4disp('还可以!');case 5disp('聪明伶俐100分!');case 6disp('聪明伶俐90分!');case 7disp('聪明伶俐85分!');case 8disp('聪明伶俐80分!');otherwisedisp('赫赫!');endbreak;endfor J=1:1:4for K=1:1:4if x(J)==t(K) & J==KA=A+1;else if x(J)==t(K) & J~=KB=B+1;endendendends='AABB';s(1)=INT2STR(A);s(3)=INT2STR(B);disp(s);t=input('不重复填入四个数字[n1 n2 n3 n4]=');endif flag>0disp('太烂了! 正确答案是:');xend实验三插值与拟合一复习讲述聪明伶俐100分的编程中的问题二插值三拟合课堂练习2 某之股票价格from 2003 09 01 to 2004 01 02,试进行插值、拟合%TimerS.m%from 2003 09 01 to 2003 01 02clear all;dataST=[15.09 14.7514.95 14.722.88 21.8619.82 19.09];plot(dataST)四课外练习112)进行多项式拟合,求出拟合多项式,并求出多项式在t=4, 5处的值.实验四线性规划与非线性规划4.1 实验目的1 用Matlab求解线性规划2 用Matlab求解非线性规划4.2 实验内容4.2.1 线性规划求解实用格式:x=lp(c, A, b, xLB,xUB,x0,nEq)可以求解下列线性规划模型:min f=c’xs.t. Ax=<=b(其中前nEq个约束为等式约束,即等式约束的个数,其余是不等式约束<=) xLB<=x<=xUB函数中x0参数是算法迭代的初始点,任意取值例1 求解下列线性规划1)123123123123min2..360210200,1,2,3jz x x xs t x x xx x xx x xx j=--+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪≥=⎪⎩,2)1235635623416367min..3621060,1,,7jz x x x x xs t x x xx x xx xx x xx j=-++-⎧⎪++=⎪⎪+-=⎪⎨-+=⎪⎪++=⎪≥=⎪⎩例1求解示例c=[-2 -1 1]';%book page 72 Number 16-1A=[3 1 1;1 -1 2;1 1 -1];b=[60 10 20]';xlb=[0 0 0]';xub=[inf inf inf]';x0=[0 0 0]'; x=lp(c,A,b,xlb,xub,x0,0)% x=(15 5 0)'例2 求解示例c2=[1 -1 1 0 1 -1 0]';%book page 72 Number 16-3A2=[0 0 3 0 1 1 0;...0 1 2 -1 0 0 0;...-1 0 0 0 0 1 0;...0 0 1 0 0 1 1];b2=[6 10 0 6]';xlb2=[0 0 0 0 0 0 0]';xub2=[inf inf inf inf inf inf inf]';x02=[0 0 0 0 0 0 0]';x2=lp(c2,A2,b2,xlb2,xub2,x02,4)% unbounded4.2.2 非线性规划1)命令格式1:[X, OPTIONS]=constr(‘FUN’, X, OPTIONS,VLB,VUB)2)命令格式2:X=FMINCON(FUN,X0,A,B,Aeq,Beq)% minimizes FUN subject to the linear equalities% Aeq*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no inequalities exist.)例2 求解非线性规划y x x x x s t x3211221min22 ..1=++-≤-求解示例%unconop.mfunction y=unconop(x)y=x(1).^3+2*x(1).*x(2)+2*x(2).^2;%book page 148 ex.7-1 后建立调用函数xx=fmincon('unconop',[0 0]',[-1 0],-1,[],[])%book page 148 ex.7-1 4.3 综合练习学生独立编写程序,求解一个含有2个变量的线性规划问题,要求:1)编写程序,把可行域画上阴影;2)求出最优解,在可行域上标出最优解;3)求出基本解,并在上图中表示出来;4)求出基本可行解,观察单纯形方法迭代时,顶点的变化.可行域画图与表出阴影示例:syms x y[u(1),v(1)]=solve('y=x+2','y=2*x');%求出交点坐标[u(2),v(2)]=solve('y=-x+2','y=2*x');[u(3),v(3)]=solve('y=x+2','y=-x+2');x=linspace(0,3,5); %直线作图y=[2*x;-x+2;x+2];line(x,y); gridpatch(double(u),double(v),'b'); 运行结果:4.4 课外作业1 求解线性规划131223min ..250.530,1,2,3i x x s t x x x x x i +⎧⎪+≤⎪⎨+=⎪⎪≥=⎩ (1) 求解线性规划;x *=()(2) 目标函数中c 1由1变为(-1.25)时求最优解;(3) 目标函数中c 1由1变为(-1.25),c 3由1变为2时求最优解;(4) 约束条件中53b ⎛⎫= ⎪⎝⎭变为21b -⎛⎫'= ⎪⎝⎭时,求解;(5) 约束条件中53b ⎛⎫= ⎪⎝⎭变为23b ⎛⎫'= ⎪⎝⎭时,求解[刁在筠,运筹学(第二版),高等教育出版社,2004,01 p74第20题]2 求解非线性规划y x x x x x x x 3221122233min 2223=++++ 注:无约束非线性规划问题, 命令:fminunc子函数% unconop.mfunction y=unconop(x)y=x(1).^2+2*x(1).*x(2)+2*x(2).^2+2*x(2).*x(3)+3*x(3).^2;%book page 148 ex.7-1 主函数:xx=fminunc('unconop',[0.1 0.1 1]')思考:绘出两个变量的线性规划问题的可行域、标出可行的整数解和求出可行解;演示单纯形方法的迭代过程,如j z x x s t x x x x x j 121212min 2..360200,1,2=--⎧⎪+≤⎪⎪+≤⎨⎪⎪≥=⎪⎩实验五 数值计算5.1 实验目的1 掌握代数数值计算2 掌握常微分方程数值计算5.2 实验内容5.2.1 关于多项式设多项式1110()n n n n p x a x a x a x a --=++++表示为110[,,,,]n n p a a a a -=1)求多项式的根 roots(p) %求出p(x)=0的解。

matlab上机练习答案

matlab上机练习答案

实验一MA TLAB的基本命令与基本函数1已知矩阵a =11 12 13 1421 22 23 2431 32 33 3441 42 43 44求(1) A(:,1) (2) A(2,:)(3) A(:,2:3) (4) A(2:3,2:3)(5) A(:,1:2:3) (6) A(2:3)(7) A(:) (8) A(:,:)(9) ones(2,2) (10) eye(2)(11) [A,[ones(2,2);eye(2)]](12) diag(A) (13) diag(A,1)(14) diag(A,-1) (15) diag(A,2)2(1)输入如下矩阵A0π/3A=π/6 π/2(2) 求矩阵B1,B1中每一元素为对应矩阵A中每一元素的正弦函数(3) 求矩阵B2, B2中每一元素为对应矩阵A中每一元素的余弦函数(4) 求B12+B22(5) 求矩阵A的特征值与特征矢量:称特征矢量为M,而特征值矩阵为L(6) 求Msin(L)M-13已知水的黏度随温度的变化公式为μ=μ0/(1+at+bt2)其中μ0=1.785×10-3,a=0.03368,b=0.000221,求水在0,20,40,80℃时的黏度。

程序如下:miu0=1.785e-3;a=0.03368;b=0.000221;t=0:20:80miu=miu0./ (1+a*t+b*t.^2)(2)一个长管,其内表面半径为a,温度为Ta ;外表面半径为Tb;则其径向和切向应力可分别表示为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+----=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=r b a b r b a b a a b v T T E r b a b r b a b a a b v T T E b a t b a r ln ln 11)/ln()1(2)(ln ln 1)/ln()1(2)(2222222222ασασ式中r 为管子的径向坐标,E 为管子材料的弹性模量,ɑ为热膨胀系数。

matlab实验报告答案

matlab实验报告答案

matlab实验报告答案篇一:参考答案Matlab实验报告实验一Matlab基础知识一、实验目的:1. 熟悉启动和退出Matlab的方法。

2. 熟悉Matlab命令窗口的组成。

3. 掌握建立矩阵的方法。

4. 掌握Matlab各种表达式的书写规则以及常用函数的使用。

二、实验内容:1. 求[100,999]之间能被21整除的数的个数。

(rem)2. 建立一个字符串向量,删除其中的大写字母。

(find)3. 输入矩阵,并找出其中大于或等于5的元素。

(find)4. 不采用循环的形式求出和式i?1三、实验步骤:? 求[100,199]之间能被21整除的数的个数。

(rem)1. 开始→程序→Matlab2. 输入命令:?m=100:999;?p=rem(m,21);?q=sum(p==0)ans=43? 建立一个字符串向量,删除其中的大写字母。

(find)1. 输入命令:?263i的数值解。

(sum)?k=input( ’,’s’);Eie48458DHUEI4778?f=find(k =’A’ k =’Z’);f=9 10 11 12 13?k(f)=[ ]K=eie484584778? 输入矩阵,并找出其中大于或等于5的元素。

(find)1. 输入命令:?h=[4 8 10;3 空间。

2. 熟悉M文件与M函数的编写与应用。

3. 熟悉Matlab的控制语句。

4. 掌握if,switch,for等语句的使用。

二、实验内容:1. 根据y=1+1/3+1/5+??+1/(2n-1),编程求:y 5时最大n值以及对应的y值。

2. 编程完成,对输入的函数的百分制成绩进行等绩转换,90~100为优,80~89为良,70~79为中,60~69为及格。

2x2?10?5,并分别求3. 编写M函数文件表示函数x=12和56时的函数值。

x2?x?6;x?0且x?3y?x2?5x?6;0?x?5且x?3及x?22x?x?1;其它,并求4. 编程求分段函数输入x=[-5.0,-3.0,1.0,2.0,2.5,3.0,3.5]时的输出y。

MATLAB上机实验1答案

MATLAB上机实验1答案

实验1 Matlab 初步一、问题已知矩阵A 、B 、b 如下:⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-------------=031948118763812654286174116470561091143A ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡------=503642237253619129113281510551201187851697236421B []1187531=b应用Matlab 软件进行矩阵输入及各种基本运算。

二、实验目的学会使用Matlab 软件构作已知矩阵对应的行(列)向量组、子矩阵及扩展矩阵,实施矩阵的初等变换及线性无关向量组的正交规范化,确定线性相关相关向量组的一个极大线性无关向量组,且将其余向量用极大线性无关向量组线性表示,并能编辑M 文件来完成所有的实验目的。

三、预备知识1、 线性代数中的矩阵及其初等变换、向量组的线性相关性等知识。

2、 Matlab 软件的相关命令提示如下;(1) 选择A 的第i 行做一个行向量:ai=A(i,:);(2) 选择A 的第j 行做一个列向量:ai=A(j,:);(3) 选择A 的某几行、某几列上的交叉元素做A 的子矩阵:A([行号],[列号]);(4) n 阶单位阵:eye(n);n 阶零矩阵:zeros(n);(5) 做一个n 维以0或1为元素的索引向量L ,然后取A(:,L),L 中值为1的对应的列将被取到。

(6) 将非奇异矩阵A 正交规范化,orth(A) ;验证矩阵A 是否为正交阵,只需做A*A'看是否得到单位阵E 。

(7) 两个行向量a1和a2的内积:a1*a2'。

(8) 让A 的第i 行与第j 列互换可用赋值语句:A([i,j],:)=A([j,i],:);(9)让K乘以A的第i行可用赋值语句:A(i,:)=K*A(i,:);(10)让A的第i行加上第j行的K倍可用赋值语句:A(i,:)=A(i,:)+K*A(j,:);(11)求列向量组的A的一个极大线性无关向量组可用命令:rref(A)将A化成阶梯形行的最简形式,其中单位向量对应的列向量即为极大线性无关向量组所含的向量,其它列向量的坐标即为其对应向量用极大线性无关组线性表示的系数。

Matlab实验第一次实验答案

Matlab实验第一次实验答案

实验一Matlab使用方法和程序设计一、实验目的1、掌握Matlab软件使用的基本方法;2、熟悉Matlab的数据表示、基本运算和程序控制语句3、熟悉Matlab绘图命令及基本绘图控制4、熟悉Matlab程序设计的基本方法二、实验内容:1、帮助命令使用help命令,查找sqrt(开方)函数的使用方法;'解:sqrtSquare rootSyntaxB = sqrt(X)DescriptionB = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, sqrt(X) produces complex results.RemarksSee sqrtm for the matrix square root.Examples;sqrt((-2:2)')ans =0 +0 +2、矩阵运算(1)矩阵的乘法/已知A=[1 2;3 4]; B=[5 5;7 8];求A^2*B解:A=[1 2;3 4 ];B=[5 5;7 8 ];A^2*B(2)矩阵除法已知A=[1 2 3;4 5 6;7 8 9]; `B=[1 0 0;0 2 0;0 0 3];A\B,A/B解:A=[1 2 3;4 5 6;7 8 9 ];B=[1 0 0;0 2 0;0 0 3 ];A\B,A/B(3)矩阵的转置及共轭转置已知A=[5+i,2-i,1;6*i,4,9-i];*求A.', A'解:A=[5+1i,2-1i,1;6*1i,4,9-1i ];A1=A.',A2=A'(4)使用冒号表达式选出指定元素已知:A=[1 2 3;4 5 6;7 8 9];<求A中第3列前2个元素;A中所有列第2,3行的元素;方括号[]解:A=[1 2 3;4 5 6;7 8 9 ];B=A([1,2],[3]),C=A(2:end, : )用magic 函数生成一个4阶魔术矩阵,删除该矩阵的第四列'3、多项式(1)求多项式 42)(3--=x x x p 的根解:A=[1 0 -2 -4];B=roots(A)(2)已知A=[ 3 5 ;5 5 6;3 9 0 1;1 2 3 4] ,求矩阵A 的特征多项式;解:/A=[ 3 5 .9 ; 5 5 6 ;3 9 0 1 ;1 2 3 4];A=poly(A);A=poly2sym(A)把矩阵A作为未知数代入到多项式中;4、基本绘图命令(1)绘制余弦曲线y=cos(t),t∈[0,2π]解:t=0:.1:2*pi;y=cos(t);plot(t,y),grid~(2)在同一坐标系中绘制余弦曲线y=cos和正弦曲线y=sin,t∈[0,2π] t=0:.1:2*pi; y1=cos;y2=sin;plot(t,y1,t,y2)grid》5、基本绘图控制绘制[0,4π]区间上的x1=10sint曲线,并要求:(1)线形为点划线、颜色为红色、数据点标记为加号;(2)坐标轴控制:显示范围、刻度线、比例、网络线(3)标注控制:坐标轴名称、标题、相应文本;t=0:.01:4*pi;y=10*sin(t);plot(t,y,'-.',t,y,'r')grid\6、基本程序设计(1)编写命令文件:计算1+2+…+n<2000 时的最大n值;解法1:s=0;i=0;while(s<2000) i=i+1;s=s+i; ends=s-i,i=i-1解法2:s=0;for i=1:1000; s=s+i;if(s>2000) ,break;endend;s=s-i,i=i-1(2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。

Matlab实验第一次实验答案

Matlab实验第一次实验答案

实验一Matlab使用方法和程序设计一、实验目的1、掌握Matlab软件使用的基本方法;2、熟悉Matlab的数据表示、基本运算和程序控制语句3、熟悉Matlab绘图命令及基本绘图控制4、熟悉Matlab程序设计的基本方法二、实验内容:1、帮助命令使用help命令,查找 sqrt(开方)函数的使用方法;解:sqrtSquare rootSyntaxB = sqrt(X)DescriptionB = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, sqrt(X) produces complex results.RemarksSee sqrtm for the matrix square root.Examplessqrt((-2:2)')ans =0 + 1.4142i0 + 1.0000i1.00001.41422、矩阵运算(1)矩阵的乘法已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B解:A=[1 2;3 4 ];B=[5 5;7 8 ];A^2*B(2)矩阵除法已知 A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3];A\B,A/B解:A=[1 2 3;4 5 6;7 8 9 ];B=[1 0 0;0 2 0;0 0 3 ];A\B,A/B(3)矩阵的转置及共轭转置已知A=[5+i,2-i,1;6*i,4,9-i];求A.', A'解:A=[5+1i,2-1i,1;6*1i,4,9-1i ];A1=A.',A2=A'(4)使用冒号表达式选出指定元素已知: A=[1 2 3;4 5 6;7 8 9];求A中第3列前2个元素;A中所有列第2,3行的元素;方括号[]解:A=[1 2 3;4 5 6;7 8 9 ];B=A([1,2],[3]),C=A(2:end, : )用magic 函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式(1)求多项式 42)(3--=x x x p 的根解:A=[1 0 -2 -4];B=roots(A)(2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A 的特征多项式;解:A=[1.2 3 5 .9 ; 5 1.7 5 6 ;3 9 0 1 ;1 2 3 4]; A=poly(A); A=poly2sym(A)把矩阵A作为未知数代入到多项式中;4、基本绘图命令(1)绘制余弦曲线 y=cos(t),t∈[0,2π]解:t=0:.1:2*pi;y=cos(t);plot(t,y),grid(2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] t=0:.1:2*pi;y1=cos(t-0.25);y2=sin(t-0.25);plot(t,y1,t,y2)grid5、基本绘图控制绘制[0,4π]区间上的x1=10sint曲线,并要求:(1)线形为点划线、颜色为红色、数据点标记为加号;(2)坐标轴控制:显示范围、刻度线、比例、网络线(3)标注控制:坐标轴名称、标题、相应文本;t=0:.01:4*pi;y=10*sin(t);plot(t,y,'-.',t,y,'r')grid6、基本程序设计(1)编写命令文件:计算1+2+…+n<2000 时的最大n值;解法1:s=0;i=0;while(s<2000) i=i+1;s=s+i; ends=s-i,i=i-1解法2:s=0;for i=1:1000; s=s+i;if(s>2000) ,break;endends=s-i,i=i-1(2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。

matlab上机实验答案

matlab上机实验答案

三、假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数行提取出来,赋给B 矩阵,用magic(8)A =命令生成A 矩阵,用上述命令检验一下结果是不是正确。

>> A=magic(8)>> B=A(2:2:end,:)五、选择合适的步距绘制出下面的图形。

(1))/1sin(t ,其中)1,1(-∈t ;(2))tan(sin )sin(tan t t -,其中),(ππ-∈t 。

1.>> t=[-1:0.0001:1];y=sin(1./t);plot(t,y)Warning: Divide by zero.>>2.>> t=[-pi:0.001:pi];y=sin(tan(t))-tan(sin(t));plot(t,y)>>七、试求出如下极限。

(1)x x x x 1)93(lim +∞→;(2)11lim 00-+→→xy xy y x ;(3)22)()cos(1lim 222200y x y x e y x y x +→→++-。

(1)>>symsx;f=(3^x+9^x)^(1/x);limit(f,x,inf)ans =9(2)>>syms x y;f=x*y/(sqrt(x*y+1)-1);limit(limit(f,x,0),y,0)ans =2(3)>>syms x y;f=(1-cos(x^2+y^2))/(x^2+y^2)*exp(x^2+y^2);limit(limit(f,x,0),y,0)ans =0九、假设⎰-=xyt t e y x f 0d ),(2,试求222222y f y x f x f y x ∂∂+∂∂∂-∂∂。

>>syms x y t;f=int(exp(-t^2),t,0,x*y);F=x./y.*diff(f,x,2)+2.*diff(diff(f,x,1),y,1)+diff(f,y,2)F =-6*x^2*y^2*exp(-x^2*y^2)+2*exp(-x^2*y^2)-2*x^3*y*exp(-x^2*y^2)ans =-2*exp(-x^2*y^2)*(3*x^2*y^2-1+x^3*y)十一、试求出以下的曲线积分。

Matlab上机作业部分参考答案

Matlab上机作业部分参考答案

上机练习二 参考答案
1. 产生一个1x10的随机矩阵,大小位于(-5 5),并 且按照从大到小的顺序排列好! 【求解】 a=10*rand(1,10)-5; b=sort(a,'descend')
上机练习二 参考答案
2、用MATLAB 语句输入矩阵A 和B
前面给出的是4 ×4 矩阵,如果给出A(5,6) = 5 命令,矩阵A将得出什么 结果?
Matlab 上机课作业
吴梅红 2012.10.15
上机练习一
上机练习一 参考答案
上机练习一 参考答案
上机练习一 参考答案
上机练习二
1. 产生一个1x10的随机矩阵,大小位于(-5 5),并且按 照从大到小的顺序排列好! 2、用MATLAB 语句输入矩阵A 和B
前面给出的是4 ×4 矩阵,如果给出A(5,6) = 5 命令,矩阵 A将得出什么结果? 3、假设已知矩阵A ,试给出相应的MATLAB 命令,将其全 部偶数行提取出来,赋给B 矩阵,用A =magic(8) 命令生成A 矩阵,用上述的命令检验一下结果是不是正确。
【求解】用课程介绍的方法可以直接输入这两个矩阵 >> A=[1 2 3 4; 4 3 2 1; 2 3 4 1; 3 2 4 1] A= 1234 4321 2341 3241 若给出A(5,6)=5 命令,虽然这时的行和列数均大于A矩阵当前的维数, 但仍然可以执行该语句,得出 >> A(5,6)=5 A= 123400 432100 234100 324100 000005 复数矩阵也可以用直观的语句输入 3+2i 4+1i; 4+1i 3+2i 2+3i 1+4i; 2+3i 3+2i 4+1i 1+4i; 3+2i 2+3i 4+1i 1+4i]; B= 1.0000 + 4.0000i 2.0000 + 3.0000i 3.0000 + 2.0000i 4.0000 + 1.0000i 4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 1.0000 + 4.0000i 2.0000 + 3.0000i 3.0000 + 2.0000i 4.0000 + 1.0000i 1.0000 + 4.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 4.0000 + 1.0000i 1.0000 + 4.0000i

Matlab实验题目与答案

Matlab实验题目与答案

(温馨提示:实验课结束后,请将所有作业(题目、代码、结果)利用word 整理成一个完整的实验报告,加上封面,打印,纸质档于18周周一交)第一次上机作业目的:1. 掌握MATLAB 各种表达式的书写规则2. 运行课堂上讲过的例子,熟悉矩阵、表达式的基本操作和运算。

作业:1. 熟悉matlab 集成环境界面。

回答以下问题,并操作相关的指令:(1) 分别写出清除命令窗口和清除变量的指令。

答: clc 和clear(2)在命令行输入命令后,matlab 的搜索过程是怎样的?答: (1)检查该命令对象是不是一个变量。

(2)检查该命令对象是不是一个内部函数。

(3)检查该命令对象是否为当前目录下的程序文件。

(4)检查该命令对象是否为MATLAB 搜索路径中其他目录下的M 文件。

(3)什么是matlab 的当前工作目录?写出两种设置当前工作目录的方法? 答: 就是matlab 当前文件读取和存储的默认路径(1)在当前目录窗口中更改(2)在MATLAB 桌面工具栏中更改(3)使用cd 命令:cd c:\mydir---将c :\mydir 设置为当前目录(4)什么是matlab 的搜索路径?写出两种设置搜索路径的方法?答: 指Matlab 运行文件时进行搜索的目录。

(1)用path 命令设置:(2)用Set Path 对话框设置(5)help 命令和doc 命令有什么作用,它们有什么区别?答: help 命令:最基本的帮助命令,查询信息直接显示在命令窗口。

doc 命令:在帮助窗口中显示HTML 帮助文档,显示函数的详细用法及 例子,比help 命令更详细。

2. 在matlab 中输入下列表达式,并求各表达式的值,显示MATLAB 工作空间的使用情况并用两种方式保存全部变量,变量保存的文件名必须包含自己的学号后四位数:(1))1034245.01(26-⨯+⨯=w w=sqrt(2)*(1+0.34245*10^-6)w =1.4142(2),)tan(22ac b e abc c b a x ++-+++=ππ 其中a=3.5,b=5,c=9.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档