最新河北中考数学试卷分析培训资料

合集下载

2022年河北中考数学试卷分析

2022年河北中考数学试卷分析

2022年河北中考数学试卷分析2022年河北中考再次落下帷幕,今年的中考数学试卷再次延续了“稳中求新,关注数学本质”的特点,又以“新颖灵活,别具一格”在全国各地中考试题中独树一帜。

第一部分、试卷整体评价知识考查全面,重基础层分明试题几乎涵盖了初中数学所有知识点,其中数与代数、图形与几何、统计与概率所占比例约为5:4:1,与教学所占课时分配大致相当,试题难度较2021年更均衡更平滑,比2020年难度略高,试题注重四基,强化基础,选择题前8道,填空题前2道,解答题前3道难度均不大,考查基础而全面。

同时,各题组均按照梯度进行设置,基础题每题设置一个或两个知识点,中档题设置每题两个左右知识点,综合题每题设置两个以上知识点,层层递进,起到了良好的区分度。

贴近生活情景,有传承有创新试题的命题方式减少了学生的陌生情景,消除了学生的阅读障碍和审题障碍,增加了题目解决方式的多样性。

凡是涉及的生活情景都是学生熟悉见过的,确保学生不因生活情景陌生而影响审题。

同时,减少题目文字量,避免与数学无关的内容影响学生,增加阅读负担。

试卷整体体现“稳中求新”的风格,题目设置背景与近两年试题均有联系,又有创新,试题很多方面都在渗透2022版数学新课程标准下的知识及能力素养的考查,比如:课标中增加了理解角平分线的概念,尺规作图过直线外一点做这条直线的平行线,理解中位数、众数的意义等,这些内容在试题中均有所体现。

第二部分、试卷试题解读选填试题分析2022年的数学总分仍是120分,选择题仍是16道,1-10每题3分,11-16每题2分与2021年保持一致,填空题变化较大,由2021年的12分降低到2022年的9分,第17题一空3分,第18题第一空2分,第二空1分,第19题三个空,每空1分,这样调整,目的是尽可能让学生应该得到的分能得到,能得够。

第7题考查立体图形的拼接,深层考查学生的空间想象,由于整体难度的考虑,此题所给图形比较简单,学生很容易根据个数确定1、4或2、3,再根据长方体的要求确定1、4。

2024年河北省中考数学试卷分析报告

2024年河北省中考数学试卷分析报告

2024年河北省中考数学试卷分析报告1. 引言本文旨在对2024年河北省中考数学试卷进行详细的分析,从题型构成、难度分布、知识点覆盖等方面进行评估和总结,以便于考生和教师更好地了解试卷的特点和趋势,有针对性地进行备考和教学。

2. 题型构成2024年河北省中考数学试卷一共由选择题、填空题、解答题三个部分组成。

其中,选择题占比约60%,填空题占比约20%,解答题占比约20%。

这种题型构成比例在近几年的中考数学试卷中比较常见,符合中考数学试卷的趋势。

2.1 选择题2024年数学中考试卷的选择题部分包含了单项选择题和不定项选择题。

•单项选择题占据了选择题部分的大部分比例,其中很多题目体现了对学生基础知识的考查和运用。

•不定项选择题则对学生的逻辑思维和推理能力提出了较高的要求,涵盖了更多的知识点。

2.2 填空题填空题是2024年河北省中考数学试卷中的另一部分重要题型。

填空题的出现在一定程度上考察了学生对数学知识的理解和灵活应用能力。

2.3 解答题解答题是试卷中的最后一部分,也是考查学生数学能力较高、思维能力较强的部分。

3. 难度分布2024年河北省中考数学试卷的难度分布比较合理,注重考查学生对基础知识的掌握和应用能力的培养。

试卷难度主要体现在以下几个方面:3.1 基础题目与综合题目的对比试卷中的基础题目主要出现在选择题和填空题中,涵盖了学生所学的数学基础知识。

这些题目难度相对较低,能够帮助学生巩固基础,提高应试能力。

综合题目则更注重学生对知识点的综合运用和思维能力的培养,难度相对较高。

这一设计可以更好地测试学生对数学知识的整体理解和应用。

3.2 题目难度的分层次试卷的题目难度分层次地设置,既有简单的基础题目,也有稍微难度较高的拓展题目。

这种设置有助于考生全面掌握基础知识,并且提升解决问题的能力。

4. 知识点覆盖2024年河北省中考数学试卷对数学的各个知识点进行了相对均衡的覆盖。

试卷的知识点覆盖具体如下:•初中代数和初中几何知识点的考查相对较多,占试卷总分的比例较大。

河北中考数学试卷分析

河北中考数学试卷分析

河北中考数学试卷分析今年数学试题给人以耳目一新的感受。

试题以学生的进展为本并关注学生的心理特点,题目立意新颖且起点较低,难度分布适宜有序,语言陈述准确规范,表达简洁醒目、图文制作精良,结构编排合理,在全面考查课程标准所规定的义务教育时期的数学核心内容的基础上,注重考查学生能力水平和学习潜能,试题重视双基,将经典的传统题型与创新题型相结合,加强了探究性问题的考查,关注对数学活动过程和活动体会的考查,改变了以往单纯考查学生对知识的死记硬背,减少了过于纷杂的运算与过难的几何论证试题。

一、严格遵循《课程标准》,紧扣《中考考试说明》整个试题的考查内容遵循了《数学课程标准》所规定要求,并兼顾了我省现使用的不同版本的教材。

今年“活题”较多,所有试题都依据《考试说明》,但又不是照搬,而是在知识和方法的交汇处进行有机的巧妙整合,推陈出新。

二、今年题型改革给力,突出对教学的正导向功能1.调整试题内部分值的分布在总分120不变的情形下,对试题内部分值的分布进行了调整。

如选择题7—12题,每题增加了1分,由往年的2分调整为3分;解答题21—2 4题每题照比往年减少1分,综合题的25题照比往年减少2分,调整为12分,目的是向基础知识部分倾斜分数,同时保证考生的得分率。

2.题目位置变化为改变过去程式化试卷结构,今年的八个解答题的位置相对往年试卷变动更大。

如关于圆的探究题从每年的23题移到25题位置,更加注重学生自主探究能力的培养。

往年的直线型的证明题24题移到23题,相对的降低了证明题的难度。

3.考查的内容变化今年围绕支撑着初中数学的核心内容,在规定的考查范畴内对试题进行了大胆改革。

如19题由每年考查分式知识,今年变成考查二元一次方程组和整式的求值化简问题,23题的正方形证明题中增加了尺规作图考查,如此会引导教师更加注重学生数学差不多技能和素养的培养;24题的保鲜品运输问题实际整合了图表、一次函数图像、折线统计图的内容,有意识培养学生搜集、整理信息和运用信息的决策能力。

中考试卷分析报告数学

中考试卷分析报告数学

中考试卷分析报告数学1. 引言本篇文章将对一份中考数学试卷进行分析,旨在深入理解该试卷的考察重点、题型分布和难易程度,以帮助学生和教师有效备考和教学。

通过对试卷的综合分析,我们将为学生提供备考指导,并为教师提供教学改进的参考意见。

2. 考试概况本次中考数学试卷共计50道题,总分为150分。

试卷包括选择题、填空题、计算题和解答题四种题型。

各题型分布情况如下:•选择题:共30道题,占总分的60%;•填空题:共10道题,占总分的20%;•计算题:共5道题,占总分的10%;•解答题:共5道题,占总分的10%。

3. 题型分析3.1 选择题选择题是本次数学试卷的主要题型,占试卷总分的60%。

选择题分布较为均匀,涵盖了中考数学各个知识点。

其中,选择题又可以分为单选题和多选题两种类型。

单选题占选择题的80%,共计24道题。

这些题目难度适中,主要考察学生对各个知识点的掌握程度。

其中,代数、几何和概率统计类别的题目占据较大比例,分别占选择题的30%、30%和20%。

多选题占选择题的20%,共计6道题。

这些题目相对较难,需要学生综合运用多个知识点进行分析。

多选题的题目主要涉及函数、三角函数和数列等知识点。

3.2 填空题填空题占试卷总分的20%,共计10道题。

这些题目主要考查学生对各种算式的计算能力和运算思维。

填空题的难度适中,覆盖了中考数学的各个知识点。

其中,代数和几何类别的题目占据较大比例,分别占填空题的40%和30%。

这些题目要求学生运用代数式和几何关系进行推理和计算。

3.3 计算题计算题占试卷总分的10%,共计5道题。

这些题目要求学生进行较复杂的计算,考查学生的计算能力和分析问题的能力。

计算题主要涉及三角函数、函数和统计概率等知识点。

其中,三角函数类别的题目占计算题的40%,要求学生运用三角函数的定义和性质进行计算和推理。

3.4 解答题解答题占试卷总分的10%,共计5道题。

这些题目设有较高的难度,要求学生具备较强的分析和解决问题的能力。

2024年河北省中考数学试题(解析版)

2024年河北省中考数学试题(解析版)

2024年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A. B.C. D.【答案】A【解析】【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是()A.734a a a -= B.222326a a a ⋅= C.33(2)8a a -=- D.44a a a÷=【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是()A.AD BC⊥ B.AC PQ ⊥ C.ABO CDO △≌△ D.AC BD∥【答案】A【解析】【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为()A.1B.2C.3D.4【答案】A【解析】【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到75x <,以此判断即可.【详解】解:∵516x -<,∴75x <.∴符合题意的是A故选A .5.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的()A.角平分线B.高线C.中位线D.中线【答案】B【解析】【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A. B. C. D.【答案】D【解析】【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A.若5x =,则100y =B.若125y =,则4x =C.若x 减小,则y 也减小D.若x 减小一半,则y 增大一倍【答案】C【解析】【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x 度,能使用y 天.∴500xy =,∴500y x =,当5x =时,100y =,故A 不符合题意;当125y =时,5004125x ==,故B 不符合题意;∵0x >,0y >,∴当x 减小,则y 增大,故C 符合题意;若x 减小一半,则y 增大一倍,表述正确,故D 不符合题意;故选:C .8.若a ,b 是正整数,且满足8282222222a b a a a b b b++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A.38a b +=B.38a b =C.83a b +=D.38a b=+【答案】A【解析】【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A.1B.1-C.1D.11+【答案】C【解析】【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,解得:1x =+1x =故选:C .10.下面是嘉嘉作业本上的一道习题及解答过程:若以上解答过程正确,①,②应分别为()A.13∠=∠,AASB.13∠=∠,ASAC.23∠∠=,AASD.23∠∠=,ASA【答案】D【解析】【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得3ABC ∠=∠,根据三角形外角的性质及角平分线的定义可得23∠∠=,证明MAD MCB △≌△,得到MD MB =,再结合中点的定义得出MA MC =,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.【详解】证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①23∠=∠.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②ASA ).∴MD MB =.∴四边形ABCD 是平行四边形.故选:D .11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=()A.115︒B.120︒C.135︒D.144︒【答案】B【解析】【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.先求出正六边形的每个内角为120︒,再根据六边形MBCDEN 的内角和为720︒即可求解ENM NMB ∠+∠的度数,最后根据邻补角的意义即可求解.【详解】解:正六边形每个内角为:()621801206-⨯︒=︒,而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒,∴720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒,∴7204120240ENM NMB ∠+∠=︒-⨯︒=︒,∵1802360ENM NMB βα+∠++∠=︒⨯=︒,∴360240120αβ+=︒-︒=︒,故选:B .12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点AB.点BC.点CD.点D【答案】B【解析】【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设(),A a b ,AB m =,AD n =,可得(),D a b n +,(),B a m b +,(),C a m b n ++,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设(),A a b ,AB m =,AD n =,∵矩形ABCD ,∴AD BC n ==,AB CD m ==,∴(),D a b n +,(),B a m b +,(),C a m b n ++,∵b b b n a m a a +<<+,而b b n a m a m+<++,∴该矩形四个顶点中“特征值”最小的是点B ;故选:B .13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy-,则A =()A.xB.yC.x y +D.x y-【答案】A【解析】【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得22y x y A x xy xy xy y -+=++,对2y x y x xy xy-++进行通分化简即可.【详解】解:∵22A y xy y x xy -++的结果为x y xy-,∴22y x y A x xy xy xy y -+=++,∴()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++,∴A x =,故选:A .14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m S S =,则m 与n 关系的图象大致是()A.B.C.D.【答案】C【解析】【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为R ,根据扇形的面积公式表示出23R S π=,进一步得出2360120n S n n R S π==,再代入n m S S =即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为R ,221203603R R S ππ==,∴23R S π=,∵该折扇张开的角度为n ︒时,扇面面积为n S ,∴223360360360120n R S R n n n nS S π=⨯⨯===π,∴1120120120n S m n S nS n S ====,∴m 是n 的正比例函数,∵0n ≥,∴它的图像是过原点的一条射线.故选:C .15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“□”表示5C.运算结果小于6000D.运算结果可以表示为41001025a +【答案】D【解析】设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.【详解】解:设一个三位数与一个两位数分别为10010x y z ++和10m n+如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz =,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A.()6,1或()7,1 B.()15,7-或()8,0 C.()6,0或()8,0 D.()5,1或()7,1【答案】D【解析】【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.【答案】89【解析】【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89, 89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a ,b ,n 均为正整数.(1)若1n n <<+,则n =______;(2)若1,1n n n n -<<<+,则满足条件的a 的个数总比b 的个数少______个.【答案】①.3②.2【解析】【分析】本题考查的是无理数的估算以及规律探究问题,掌握探究的方法是解本题的关键;(1)由34<<即可得到答案;(2)由n 1-,n ,1n +为连续的三个自然数,1,1n n n n -<<<+,可得<<,<<,再利用完全平方数之间的数据个数的特点探究规律即可得到答案.【详解】解:(1)∵34<<,而1n n <<+,∴3n =;故答案为:3;(2)∵a ,b ,n 均为正整数.∴n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<<+,<<<<,观察0,1,2,3,4,5,6,7,8,9, ,而200=,211=,224=,239=,2416=,∴()21n -与2n 之间的整数有()22n -个,2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______;(2)143B C D △的面积为______.【答案】①.1②.7【解析】【分析】(1)根据三角形中线的性质得112ABD ACD ABC S S S △△△===,证明()11SAS AC D ACD ≌,根据全等三角形的性质可得结论;(2)证明()11SAS AB D ABD ≌,得111AB D ABD S S ==△△,推出1C 、1D 、1B 三点共线,得1111112AB C AB D AC D S S S △△△=+=,继而得出141148AB C AB C S S △△==,131133AB D AB D S S ==△△,证明33C AD CAD △∽△,得3399C AD CAD S S ==△△,推出43334123AC D C AD S S ==△△,最后代入431314143AC D D AB D AB C B C S S S S =+-△△△△即可.【详解】解:(1)连接11B D 、12B D 、12B C 、13B C 、33C D ,∵ABC 的面积为2,AD 为BC 边上的中线,∴112122ABD ACD ABC S S S △△△====,∵点A ,1C ,2C ,3C 是线段4CC 的五等分点,∴1122334415AC AC C C C C C C CC =====,∵点A ,1D ,2D 是线段3DD 的四等分点,∴11223314AD AD D D D D DD ====,∵点A 是线段1BB 的中点,∴1112AB AB BB ==,在11AC D △和ACD 中,1111AC ACC AD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴()11SAS AC D ACD ≌,∴111AC D ACD S S ==△△,11C D A CDA ∠=∠,∴11AC D △的面积为1,故答案为:1;(2)在11AB D 和ABD △中,1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()11SAS AB D ABD ≌,∴111AB D ABD S S ==△△,11B D A BDA ∠=∠,∵180BDA CDA ∠+∠=︒,∴1111180B D A C D A ∠+∠=︒,∴1C 、1D 、1B 三点共线,∴111111112AB C AB D AC D S S S △△△=+=+=,∵1122334AC C C C C C C ===,∴14114428AB C AB C S S △△==´=,∵11223AD D D D D ==,111AB D S =△,∴13113313AB D AB D S S ==⨯=△△,在33AC D △和ACD 中,∵333AC AD AC AD==,33C AD ∠=∠,∴33C AD CAD △∽△,∴3322339C AD CAD S AC S AC ⎛⎫=== ⎪⎝⎭ ,∴339919C AD CAD S S ==⨯=△△,∵1122334AC C C C C C C ===,∴43334491233AC D C AD S S ==⨯=△△,∴41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△,∴143B C D △的面积为7,故答案为:7.【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,乙数轴上的三点D ,E ,F 所对应的数依次为0,x ,12.(1)计算A ,B ,C 三点所对应的数的和,并求AB AC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.【答案】(1)30,16(2)2x =【解析】【分析】本题考查的是数轴上两点之间的距离的含义,一元一次方程的应用,理解题意是解本题的关键;(1)直接列式求解三个数的和即可,再分别计算,AB AC ,从而可得答案;(2)由题意可得,对应线段是成比例的,再建立方程求解即可.【小问1详解】解:∵甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,∴423230-++=,()24246AB =--=+=,()32432436AC =--=+=,∴61366AB AC ==;【小问2详解】解:∵点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,∴DE DF AB AC =,∴12636x =,解得:2x =;21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b +2a2a b+a b -2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.【答案】(1)13(2)填表见解析,49【解析】【分析】(1)先分别求解三个代数式当1,2a b ==-时的值,再利用概率公式计算即可;(2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.【小问1详解】解:当1,2a b ==-时,1a b +=-,20a b +=,()123a b -=--=,∴取出的卡片上代数式的值为负数的概率为:13;【小问2详解】解:补全表格如下:a b+2a b +a b -a b+22a b +32a b +2a 2a b+32a b +42a b +3a a b -2a 3a 22a b -∴所有等可能的结果数有9种,和为单项式的结果数有4种,∴和为单项式的概率为49.【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.【答案】(1)45︒,14(2m ,33434【解析】【分析】本题考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键;(1)根据题意先求解1CE PE ==m ,再结合等腰三角形的性质与正切的定义可得答案;(2)利用勾股定理先求解CP =m ,如图,过C 作CH AP ⊥于H ,结合1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ,再建立方程求解x ,即可得到答案.【小问1详解】解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m ,4AE BQ ==()m ,3AC BD ==()m ,∴431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒,∴CE PE =,∴45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==;【小问2详解】解:∵1CE PE ==m ,90CEP ∠=︒,∴CP ==m ,如图,过C 作CH AP ⊥于H ,∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ,∴()22249x x AC +==,解得:17x =,∴31717CH =m ,∴31733417sin 34CH APC CP ∠===.23.情境图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF 的长;(2)直接写出图3中所有与线段BE 相等的线段,并计算BE 的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC 边上找一点P (可以借助刻度尺或圆规),画出裁剪线(线段PQ )的位置,并直接写出BP 的长.【答案】(1)1EF =;(2)BE GE AH GH ===,2BE =;BP 或2【解析】【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.(1)如图,过G '作G K FH ''⊥于K ,结合题意可得:四边形FOG K '为矩形,可得FO KG '=,由拼接可得:HF FO KG '==,可得AHG ,H G D '' ,AFE △为等腰直角三角形,G KH '' 为等腰直角三角形,设H K KG x ''==,则H G H D '''==,再进一步解答即可;(2)由AFE △为等腰直角三角形,1EFAF ==;求解2BE =,,GE AH GH ;可得答案,如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线,再进一步求解BP 的长即可.【详解】解:如图,过G '作G K FH ''⊥于K ,结合题意可得:四边形FOG K '为矩形,∴FO KG '=,由拼接可得:HF FO KG '==,由正方形的性质可得:45A ∠=︒,∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,∴H G H D '''==,∴AH HG ==,HF FO x ==,∵正方形的边长为2,=,∴OA =∴x x ++=解得:1x =,∴))1111EF AF x ====;(2)∵AFE △为等腰直角三角形,1EF AF ==;∴AE ==,∴2BE =,∵)12GE H G =='='=-,2AH GH ===-,∴BE GE AH GH ===;如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,此时BP '=,2P Q ''==,符合要求,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线,此时CP CQ ==2PQ ==,∴2BP =,综上:BP 或224.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80xy p=;当150p x ≤≤时,()2080150x p y p-=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.【答案】(1)甲、乙的报告成绩分别为76,92分(2)125(3)①130;②95%【解析】【分析】(1)当100p =时,甲的报告成绩为:809576100y ⨯==分,乙的报告成绩为:()201301008092150100y ⨯-=+=-分;(2)设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分,①10x p ≤<时和②140150p x ≤-≤时均不符合题意,③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+- 丙⑤,()1804064x y p-== 丁⑥,解得1125,140p x ==;(3)①共计100名员工,且成绩已经排列好,则中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,故中位数为130;②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍;当130p ≤时,则()201309080150p p-=+-,解得110p =,符合题意,而由表格得到原始成绩为110及110以上的人数为100595-=,故合格率为:95100%95%100⨯=.【小问1详解】解:当100p =时,甲的报告成绩为:809576100y ⨯==分,乙的报告成绩为:()201301008092150100y ⨯-=+=-分;【小问2详解】解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分,①10x p ≤<时,18092x y p ==丙①,()1804064x y p-== 丁②,由①-②得320028p=,∴8007p =,∴1800929207131807x p ⨯==≈>,故不成立,舍;②140150p x ≤-≤时,()1209280150x p y p-==+- 丙③,()120406480150x p y p--==+- 丁④,由③-④得:80028150p=-,∴8507p =,∴185020792808501507x ⎛⎫- ⎪⎝⎭=+-,∴19707x =,∴16908504077x p -=<=,故不成立,舍;③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+- 丙⑤,()1804064x y p-==丁⑥,联立⑤⑥解得:1125,140p x ==,且符合题意,综上所述125p =;【小问3详解】解:①共计100名员工,且成绩已经排列好,∴中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,∴中位数为130;②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍;当130p ≤时,则()201309080150p p-=+-,解得110p =,符合题意,∴由表格得到原始成绩为110及110以上的人数为()10012295-++=,∴合格率为:95100%95%100⨯=.【点睛】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点,正确理解题意是解决本题的关键.25.已知O 的半径为3,弦MN =,ABC 中,90,3,ABC AB BC ∠=︒==.在平面上,先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B 与点N 重合时,求劣弧 AN 的长;(2)当OA MN ∥时,如图2,求点B 到OA 的距离,并求此时x 的值;(3)设点O 到BC 的距离为d .①当点A 在劣弧 MN上,且过点A 的切线与AC 垂直时,求d 的值;②直接写出d 的最小值.【答案】(1)π(2)点B 到OA 的距离为2;3(3)①3d =-23【解析】【分析】(1)如图,连接OA ,OB ,先证明AOB 为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;(2)过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,证明四边形BIOH 是矩形,可得BH OI =,BI OH =,再结合勾股定理可得答案;(3)①如图,由过点A 的切线与AC 垂直,可得AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,可得四边形KOJB 为矩形,可得OJ KB =,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,证明1BQ OQ ==,求解AQ ==,再结合等角的三角函数可得答案.【小问1详解】解:如图,连接OA ,OB ,∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;【小问2详解】解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,∵OA MN ∥,∴90IBH BHO HOI BIO ∠=∠=∠=∠=︒,∴四边形BIOH 是矩形,∴BH OI =,BI OH =,∵MN =,OH MN ⊥,∴MH NH ==,而3OM =,∴2OH BI ===,∴点B 到OA 的距离为2;∵3AB =,BI OA ⊥,∴AI ==,∴3OI OA AI BH =-=-=,∴33x BN BH NH ==+=-;【小问3详解】解:①如图,∵过点A 的切线与AC 垂直,∴AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,∴四边形KOJB 为矩形,∴OJ KB =,∵3AB =,BC =,∴AC ==∴cosAB AKBAC AC AO∠==,∴AK =∴3OJ BK ==-3d =②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∴90OJL ∠>︒,∴OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,∵B 为MN 中点,则OB MN ⊥,∴由(2)可得2OB =,∴1BQ OQ ==,∴AQ ==,∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO BAQ ∠+∠=︒=∠+∠,∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴OJ BQ BJ AQ ==,设OJ m =,则BJ =,∴()2222m +=,解得:23m =(不符合题意的根舍去),∴d 的最小值为23.【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .【答案】(1)12a =,()2,2Q -(2)两人说法都正确,理由见解析(3)①410=-y x ;②112-112+(4)2n t m =+-【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;(2)把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,再检验即可,再根据函数化为2122y x xt =-+-,可得函数过定点;(3)①先求解P 的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),可得4x =±,可得交点()46J --,交点()4K +,再进一步求解即可;(4)如图,由题意可得2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,可得四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,此时M 与B 重合,N 与A 重合,再进一步利用中点坐标公式解答即可.【小问1详解】解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q .∴1680a -=,解得:12a =,∴抛物线为:()221122222y x x x =-=--,∴()2,2Q -;【小问2详解】解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,当0x =时,∴222221111:()2222222C y x t t t t =--+-=-+-=-,∴()0,2-在2C 上,∴嘉嘉说法正确;∵22211:()222C y x t t =--+-2122x xt =-+-,当0x =时,=2y -,∴22211:()222C y x t t =--+-过定点()0,2-;∴淇淇说法正确;【小问3详解】解:①当4t =时,()2222111:()246222C y x t t x =--+-=--+,∴顶点()4,6P ,而()2,2Q -,设PQ 为y ex f =+,∴4622e f e f +=⎧⎨+=-⎩,解得:410e f =⎧⎨=-⎩,∴PQ 为410=-y x ;②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),∴4x =±,∴交点()46J --,交点()4K +,由直线l PQ ∥,设直线l 为4y x b =+,∴(446b -+=-,解得:22b =,∴直线l 为:422y x =+-,当4220y x =+-=时,112x =-此时直线l 与x 轴交点的横坐标为112-,同理当直线l 过点()4K +,直线l 为:422y x =--,当4220y x =--=时,112x =+此时直线l 与x 轴交点的横坐标为112+,【小问4详解】解:如图,∵()21222y x =--,22211:()222C y x t t =--+-,∴2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,∴四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,此时M 与B 重合,N 与A 重合,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦,∴L 的横坐标为2m n +,∴222m n t ++=,解得:2n t m =+-;【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键.。

2023河北中考数学试卷分析

2023河北中考数学试卷分析

2023河北中考数学试卷分析2023年河北省中考数学考试已经落下了帷幕,今年的中考数学试卷设计遵循《义务教育数学课程标准(2022年版)》的要求,再次延续了“守正创新,关注数学本质”的特点。

许多人都关注着今年的这份试题,因为它是我们三年教学的总结,同时也是下届教学的引领。

下面我们来进行简单的分析与评价,供各位关注者与考生参考。

一、结构稳定分值变化今年的数学试题与2022年相比在试卷结构上保持稳定,总分仍是120分,依旧是16道选择题、3道填空题、7道解答题。

选择题1-6题每题3分,11-16题每题2分保持不变,7-10题由原来的每题3分变为每题2分。

填空题由总分9分变为总分10分,其中17题由3分降低为2分,18题、19题由每题3分增加到每题4分,每空2分。

解答题20-24题分值没变,25题由原来的10分增加到12分,26题由原来的12分增加到13分。

从分值可以看出基础分值占比减少,中档题、综合题占比增加。

二、注重基础兼顾能力2023年河北省中考数学命题依旧注重基本数学能力、数学核心素养和学习潜能的评价,试卷兼具基础性和综合型、应用性和创新性,突出对基本知识、基本方法的考查。

试题几乎涵盖了初中数学所有知识点,其中数与代数、图形与几何、统计与概率所占比例约为5:4:1,与教学所占课时分配大致相当,实现了中考知识点易、中、难的比例为3:5:2的目标。

相比2022年的5:3:2,基础题有所减少、中档题有所增加。

选择6-16题相比2022年难度有所增加,但25题最后一问、26题最后一问相比去年难度有所降低,预测2023年中考数学满分人数比2022年会多一点,区分度会比2022年大一些。

三、经典传承新颖灵活今年,河北中考数学题考点基本稳定,呈现形式仍然新颖灵活、别具一格,每年必考的知识点,总能给人一种常考常新的感觉。

选择、填空部分,方位角、数式计算、概率、三角形三边关系、整除问题、尺规作图、多边形的性质、代数式的有关概念、平行线的判定及性质、一次方程建模、函数的图象等,都是河北省的经典考点,但河北省数学试卷题目总能让人觉得新颖灵活、别具一格。

2020年河北省中考数学试卷分析

2020年河北省中考数学试卷分析

2020年河北省中考数学试卷分析2020年河北中考数学试题评析2020年河北省中考数学考试已经落下了帷幕,许多人都关注着今年的这份试题,因为它是我们上一年教学的总结同时也是下届教学的引领,下面我们来进行简单的分析与评价。

一、试卷的稳定性今年的数学试题与2019年相比在试卷结构上保持稳定,依旧是16道选择题,3道填空题,7道解答题。

试题中代数、几何、统计与概率的比值仍保持5∶4∶1,与教学课时保持一致。

2020年河北省中考数学命题依旧注重基本数学能力、数学核心素养和学习潜能的评价,试卷兼具基础性和综合型,应用性和创新性,突出对基本知识、基本方法的考查,难度适中。

二、部分知识难度下降今年数学试题素材的选取似曾相识,比较容易入手。

圆和二次函数由去年的第25和第26题压轴题的位置,提到了第22题和23题位置。

而第24题和25题也比去年的第24题和25题难度降低了。

第16题与第19题相对去年的第16题与第19题难度明显有所下降,再往前面的第20题和21题比去年更直接易懂。

今年试题立足基础,彰显人文关怀;着眼能力,突出思维层次的考核。

三、阅读量、思维含量较大试卷中除前三个小题知识单一,其他题文字信息量及思维含量都较大。

如10,12,14,16,19这些题虽小但需仔细读题,然后加分析、画图或计算,才能甄别真伪。

25题,26题文字信息更大,思维强度大。

四、体现数学思想和方法的同时又有创新试题主要体现的数学思想主要有:数形结合、分类讨论、化归与转化、函数与方程、特殊与一般这些思想和方法。

很多问题具有典型性、示范性,如23,24,25,26等能体现学科核心素养,百考不厌、常考常新,如15题中的“毕达哥拉斯图案”问题设计精巧,综合考查了学生的综合应用能力。

25题以学生熟悉的数轴为背景,加上动点与游戏规则,巧妙的把概率融了进去,不仅考查学生从数学的视角分析、解决问题,又检验了学生对数轴的点到意义的理解,凸显了数学学科的特色,这就是创新之举。

河北中考数学试题分析

河北中考数学试题分析

河北中考数学试题分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑今年的中考数学科目已于2018年6月22日上午11点结束。

总体来说,本次数学考试注重基础、稳中求新。

一、试卷总体特点:今年的中考数学卷在结构形式上与去年非常接近,今年的数学试卷结构依然是选择题<16题42分)、填空题<4题16分)、解答题<6题66分),与去年一致。

但在考查内容和角度上却与往年有了很大不同。

考查内容上,各章节所占分值比例如下图:b5E2RGbCAP考查方式上有一下特点:首先应用大题小题化,近年来全国各地中考题和模拟题压轴题必是函数应用题,而今年中考没有惯常的函数应用大题,而是将它涵盖在小题里面,以小题的形式出现。

p1EanqFDPw第二、核心考点解方程、解不等式、四边形、圆、函数与图形结合、动态几何等今年均未做特别的考查,仅仅是以小题的形式带过,即便是最后压轴题也基本未涉及核心考点。

DXDiTa9E3d第三、将数学知识与生活常识相结合<最后一道大题),考查学生的逻辑思维能力、运用数学思想解决生活实际问题的能力。

与以往考查学生知识相比,本次考试在考查学生知识的同时非常重视对学生能力的考查。

RTCrpUDGiT二、试卷具体考查特点:三、归类分析总的来说,试卷整体难度不是太大。

在本次考试中,基础型题目占到65分,占试卷总分的54%;中等难度题目分值占到25分,占试卷总分的21%;中低档难度的题目占到90分,达到试卷总分的75%。

试卷分布呈现前易后难,今年的客观题基本都是基础题型,而最后的两道大题则难度大大增加,使试卷在重视基础知识掌握的同时,有了一定的提升拔高功能,尤其注重对学生逻辑思维和推理能力的考查!具体主要有以下几个特点:5PCzVD7HxA基础类题型本次中考回归基础,重视基本概念、性质、定理和运算的考查,内容涵盖了数与式、方程与不等式、函数、角、相交线与平行线、三角形、四边形、圆、变换、坐标、证明和概率与统计。

河北中考数学试卷结构及分值比例分析.(精选)

河北中考数学试卷结构及分值比例分析.(精选)

河北中考数学试卷结构及分值比例分析一,内容设置
初中数学6册课本,难易比例5:3:2.
二,试题的基本结构
整个试卷五道大题,25个题目,考试时间120分钟,总分120分,其中选择题共8道,共32分,填空题共4道,共16分,解答题(包括计算题,证明题,应用题和综合题)共13道,共72分。

1.题型与题量
2.
考查的内容及分布
3.每道题目所考查的知识点
题型


考查知识点
选择题1科学记数法
2有理数的概念(倒数)3概率
二.重难点易错点点评易错题目
难题
最新文件仅供参考已改成word文本。

方便更改。

河北中考数学题型分析

河北中考数学题型分析

—河北中考数学备考分析一、准确定向1、三部分内容第一部分:数与代数(60分)包括数与式、方程与不等式、函数(一次函数、二次函数、反比例函数)。

第二部分:图形与几何(48分)包括点线面三角形四边形圆等基本图形的性质、尺规作图、视图与投影、图形的变化(对称、平移、旋转)、图形的相似、证明等第三部分:统计与概率(12分)包括抽样与数据分析(三大数据代表、三种统计图)、事件的概率。

2、七大题型1.代数基本题:○1化简求值○2计算○3解方程(组)或小综合2.几何基本题:○1作图+计算○2全等+计算○3圆计算○4解直角三角形3.统计与概率:(1)数据分析:○1统计量○2统计图(2)概率:会画表和树状图(3)组合题(统计与概率组合、与函数等其它知识组合等)4.方程应用题:(加强考察)5.函数两道大题三类:(1)纯函数(2)实际应用(3)与几何知识结合6.几何两道大题两类:(1)几何证明(2)猜想结论+证明7.动态题(数形结合,一般以压轴题出现)(1)图形中的动态变化+函数性质考查(2)在图像中的动态变化(函数图像中动点、动线、动形)(注:后面大题根据难、易程度,题的位置可能发生变化)二、明确考点——近年河北中考试题分析1~18题(填空、选择题)1、题型特点:几乎所有的概念、性质、公式、法则、定理的基本辨别、运用等基础知识、核心与主干内容的基本用法等,以选择填空题的形式出现,与后八道大题相互照应、相互补充,以达突出主干、考查全面的目的。

2、攻克法宝:基础知识,不要死记,理解记忆,必须记死。

(1)实数运算(2)代数式化简求值19题特点分析重点:基本运算能力的考查1.解方程(一元一次,二元一次方程组)2.解不等式(组)3.代数式的化简及求值(包括分式)4.数的计算(加减乘除乘方的综合运算)12年(本小题满分8分)计算:|-5|-( 2 -3)0+6×(13 - 12)+(-1)2.20题特点分析属于数形结合题1.能分析简单的几何图形、直角坐标系2.会简单作图后进而基本图形计算。

2023年河北省中考数学真题(解析版)

2023年河北省中考数学真题(解析版)

2023年河北省初中毕业生升学文化课考试数学试卷一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =,可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分,故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形37P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A. B. C.12 D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =⨯⨯=⨯⨯= ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或m ,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k <<∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 3BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯= ,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m ∴点A 的坐标范围为()()5171 ,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH⊥∵MN GH∥∴OE MN ⊥于点D ,∵30ANM ∠=︒,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ⊥于点D ,30ANM ∠=︒∴60DOB ∠=︒,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB ∠=︒,∴30QOE ∠=︒,∴tan cm 3EF QOE OE =∠⋅=, 30π2525π==cm 1806EQ ⨯⨯,∵()25π25325π50325π03666-==>,∴ EF EQ>.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了(10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为9916a y x b a b a⎛=-++- -⎝⎭,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26.如图1和图2,平面上,四边形ABCD中,8,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).【答案】(1)见解析(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM '=,A MP AMP '∠=∠,然后证明出()SAS A MP AMP 'V V ≌,即可得到A P AP '=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=︒;首先画出图形,然后证明出DNM DBA V V ,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP '∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F '' ∽,根据相似三角形的性质即可求解.【小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;【小问2详解】①∵8AB =,6DA =,90A ∠=︒∴10BD ==∵=BC ,12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD ∠=︒;如图所示,当180n =时,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD ∠=∠=︒,PNB DNM∠=∠∴PBN DMNV V ∽∴PB BN DM MN =,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP '∠=∠∵8,6,90AB DA A ==∠=︒,∴22226810BD AB AD =+=+=,63sin 105AD DBA BD ∠===,∴2103sin 35BQ BP DBA ===∠,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM '∠=∠===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∴PQB BAD∽∴PQ QB PB BA AD BD==即8610PQ QB PB ==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB⊥⊥∴PQ AD ∥,∴HPQ HMA ∽,∴HQ PQ HA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===,综上所述,tan A MP '∠的值为76或236;【小问3详解】解:∵当08x <≤时,∴P 在AB 上,如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,∴90PA E FA M ''∠+∠=︒,又90A MF FA M ''∠+∠=︒,∴PA E A MF ''∠=∠,又∵90A EP MFA ''∠=∠=︒,∴A PE MA F '' ∽,∴A P PE A E MA A F FM''==''∵A P AP x '==,4MA MA '==,设FM AE y ==,A E h'=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x ⎛⎫-=- ⎪⎝⎭整理得22816x h x =+即点A '到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。

2024年河北中考数学试卷分析报告

2024年河北中考数学试卷分析报告

2024年河北中考数学试卷分析报告引言本报告基于2024年河北中考数学试卷的真实数据,对试卷的整体难度、题型分布和知识点覆盖情况进行了详细分析。

通过对试卷的分析,旨在帮助学生和老师更好地了解试卷的特点,从而有效地备考和教学。

试卷整体难度分析本次数学试卷整体难度较为适中,考察了基础和拓展性的知识点,平均得分较为合理。

具体分析如下: - 选择题部分:选择题的难度集中在易、中等水平,大多数题目能够被学生正确解答。

其中,常规选择题占主导地位,涉及面广,考察了学生对知识点的理解和应用能力。

- 填空题部分:填空题的难度适中,主要考察了学生的计算和推理能力。

少数题目涉及了一些较为深入的知识点,对学生的综合能力要求稍高。

题型分布分析本次数学试卷的题型分布合理,能够全面考察学生的数学能力。

具体如下: -选择题占比较大,包括单选题和多选题。

选择题主要考察学生的记忆和理解能力,覆盖了各个知识点。

- 填空题数量适中,涉及了一些计算和推理题型,对学生的分析和推理能力进行了考察。

- 解答题部分设置较少,但难度较高,需要学生运用所学的数学知识进行归纳和推理。

通过解答题,能够考察学生的综合运用能力。

知识点覆盖分析本次数学试卷涵盖了初中数学各个重要的知识点,较好地贯彻了教育教学大纲。

具体分析如下: - 整数与有理数:试卷中设置了一些整数和有理数的相关计算题目,考察了学生对于整数和有理数的基本概念和运算规则的掌握程度。

- 几何:试卷中涉及到了平面图形和空间图形的相关知识点,考察学生对于几何图形的认知和判断能力。

- 数据与概率:试卷中设置了一些与数据和概率相关的题目,考察学生的统计分析和推理能力。

学生备考建议根据本次数学试卷的分析,为学生提供以下备考建议,帮助他们更好地备考:- 夯实基础知识:加强对于基础知识的掌握,包括整数与有理数、几何等方面的知识。

通过做大量的练习题,加深对这些知识点的理解。

- 多做题:做更多的选择题、填空题和解答题,提高解题能力和应试能力。

河北中考数学试卷结构及分值比例分析

河北中考数学试卷结构及分值比例分析
二.重难点易错点点评
易错题目
易错题号
错误原因
8
易被圆的对称性误导,从而误认为函数图象为对称图像
12
前两年均为对称规律,形成思维定势,不太容易抓住本质规律(循环规律)
17
分式方程应用题忘记检验
难题
难题题号
不得分原因
22
没看懂题,不理解图2的作用是什么
23
利用对称进行数形结合练得比较少,抓不住第(3)问的关键
13
三角形全等证明
14
实数运算(0次幂,-1次幂,绝对值,特殊三角形)
15
解一元一次不等式组
16
代数式化简求值(整体代入)
17
列分式方程解应用题
18
一元二次方程(判别式,整数根)
解答题二
19
梯形中的计算
20
圆中的证明与计算(三角形相似,三角函数,切线的性质)
21
统计图表(折线统计图,扇形统计图,统计表)
24
对重要全等模型“手拉手”不熟悉,很难发现如何构造全等三角形,倒角证明三角形全等也是本体的难点
25
题目没读懂,没有理解“新定义”的关键是到原点的距离要小于半径的2倍
22
操作与探究(旋转,从正方形到等边三角形的变式,全等三角形)
解答题三
23
代数综合(二次函数的性质,一次函数的图像对称,数形结合思想,二次函数解析式的确定)
24
几何综合(等边三角形,等腰指教==直角三角形,旋转全等,对称全等,倒角)
25
代几综合(“新定义”特殊直角三角形的性质,圆,特殊角三角函数,数形结合
1.题型与题量
2.考查的内容及分布
3.每道题目所考查的知识点
题型

2024年中考数学试卷分析报告河北

2024年中考数学试卷分析报告河北

2024年中考数学试卷分析报告河北引言本文档将对2024年河北地区中考数学试卷进行全面分析。

通过对试卷难度、题型分布以及试题内容的详细探讨,旨在帮助考生和教师更好地了解此次考试的特点和趋势,为今后的备考和教学提供有益参考。

试卷概述本次数学试卷共分为卷Ⅰ和卷Ⅱ两部分,满分分值为120分。

试卷共计6道大题,包括选择题、填空题、解答题和应用题。

下面将对各大题进行分析。

选择题选择题在本次试卷中占据了较大的比例。

共有15个小题,每题4分,共60分。

在题目设置上,本次试卷突出了对基础知识和基本技能的考查。

选择题主要涉及对数、代数、几何和概率等各个知识点的应用能力。

其中,对于平面直角坐标系、三角形、立体几何以及函数的应用题较多。

填空题填空题在本次试卷中占据了一定比例。

共有8个小题,每题4分,共32分。

填空题主要考查学生对数学知识点的掌握程度和计算技巧的熟练运用。

试题内容涉及有理数、整式、分式、一次函数等各个知识点的应用。

题目设置较为灵活,既有单步计算的简单题目,也有需要多项知识点综合运用的复杂题目。

解答题解答题在本次试卷中占据了较大比例。

共有8个小题,每题8分,共64分。

解答题主要考查学生的问题分析和解决能力,要求学生对所学知识进行深入思考,并进行合理的结构化表达。

试题内容侧重于函数、方程、不等式、统计与概率等知识点的综合运用和解决实际问题的能力。

应用题应用题在本次试卷中占据了一定比例。

共有3个小题,每题12分,共36分。

应用题主要考查学生将数学知识应用于解决实际问题的能力。

本次试卷的应用题设置较为贴近现实生活,涉及到了生活、工作和社会等方方面面。

题目设置灵活,既有传统的应用题形式,也有情境设置或图表分析的题目。

知识点分布本次数学试卷的题目涉及了数学的各个知识点。

以下是各大题中知识点的分布情况:•选择题:涉及了数、代、几、概等各个知识点,其中代数和几何的题目比例较高。

•填空题:主要涉及了整式、有理数和函数等知识点。

中考数学试卷分析(通用版)

中考数学试卷分析(通用版)

中考数学试卷分析一、数学试卷命题思路及试题结构特点试卷整体结构、基本题型、题量、难度及赋分办法基本符合学生实际情况,学生反映情况良好。

试卷的试题保持了注重考查基础知识、基本技能和数学思想方法的传统,做到了重点知识重点考的特色,并对应用数学的能力、综合运用数学知识分析问题、解决问题的能力做了重点的考查,适当考查了探索性试题。

为中考复习奠定了一定的基础,在面向全体学生打好共同基础的同时也给学有余力的学生留有充分发挥个人数学才能的空间。

同时对我校九年级数学教学具有一定的导向作用。

命题思路:贯彻《课程标准》的要求,试题源于课本,并适当拓宽加深,试题的编排具有起点低、坡度缓、难点分散等特点。

体现了对初中数学基础知识、基本技能和以思维为核心的数学能力的考查。

试卷分为选择、填空、解答题三个大题,共24题,满分120分。

1、填空题、选择题这部分试题在一定的广度和较浅的深度上重点考查数学基础知识、基本技能和基本数学方法。

并注意到适当增加思维量及运算量,考查学生的数学素质、思维品质、探索精神和学习能力。

特点:试题基本源于课本,既注意到知识的覆盖面,更重视了数学知识的内在联系,在一定程度上考查了知识的小综合能力和数学思想方法的运用。

试题在立意平淡中见精神,考查了九年级数学中最基础的部分。

个别题目的解答可以应用不同的方法,各种方法又有优劣之分,考生的差距不仅是会不会解,还有解题速度的快慢,即通过相对难度将考生加以区分。

其导向功能是:要求考生不仅要记住知识的结论,更要把握住概念、结论、方法的实质。

2、解答题考查学生综合运用所学数学知识分析、解决问题的能力,试题对考生应用数学的意识、探索、创新意识都提出了较高的要求。

对观察、分析、综合、概括能力以及推理计算能力的考查,体现了试题“高跷尾”的特点。

三、存在的主要问题及对策1,对初中数学中的概念、法则、性质、公式、的理解、存储、提取、应用均存在明显的差距。

不理解概念的实质,不理解知识形成产生过程,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致运算、推理发生错误。

河北中考数学试卷结构及分值比例分析

河北中考数学试卷结构及分值比例分析
25
题目没读懂,没有理解“新定义”的关键是到原点的距离要
小于半径的2倍
3.每道题目所考查的知识点
题型


考查知识点
1
科学记数法
选择
2
有理数的概念(倒数)

3
概率
4
平行四边形
5
相似三角形
6
轴对称,中心对称
7
平均数
8
圆中的动点的函数图像
9
因式分解(提公因式法,公式法)
填空
10
抛物线的解析式

11
矩形,中位线
12
函数综合找规律(循环规律)
13
三角形全等证明
14
实数运算(0次幕,-1次幕,绝对值,特殊三角形)
河北中考数学试卷结构及分值比例分析
一,内容设置
初中数学6册课本,难易比例5:32
二,试题的基本结构
整个试卷五道大题,25个题目,考试时间120分 钟,总分120分,其中选择题共8道,共32分,填空 题共4道,共16分,解答题(包括计算题,证明题, 应用题和综合题)共13道,共72分。
1.题型与题量
2.考查的内容及分布
解答
题三
23
代数综合(二次函数的性质,一次函数的图像对称,数
形结合思想,二次函数解析式的确定)
24
几何综合(等边三角形,等腰指教==直角三角形,旋转 全等,对称全等,倒角)
25
代几综合(“新定义”特殊直角三角形的性质,圆,特 殊角三角函数,数形结合
二.重难点易错点点评
易错题目
易错
题号
错误原因
8
易被圆的对称性误导,从而误认为函数图象为对称图像

河北中考数学试卷结构及分值比例分析

河北中考数学试卷结构及分值比例分析
12
前两年均为对称规律,形成思维定势,不太容易抓住本质规律(循环规律)
17
分式方程应用题忘记检验
难题
难题题号
不得分原因
22
没瞧懂题,不理解图2的作用就是什么
Hale Waihona Puke 23利用对称进行数形结合练得比较少,抓不住第(3)问的关键
24
对重要全等模型“手拉手”不熟悉,很难发现如何构造全等三角形,倒角证明三角形全等也就是本体的难点
3、每道题目所考查的知识点
题型
题号
考查知识点
选择题
1
科学记数法
2
有理数的概念(倒数)
3
概率
4
平行四边形
5
相似三角形
6
轴对称,中心对称
7
平均数
8
圆中的动点的函数图像
填空题
9
因式分解(提公因式法,公式法)
10
抛物线的解析式
11
矩形,中位线
12
函数综合找规律(循环规律)
解答题一
13
三角形全等证明
14
实数运算(0次幂,-1次幂,绝对值,特殊三角形)
15
解一元一次不等式组
16
代数式化简求值(整体代入)
17
列分式方程解应用题
18
一元二次方程(判别式,整数根)
解答题二
19
梯形中的计算
20
圆中的证明与计算(三角形相似,三角函数,切线的性质)
21
统计图表(折线统计图,扇形统计图,统计表)
22
操作与探究(旋转,从正方形到等边三角形的变式,全等三角形)
解答题三
河北中考数学试卷结构及分值比例分析
一,内容设置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

今年的中考数学科目已于2014年6月22日上午11点结束。

总体来说,本次数学考试注重基础、稳中求新。

一、试卷总体特点:
今年的中考数学卷在结构形式上与去年非常接近,今年的数学试卷结构依然是选择题(16题42分)、填空题(4题16分)、解答题(6题66分),与去年一致。

但在考查内容和角度上却与往年有了很大不同。

考查内容上,各章节所占分值比例如下图:
考查方式上有一下特点:
首先应用大题小题化,近年来全国各地中考题和模拟题压轴题必是函数应用题,而今年中考没有惯常的函数应用大题,而是将它涵盖在小题里面,以小题的形式出现。

第二、核心考点解方程、解不等式、四边形、圆、函数与图形结合、动态几何等今年均未做特别的考查,仅仅是以小题的形式带过,即便是最后压轴题也基本未涉及核心考点。

第三、将数学知识与生活常识相结合(最后一道大题),考查学生的逻辑思维能力、运用数学思想解决生活实际问题的能力。

与以往考查学生知识相比,本次考试在考查学生知识的同时非常重视对学生能力的考查。

二、试卷具体考查特点:
三、归类分析
总的来说,试卷整体难度不是太大。

在本次考试中,基础型题目占到65分,占试卷总分的54%;中等难度题目分值占到25分,占试卷总分的21%;中低档难度的题目占到90分,达到试卷总分的75%。

试题分布呈现前易后难,今年的客观题基本都是基础题型,而最后的两道大题则难度大大增加,使试卷在重视基础知识掌握的同时,有了一定的提升拔高功能,尤其注重对学生逻辑思维和推理能力的考查!具体主要有以下几个特点:
➢基础类题型
本次中考回归基础,重视基本概念、性质、定理和运算的考查,内容涵盖了数与式、方程与不等式、函数、角、相交线与平行线、三角形、四边形、圆、变换、坐标、证明和概率与统计。

试题考查学生对基础知识和基本技能的理解和掌握。

但试题越是简单、越是熟悉,越要倍加慎重。

很多学生看题犹如“走马观花”,更不思考命题旨意,只凭自己主观意志做题,待到走出考场才恍然大悟,但为时已晚矣。

考试遇到此类题时能做到不因审题而失分才是关键。

➢提升类题型
第25题是将圆的知识与折叠变换有机地结合起来,注重了对学生综合能力的考查。

这道题共三问,11分,该题难住了很多考生,考试结束后,十多位平时成绩在90分左右的考生
反映,均没能完成这道大题。

第26题是精心设计的压轴题,题目发掘并串联了一次函数,利用方程解决实际问题中的行程问题、不等式及分类讨论的数学思想方法等知识,要完成本题学生需要有较强的学习、迁移、分析、变形应用、综合、推理和探究能力,该试题有较好的区分度。

➢创新类题型
第12题源于学生学习中熟悉的尺规作图,以巧妙的问题设计把中垂线的性质定理进行了考查,而中垂线的性质定理及判定定理也是今年考试说明中新增加的内容。

第14题,利用已经给出的新定义的运算模型,将所给数据带入模型,从而转化为学生熟悉的反比例函数,同时在这里渗透了分类讨论的数学方法。

第21题的呈现方式新颖,以挑错误的形式给出,设计的问题巧妙地考查了用配方法解一元二次方程,与考试说明在方程与方程组这部分新增加的内容是吻合的。

第22题,是本卷的亮点题,将统计知识与三角函数进行了有机的整合,考查了学生的知识迁移能力。

第24题是一个二次函数的纯数学问题,设计问题从多个角度考查了二次函数的图象及性质等核心的数学知识,体现了试卷很好的效度。

综上所述,今年的试卷题型结构与去年相比,稳中有变,注重数学在生活中的应用。

但整套试题考查的内容都在《课程标准》和《考试说明》所规定的范围之内。

所有的试题,从展现方式和解决方法上,也都较好地体现了《课程标准》的要求。

内容分布较好的体现了《考试说明》对数与代数、图形与几何、统计与概率各领域考查所占比例的要求。

许多试题的素材源于《考试说明》,但又不是照搬和简单的改造,而是对这些素材深入的进行挖掘、引深和创新,以崭新的方式展现,在知识和方法的交汇处进行有机的巧妙整合,从独特的角度切入,问题设置巧妙,试题新颖,并注重了对数学本质问题的考查。

唐诗宋词元曲经典名句大全
1.至今思项羽,不肯过江东。

(李清照《夏日绝句》) 2.孤舟蓑笠翁,独钓寒江雪。

(柳宗元《江雪》) 3.野径云俱黑,江船火独明。

(杜甫《春夜喜雨》) 4.江南好,风景旧曾谙。

日出江花红胜火,春来江水绿如蓝。

能不忆江南?(白居易《忆江南》) 5.竹外桃花三两枝,春江水暖鸭先知。

(苏轼《题惠崇〈春江晚景〉》) 6.朝辞白帝彩云间,千里江陵—日还。

(李白《早发白帝城》) 7.孤帆远影碧空尽,唯见长江天际流。

(李白《黄鹤楼送孟浩然之广陵》) 8.月落乌啼霜满天,江枫渔火对愁眠;(张继《枫桥夜泊》)
9.寒雨连江夜人吴,平明送客楚山孤。

(王昌龄《芙蓉楼送辛渐》) 10.正是江南好风景,落花时节又逢君。

(杜甫《江南逢李龟年》)
诗中云
1.明月出天山,苍茫云海间。

(李白《关山月》)
2.众鸟高飞尽,孤云独去闲。

(李白《独坐敬亭山》)
3.只在此山中,云深不知处。

(贾岛《寻隐者不遇》)
4.野径云俱黑,江船火独明。

(杜甫《春夜喜雨》)
5.月下飞天镜,云生结海楼。

(李白《渡荆门送别》)
6.千里黄云白日曛,北风吹雁雪纷纷。

(高适《别董大》)
7.朝辞白帝彩云间,千里江陵一日还。

(李白《早发白帝8.远上寒山石径斜,白云深处有人家。

(杜牧《山行》) 9.黄河远上白云间,一片孤城万仞山。

(王之涣〈凉州词》) 10.瀚海阑干百丈冰,愁云惨淡万里凝。

(岑参《白雪歌送武判官归京》)
诗中别1.与君离别意,同是宦游人。

海内存知己,天涯若比邻。

(王勃《送杜少府之任蜀州》) 2.又送王孙去,萋萋满别情。

(李白《送友人》) 3.春草明年绿,王孙归不归?(白居易《赋得古原草送别》) 4.渭城朝雨浥轻尘,客舍青青柳色新。

劝君更尽一杯酒,西出阳关无故人。

(王维《送元二使安西》) 5.寒雨连江夜入吴,平明送客楚山孤;(王昌龄《芙蓉楼送辛渐》) 6.莫愁前路无知己,天下谁人不识君。

(高适《别董大》) 7.桃花潭水三千尺,不及汪伦送我情。

(李白《赠汪伦》) 8.孤帆远影碧空尽,唯见长江天际流。

(李白《黄鹤楼送盂浩然之广陵》) 9.山回路转不见君,雪上空留马行处。

(岑参《白雪歌送武判官归京》) 10.长亭外,古道边,芳草碧连天。

晚风拂柳笛声残,夕阳山外山。

天之涯,海之角,知交半零落。

一觚浊酒尽余欢,今宵别梦寒。

相关文档
最新文档