三相异步电动机的变极调速
三相异步电动机的变极调速控制
SB3常闭触头 先断开,切断 KM1线圈电路
SB2常开触头 后闭合
KM1自锁触头复位断开
KM1主触 头断开
电动机因惯 性继续旋转
KM1互锁触头复位闭合
KM2、KM3 线圈都得电
●按钮控制的双速电动机变极调速工作过程
2)高速运转
需要高速运转时,也需要先按下低速启动按钮SB2,把定子 绕组接成△,让电动机低速启动。 启动结束,再按下高速启动按钮SB3,把定子绕组换接成YY, 实现电动机高速运行。
KT常开延时闭合
KM1失电 拆除△接线,切除电动机正序电源
定子绕组尾端接反序电源
KM2得电 KM3得电
电动机YY连接, 定子绕组首端 高速运转 短接于一点
变极调速安装接线注意事项: 1)正确识别电动机定子绕组的9个接线端子。 2)交换任意两相电源的相序。
2)按钮控制的双速电动机变极调速
注意控制电路的线号
三、变极调速原理
把定子每相绕组都看成两个完全对称的“半相绕组”。
以U相为例,设相电流从绕组的头部U1流进,尾部U2流出。 当U相两个“半相绕组”头尾相串联时(顺串),根据右手 螺旋法则,可判断出定子绕组产生4极磁场。 若U相两个“半相绕组” 尾尾相串联(反串)或者头尾相并 联(反并),定子绕组产生2极磁场。
●按钮控制的双速电动机变极调速工作过程
1)低速运转
需要低速运转时,按下低速启动按钮SB2,把定子绕组接成 △,让电动机低速启动,并连续运转。
合上QS,M3线圈电路
SB2常开触头后 闭合,KM1线圈
通电
KM1电气互锁触头断开, 对KM2、KM3互锁
KM1主触 头闭合
相关知识——三相异步电动机的电气调速
• 什么叫恒转矩调速?
电气控制与PLC技术-三相异步电动机的调速运行控制
1、继电器-接触器控制电路原理图
2、工作原理
按下起动按钮SB2,KM1线圈得电吸合 ,电动机作Δ联接低速运转,同时中间继电 器KA线圈通电并自锁,保证了KM1的长期 得电和时间继电器KT的线圈得电吸合; KT经延时,其动断触头断开,切断KM1, 其动合触头闭合,KM2、KM3线圈得电吸 合,电动机作双Y联接高速运转。
任务8:三相异步电动机的调速运行控制
三、三相双速异步电动机变极调速运行的PLC控制(续)
(二)课上讲解
1、将三相双速异步电动机变极调速运行的继电器-接触器控制电路改造为用PLC控制 ,其输入/输出是如何分配的?
电气 符号
输入
输入 端子
功能
电气 符号
输出
输出 端子
功能
任务8:三相异步电动机的调速运行控制
三相双速异步电动机变极调速运行的继电器-接触器控制电路原理图
任三相双速异步电动机变极调速运行的继电器-接触器控制(续)
(一)课上问题(续)
1、简述三相双速异步电动机变极调速运行继电器-接触器控制电路工作原理。(续)
a)
b)
三相双速异步电动机联结方式分解示意图
a)分解前 b)分解后
任务8:三相异步电动机的调速运行控制
六、知识拓展
1、三速电动机的控制
三速电动机通过改变绕组的组合 方式而得到不同的磁极对数。按下起 动按钮SB1,KM1和KM2的线圈得电 吸合并自锁,电动机作Δ联接低速运转; 按下SB2,KM1和KM2的线圈失电释 放,低速运转停止,而KM3线圈得电 吸合并自锁,电动机作Y联接中速运转, 时间继电器KT线圈得电;经延时, KM3线圈失电释放,中速运转停止, 而KM4和KM5线圈得电吸合并自锁, 电动机作双Y联接高速运转。
三相异步电动机的变极调速
三相异步电动机的工作过程
励磁过程
电源向定子绕组输入三相 交流电,产生旋转磁场。
感应过程
转子在旋转磁场的作用下 产生感应电流。
电磁转矩形成
感应电流与旋转磁场相互 作用,产生电磁转矩,驱 动转子旋转。
三相异步电动机的转动原理
磁场旋转
转速调节
三相交流电在定子绕组中产生旋转磁 场,磁场以同步转速n0旋转。
详细描述
在三相异步电动机中,绕组的连接方式可以通过改变接线端子的连接顺序或使用不同的 连接方式(如星形或三角形连接)来实现。通过改变绕组的连接方式,可以改变电动机 的极数和转速。这种方法可以在不停机的状态下进行,但需要专业的技术人员进行操作,
且可能影响电动机的性能和寿命。
改变电源频率
总结词
改变电源频率是一种先进的变极调速方法,通过调节电源的频率,可以精确控制电动机的转速。
详细描述
在三相异步电动机中,绕组匝数的改变可以通过抽出或插入绕组线来实现。当绕组匝数增加时,电动机的极数增 加,转速降低;反之,绕组匝数减少时,电动机的极数减少,转速升高。这种方法简单易行,但需要停机操作, 且可能影响电动机的性能和寿命。
改变绕组连接方式
总结词
改变绕组的连接方式也是一种有效的变极调速方法,通过改变绕组的接线方式,可以改 变电动机的极数和转速。
三相异步电动机的变极调速
目录
CONTENTS
• 引言 • 三相异步电动机的工作原理 • 变极调速的实现方式 • 变极调速的特点和适用范围 • 变极调速的应用实例 • 结论
01
CHAPTER
引言
目的和背景
目的
理解三相异步电动机变极调速的 原理和应用。
背景
随着工业自动化的发展,对电动 机的控制要求越来越高,变极调 速作为一种常见的调速方式,具 有简单、经济、可靠的优点。
三相异步电动机的调速
m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)
5.5 异步电动机调速特性
采用恒磁通调压调速(也称恒转矩调速)。
即:
U1 f1
4.44N1kw1m
常数
分析:
当 f1↑时,再继续保持U1/f1=常数比较困难,因为 f1>50Hz时,UΦ↑> U1N不允许,这样只能保持UΦ不变。
f1↑→ Xm↑→ Im↓→ Φm↓→T↓ ,而 f1↑→n↑, P =TΩ属恒功率调速。所以工频以上采用恒压调速。
已知:n0=60f/p,当 f 改变,n0和n都将改变。 1.变频变压调速:
UΦ EΦ 4.44 f N1kw1Φ
当 f↓而UΦ不变时,Xm↓→ Im↑→ Φm↑→I0→I1↑ 引起电动机过热。
而Im↑→cosφ1↓Φm↑→pFe↑造成电动机带载能力 下降。
为了克服上述缺点,在工频(50Hz)以下调速时,
5.5 三相异步电动机的调速方法与特性
依据:
n
n0 (1 s)
60 f p
(1 s)
三相异步电动机的调速大致可以分成以下几种类型:
(1)改变转差率s调速,包括降低电源电压、绕线式异步 电动机转子回路串电阻等方法; (2)改变旋转磁场同步转速调速,包括改变定子绕组极 对数、改变供电电源频率等方法; (3)双馈调速,包括串级调速,属改变理想空载转速的 一种调速方法; (4)利用滑差离合器调速。
R M 3~
Rf
K2
+ -
(3)能耗制动时的机械特性:
2
3n 1 ns
Tmax2 Tmax1
0
Tz
T
(4)特点: 机械特性过原点,即n=0时T=0。能迅速、准确停车。
反馈制动、反接制动和能耗制动。
5.6.1 反馈制动 由于某种原因异步电动机的运行速度高于它的同步速
三相异步电机的调速
一.基频以下变频调速 A),保持 为常数
上式对s求导,即 有最大转矩和临界转差率为
一.基频以下变频调速 B),保持 为常数 为防止磁路的饱和,当降低定子电源频率时,保持 为常数,使气 隙每极磁通 为常数,应使电压和频率按比例的配合调节。这时,电动 机的电磁转矩为 上式对s求导,即 有最大转矩和临界转差率为
当某一瞬间电势的极性 与 或同相时,有转子回路电流为
反相
式中“–”号表示 与 反相,“+”号表示 与 同相。异步电动机的电磁 转矩为
当电动机定子电压及负载转矩都保持不变时,转子电流可看成常数;同时考虑到电 动机正常运行时s很小,sx2《 r2 忽略sx2 则: 在负载转矩 一定的条件下,若 转子串入 与 反相,则
变频调速原理及其机械特性
改变异步电动机定子绕组供电电源的频率 ,可以改变同步 转速n 1 ,从而改变转速。如果频率 连续可调,则可平滑的调 节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电 压为 如果降低频率 ,且保持定子电源电压 不变,则气隙每 极磁通 将增大,会引起电动机铁芯磁路饱和,从而导致过大 的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。 因此,降低电源频率 时,必须同时降低电源电压 ,以达到控 制磁通 的目的。对此,需要考虑基频(额定频率)以下的调 速和基频以上调速两种情况
三相异步电动机的调速
根据三相异步电动机的转速公式为
通过上式可知,改变交流电机转速的方 法有三种 1.变转差率调速:改变s实现调速; 2.变极调速:改变p来实现调速 3.变频调速:改变f1实现调速
三相异步电动机的调速
改变转差率的方法很多,常用的方案有改变异步电动机的定子 电压调速,采用电磁转差(或滑差)离合器调速,转子回路串电 阻调速以及串极调速。前两种方法适用于鼠笼式异步电动机,后 者适合于绕线式异步电动机。这些方案都能使异步电动机实现平 滑调速,但共同的缺点是在调速过程中存在转差损耗,即在调节 过程中转子绕组均产生大量的钢损耗( )(又称转差功 率),使转子发热,系统效率降低;主要存在调速范围窄、效率低, 对电网污染较大,不能满足交流调速应用的广泛需求; 改变电机的极数的调速,无法实现连续调速,并且接线麻烦, 应用的场合少;但价格便宜; 改变频率进行调速是最理想的,但这个梦想经历了百年之久, 直至20世纪70年代,大功率晶体管(GTR)的开发成功,才实现 变频调速,随着电子技术和计算机技术的日益发展变频调速技术 日益成熟,应用得越来越广泛了
第12节 变极调速
三、变极调速方法
01 02
三角形(Δ )接法和双星形(YY)接法; 星形(Y)接法和双星形(YY)接法。
∆-YY变极调速原理
原理
改变一相绕组中一半元件的电流方向即可改变磁极对数 方法 01
∆-YY变极调速原理
方法
绕组的U3、V3、W3悬空;
图1
∆-YY变极调速原理
方法
02
电动机绕组接成YY,电动机高速运行。 如图2所示,将绕组的U3、V3、W3接 至电源L1、L2、L3,UI(W2)、V1 (U2)、W1(V2)接在一起,为YY接 法,极对数为P,则电动机高速运行。
∆-YY变极调速控制电路
∆-YY控制电路
控制电路结构
见图5 转换开关SA控制电动机的低速和停止。 SA共有三个操作位置,位置L为低速位置, H为高速位置,s为开始起动和停车位置。
KT为时间继电器,控制电动机△起动时间。
图5
∆-YY变极调速控制电路 接触器KM1、KM2、KM3的线圈 接触器KM1、KM2、KM3常闭触点 接触器KM1和KM2常闭触点 中间继电器KA线圈和常开触点 FR为热继电器的常闭接点 KT为时间继电器的线圈 13-15为时间继电器延时闭合的常开触点 11-13为时间继电器延时断开的常闭触点 5-11为时间继电器的瞬时触点
∆-YY变极调速控制电路
工作原理分析
经过一段时间后→KT的延时时间到→其延动触头动作→使(11-13)断开→ (13-15)接通→因此KM3断电释放→进一步使KM1、KM2通电吸合→电动 机定子接成YY形高速运行。
停车时,将SA打向S位置→由于(3-5)和(3-13)都断开→所以KM1、KM2、 KM3和KT全部断电释放→电动机停车。
图4
三项异步电动机变频调速控制及其节能改造
三项异步电动机变频调速控制及其节能改造本文主要从三项异步电动机概述、三相笼型转子异步电动机的传统起动方式、三相异步电动机调速策略探讨、电动机节能注意事项等方面进行了阐述。
标签:三相异步电动机;调速;节能一、前言三项异步电动机在我国电网中应用非常广泛,技术也相对成熟,但是如何使其变频调速进行控制以及节能问题,都是需要进一步探讨与总结的重点问题。
二、三项异步电动机概述全国年总发电量的一半以上,耗能非常之高。
因此,加强和提高三相异步电动机的节能控制对我国电能的节约将会起到巨大的作用。
当电流在满负荷的情况下时,三相异步电动机的功效一般比较的高,可以达到85%左右。
但是,如果电流的负荷量下降的话,三相异步电动机的功效就会明显的降低。
因此,总的来说,三相异步电动机的功效还是比较低的。
如果我们通过对三相异步电动机节能控制,我们就会在这方面有所提高,从而提升电动机的运行效率,将会产生巨大的经济效益。
进行三相异步电动机的节能控制主要是从两方面的工作着手,首先就是要提升三相异步电动机的制造技术,而这方面如今已经取得了巨大的发展,另外一方面就是要做好电动机的运行控制技术,这才是我们进行电动机节能控制技术的关键。
三相异步电动机的功效是指三相异步电动机的输出功效同输入功效的比例,因此供电机的一部分电能是用来使电动机驱动的,即输入的功效,而另外一部分电能就会发生在三相异步电动机的自身损耗上,这就是我们所说的输出功效。
三相异步电动机的电能损耗主要是指电动机的铁和铜,而电动机的铜耗则是在电流通过电动机的铜线绕组时而产生的,相比之下,电动机的铁耗则是指电动机在运转的过程中,其定子和转子铁芯中产生的电流而发生的损耗,这主要是与电压有关。
电动机的损耗除了这两部分损耗外,还存在其他的损耗,但是这些损耗都比较小,可以忽略。
而三相异步电动机的节能原理就是在电压的负荷下降的时候,可以通过适当降低电源的电压的方法,从而减少电动机中铁耗,当电压下降的时候,相应的电流也会随之下降,这样也就降低了电动机中的铜耗,只有这样电动机的功效才会得到提高。
三相异步电动机的调速控制-变极调速电磁调速
三相异步电动机的调速控制-变极调速电磁调速变极调速不能实现连续平滑调速,只能得到几种特定的转速。
但在很多机械中,要求转速能够连续无级调节,并且有较大的调速范围。
目前除了用变频器进行无级调速外,还有较多用调电磁转差率进行的调速,也就是电磁转差离合器调速,其优点是结构简单、维护方便、运行可靠、能平滑调速,采用闭环系统可扩大调速范围;缺点是调速效率低,低速时尤为突出,不宜长期低速运行,且控制功率小,机械特性较软。
1.电磁转差离合器的结构及工作原理电磁转差离合器调速系统是在普通笼型异步电动机轴上安装一个电磁转差离合器,由晶闸管控制装置控制离合器绕组的励磁电流来实现调速。
异步电动机本身并不调速,调节的是离合器的输出转速。
电磁转差离合器(又称滑差离合器)的基本原理就是基于电磁感应原理,实质上就是一台感应电动机,其结构如图所示。
下图(a)所示为电磁转差离合器结构,它是由电枢和磁极两个旋转部分组成:一个称为磁极(内转子),另一个称为电枢(外转子),两者之间无机械联系,均可自由旋转。
当磁极的励磁线圈通过直流电流时,沿气隙圆周表面的爪极便形成若干对极性相互交替的空间磁场。
当离合器的电枢被电动机拖动旋转时,由于电枢与磁场间有相对移动,在电枢内就产生涡流;此涡流与磁通相互作用产生转矩,带动磁极按同一方向旋转。
无励磁电流时,磁极不会跟着电枢转动,相当于磁极与电枢“离开”,当磁极通入励磁电流时,磁极即刻跟随电枢旋转,相当于磁极与电枢“合上”,故称为“离合器”。
因它是根据电磁感应原理工作的,磁极与电枢之间必须有转差才能产生涡流与电磁转矩,故又称“电磁转差离合器”。
因为工作原理和异步电动机相似,所以又将它及与其相连的异步电动机一起称为“滑差电动机”。
电磁转差离合器的磁极转速与励磁电流的大小有关。
励磁电流越大,建立的磁场越强,在一定转差率下产生的转矩越大。
当负载一定时,励磁电流不同,转速就不同,只要改变电磁转差离合器的励磁电流,即可调节转速。
三相异步电动机变频调速的原理
学习目标:三相异步电动机变频调速的原理变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
我们现在使用的变频器主要采用交一直一交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT 三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
变频器选型:变频器选型时要确定以下几点:1)采用变频的目的;恒压控制或恒流控制等。
2)变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。
3)变频器与负载的匹配问题;I.电压匹配;变频器的额定电压与负载的额定电压相符。
II.电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。
对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。
III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。
4)在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。
因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。
5)变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。
6)对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。
变频器控制原理图设计:1)首先确认变频器的安装环境;I.工作温度。
变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0〜55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。
在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
浅谈绕线式三相异步电动机的调速控制
模糊ቤተ መጻሕፍቲ ባይዱ制
要点一
总结词
模糊控制是一种基于模糊逻辑和模糊集合论的控制策略, 通过将专家的经验转化为模糊规则,实现对复杂系统的有 效控制。
要点二
详细描述
模糊控制的核心是模糊逻辑和模糊集合论,它将输入的精 确值转换为模糊集合中的隶属度函数,并根据专家经验制 定模糊规则进行推理,最后将模糊输出值转换为精确值。 在绕线式三相异步电动机的调速控制中,模糊控制器可以 根据电机转速、电流等参数,通过模糊逻辑和模糊规则的 推理,实现对电机速度的智能控制。
浅谈绕线式三相异步电动机的调速 控制
目 录
• 绕线式三相异步电动机的概述 • 绕线式三相异步电动机的调速方法 • 绕线式三相异步电动机的调速控制策略 • 绕线式三相异步电动机的调速控制系统的实现 • 绕线式三相异步电动机的调速控制的发展趋势
与展望
01 绕线式三相异步电动机的 概述
绕线式三相异步电动机的定义与特点
家用电器如洗衣机、空调等也常 常采用绕线式三相异步电动机作
为动力源。
02 绕线式三相异步电动机的 调速方法
变极调速
总结词
通过改变电动机的极对数实现调速。
详细描述
变极调速是通过改变电动机的磁极对数来实现调速的。在绕线式三相异步电动机中,改变定子绕组的接线方式可 以改变极对数,从而改变电动机的同步转速。这种调速方法简单、可靠,但调速范围有限,且在变极过程中存在 转矩突变,影响机械特性的稳定性。
04 绕线式三相异步电动机的 调速控制系统的实现
硬件实现
控制器选择
选择合适的控制器是实现调速控制的 关键,常用的控制器包括PLC、单片 机、DSP等,根据实际需求选择合适 的控制器。
传感器配置
三相异步电动机的调速控制-变极调速
三相异步电动机的调速控制-变极调速变极调速一般仅适用于笼型异步电动机。
变极电动机一般有双速、三速、四速之分,双速电动机定子装有一套绕组,而三速、四速电动机为两套绕组。
变极调速的原理和控制方法基本相同,这里以双速异步电动机为例进行分析。
1.双速异步电动机定子绕组的联结方式双速异步电动机是靠改变定子绕组的连接,形成两种不同的极对数,获得两种不同的转速。
双速异步电动机定子绕组常见的接法有△/YY和Y/YY两种。
双速电动机定子绕组接线图如图所示,通过改变定子绕组上每个线圈两端抽头的联结,图(a)由三角形改为双星形,图(b)由星形改为双星形,两种接线方式变换成双星形均使极对数减少一半,转速增加一倍。
双速异步电动机调速的优点是可以适应不同负载性质的要求,如需要恒功率调速时可采用三角形→双星形转换接法,需要恒转矩调速时采用星形→双星形转换接法,且线路简单、维修方便;缺点是只能有级调速且价格较高,通常使用时与机械变速配合使用,以扩大其调速范围。
注意:当定子绕组由三角形联结(各相绕组互为240°电角度)改变为双星形联结(各相绕组互为120°电角度)时,为保持变速前后电动机转向不变,在改变极对数的同时必须改变电源相序。
2.双速异步电动机控制线路下图所示为时间继电器控制的双速异步电动机自动控制线路。
图中SA为选择开关,选择电动机低速运行或高速运行。
当SA置于“低速”位置时,接通KM1线圈电路,电动机直接启动低速运行。
当 SA 置于“高速”位置时,时间继电器的瞬时触头闭合,同样先接通KM1线圈电路,电动机绕组三角形接法低速启动,当时间继电器延时时间到时,其延时断开的常闭触头KT断开,切断KM1线圈回路,同时其延时接通的常开触头KT闭合,接通接触器 KM2、KM3 线圈并使其自锁,电动机定子绕组换接成双星形接法,改为高速运行。
此时KM3的常闭触头断开使时间继电器线圈失电停止工作。
所以该控制线路具有使电动机转速自动由低速切换至高速的功能,以降低启动电流,适用于较大功率的电动机。
三相异步电动机的七种调速方式
三相异步电动机的七种调速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。
从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。
改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
3.5三相异步电动机变极调速控制线路
3.5三相异步电动机的变极调速线路三相鼠笼式异步电动机可以采用改变磁极对数调速。
可变极调速的电动机一般有双速、三速和四速之分。
双速电动机的定子只安装有一套绕组,而三速和四速的电动机则安装有两套绕组。
双速电动机对安装的一套定子绕组,通过改变它的联结方式来得到不同的磁极对数,如图所示。
左图是把定子绕组接成三角形,电动机磁极对数多,电动机低速。
右图是把同一套定子绕组接成双星形,磁极对数减少为原来的一半,电动机高速运行。
双速电动机调速控制线路的示意图如图所示。
图中采用了三个交流接触器,KM1用于控制电动机定子绕组接成三角形,KM2、KM3用于控制绕组接成双星形。
其中KM2控制绕组一端U2、V2、W2接到交流电源上,KM3用于把绕组另外一端接成星点。
图中还采用了断电延时型时间继电器KT,用于电动机高速运行时,先低速启动电机时间的控制。
若将SA置于“高速”档位→时间继电器KT线圈通电且瞬时动作触点KT-1瞬时闭合→KM1线圈通电→电动机M先接成三角形低速起动→KT延时时间到→延时动作触点KT-2断开→KM1线圈断电→延时动作触点KT-3同时闭合→KM2线圈通电→KM3线圈通电→M接成双星形高速运行本讲我们主要讲述了三相异步电动机的典型控制环节,包括电动机常用控制技术,以及电动机双向运行控制,降压启动控制,制动控制以及变极调速控制等。
各种控制电路都是采用各类主令电器、各种控制电器以及各种控制触点按一定逻辑关系的不同组合来实现。
掌握这些逻辑关系对于我们理解并掌握这些控制电路非常重要,也对于我们后续PLC的编程有很大帮助。
下面我们来总结一下这些逻辑关系:1.当几个条件中只要有一个条件满足接触器就可以得电,则所有条件采用并联接法;2.如果所有条件必须都具备,接触器才能得电,则所有条件应采用串联接法;3.要求第一个接触器得电后,第二个接触器才得电,可以将前者常开触点串接在第二个接触器线圈的控制电路中,或者第二个接触器控制线圈的电源从前者的自锁触点后引入;4.要求第一个接触器得电后,第二个接触器不允许得电,可以将前者的常闭触头串接在后者接触器的控制回路中;5.连续运转与点动的区别仅在于自锁触头是否起作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 三相异步电动机的电力拖动
2. ∆-YY联结方式 ∆-YY后,极数减少一半,转速增大一倍,即 nYY 2n ,保持每一 绕组电流为 I N ,则输出功率和转矩为
第5章 三相异步电动机的电力拖动
U相两个线圈,顺向串联, 定子绕组产生4极磁场:
反向串联和反向并联,定子绕组 产生2极磁场:30异步电动机变 极调速.swf
第5章 三相异步电动机的电力拖动
二、三种常用变极接线方式 Y→反并YY,2p-p Y→反串Y,2p-p ∆→YY,2p-p
注意:
当改变 定子绕 组接线 时,必 须同时 改变定 子绕组 的相序
第5章 三相异步电动机的电力拖动
5.4三相异步电动机的调速
由异步电动机的转速公式
60 f1 n n1 ( 1 s ) (1 s ) p
可知,异步电动机有下列三种基本调速方法: (1)改变定子极对数 p 调速 (2)改变电源频率 f1 调速 (3)改变转差率 s 调速 ①绕线转子电动机的转子串接 电阻调速 ②串级调速 ③ 定子调压调速
第5章 三相异步电动机的电力拖动
5.4三相异步电动机的调速
Speed regulation of three-phase asynchronous motor
教学内容: 5.4.1 变极调速
5.4.2 变频调速
5.4.3 变转差率调速
教学目的与要求:
1 掌握各种调速的方法和原理 2 掌握各种调速时的机械特性
第5章 三相异步电动机的电力拖动
5.4.1 变极调速(change pole adjustable-speed) 导言:
p↑,n1↓,n ↓。 要改变极数: (1)在定子铁心槽内嵌放两套不同极数的三相绕组。
(2)利用改变定子绕组接法来改变极数,称多速电机。
变极调速只用于笼型电动机。 一、变极原理 以4极变2极为例:
PYY 1.15 P TYY 0.58T
可见,∆-YY联结方式时,电动机的转速增大一倍,容许输 出功率近似不变,而容许输出转矩近似减少一半,所以这种变 极调速属于恒功率调速,它适用于恒功率负载。
3.正串Y-反串Y 联结方式
同理可以分析,正串Y-反串Y联结方式的变极调速属恒功 率调速。
第5章 三相异步电动机的电力拖动
四、变极调速时的机械特性
1. Y-YY联结方式 2. △-YY联结方式
smYY sm TmYY TstYY 2 Tm 3 2 Tst 3
smYY smY TmYY 2TmY TstYY 2TstY
变极调速时,转速几乎是成倍变化的,调速的平滑性较差,但 具有较硬的机械特性,稳定性好, 可用于恒功率和恒转矩负载.
第5章 三相异步电动机的电力拖动
三、变极调速时容许输ห้องสมุดไป่ตู้ 容许输出时是指保持电流为额定值条件下,调速前、后电 动机轴上输出的功率和转矩。
1.
Y-YY联结方式
Y-YY后,极数减少一半,转速增大一倍,即nYY 2nY ,保持每一绕 组电流为 I N ,则输出功率和转矩为
PYY 2 PY TYY TY