第2课时 余角和补角
余角和补角教案
余角和补角教案下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!作为一名老师,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。
来参考自己需要的教案吧!下面是小编为大家整理的余角和补角教案,希望对大家有所帮助。
余角和补角教案1[教学目标]1、在具体情境中认识余角和补角的概念,并会运用解题;2、经历观察、操作、探究、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的信心。
[教学重点与难点]1、教学重点:互为余角、互为补角的概念;2、教学难点:应用方程的思想解决有关余角和补角的问题。
[教学准备]多媒体课件、纸板、三角尺[教学过程]一、情境引入1、带领同学们领略意大利的比萨斜塔的壮观景象,并思考:斜塔与地面所成的角度和它与竖直方向所成的角度相加为多少度?(课件演示)2、(动手操作1)拿出一个直角纸板,将直角剪成两个角,∠1和∠2,问:∠1和∠2的和为多少度呢?∠1+∠2=90°,我们把具有这种关系的∠1、∠2称为互余,其中∠1叫做∠2的余角,∠2叫做∠1的余角。
请同学们根据老师的演示试着说出余角的定义。
(设计意图:通过比萨斜塔的现实情境和剪纸这一实际操作引出余角概念,既调起学生的兴趣,又直观易懂。
)二、新知探究1、余角的定义:如果两个角的和为90°(直角),我们就称这两个角互为余角,简称互余。
2、(动手操作2)(1)拿出和的两个角的纸板拼成一个直角,问:“这两个角互余吗?”把其中一个角移开,“这两个角还互余吗?”注意事项1:两角互余只与度数有关,与位置无关。
《第2课时角的比较》示范教学方案
第四章 直线与角4.5 角的比较与补(余)角第2课时 角的比较一、教学目标1.掌握两个角互为余角和互为补角的概念.2.理解互余与互补的角的性质.3.培养分析问题和解决问题的能力,以及运算能力.二、教学重点及难点重点:余角和补角的概念及其性质.难点:互余、互补角的正确判断.三、教学用具多媒体课件.四、相关资源《余角和补角》微课.五、教学过程【课堂导入】请同学们事先准备好的直角纸板,用剪刀把直角从顶点剪开,思考:这两个角有什么关系?再把平角纸板并用剪刀把平角从顶点剪开,思考:这两个角有什么关系?一边合作学习一边让学生说出自己的方法:可以测量,也可以剪下来拼等等,学生的方法只要合理就应鼓励.教师用多媒体演示∠1+∠2与Rt ∠AOB 重合,再移动一角,问∠1+∠2与Rt ∠AOB 相等吗?同样∠α+∠β与∠AOB 重合,再移动一角,问∠α+∠β与∠AOB 相等吗?通过上面的演示,我们看到有时两个角的和是90°,有时两个角的和是180°. αβA OB1 2 AO B设计意图:从活动实践导入本节课的知识,使新知识更加容易理解.【新知讲解】1.余角和补角的定义:互为余角定义:如果两个锐角的和是一个直角,那么这两个角互为余角.简称互余. 互为补角定义:如果两个角的和是一个平角,那么这两个角互为补角.简称互补. 注意:要特别向学生指出:互余与互补角是研究两个角的关系,单独一个角不能说是余角或补角,就像称呼两兄弟一样,而且不会随位置的改变.2.余角和补角的性质:画一画:如图:已知∠AOC ,作出它的余角和补角(只要满足条件的角都可以).教师提出问题:你从中发现了什么?(学生进行小组讨论)师生共同总结出:同角的余角相等.同理可推出:同角的补角相等如果两个角相等,那么它们的余角和补角有什么关系?想一想:如图,如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?由此得到补角和余角的性质:同角或等角的余角相等.同角或等角的补角相等.注意:学生往往对“同角”,“等角”的认识不太清楚,在“同角”的情况时说“等角”,在“等角”的情况时说“同角”,因此要对学生强调指出:“等角是相等的角”,而“同角是同一个角”.另外,这个性质在目前的应用还不太多,但今后的应用是非常广泛的.设计意图:讲解过程强调提问思考的过程,让学生掌握余角和补角的性质.O C AO CA本图片是微课的首页截图,本微课资源讲解了余角与补角的概念及其它们的性质,并通过讲解实例与练习,巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】余角和补角.【典型例题】例1.已知一个角的补角是这个角的余角的4倍,求这个角的度解:设这个角为x度,则这个角的余角是(90–x)度,补角是(180–x)度由题意,得180–x=4(90–x)解方程,得x=60(度)所以这个角的度数为60°例2.如图,已知:点O为直线AB上一点,OC是∠AOB的平分线,OD在∠COB内,看图填空(填“<”“>”“﹦”)(1)∠AOD______∠AOB∠AOD______∠DOB∠AOC______∠BOC(2)∠AOD的补角是______ ∠COD的余角是______∠BOD的补角是______ ∠AOC的补角是______答案:(1)<,>,=(2)∠BOD,∠BOD,∠AOD,∠BOC设计意图:通过练习,巩固学生对补角与余角的含义的理解.【随堂练习】1.已一个角的补角比它的余角的2倍多12°,求这个角解:设这个角为∠α,它的补角为(180°-∠α),根据题意,得(180°-∠α)=2(90°-∠α)+12°解这个方程∠α=12°,即这个角为12°2.已知∠1=20°,∠2=30°,∠3=60°,∠4=150°,则∠2是____的余角,_____是∠4的补角.答案:∠3,∠23.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=______°,依据是_______.答案:40°,同角的余角相等4.如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM,ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC得∠AON=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.设计意图:通过学生的练习,使教师及时了解学生对补角与余角的认识以及在对角的求解过程中的应用情况,以便教师及时对学生进行矫正.六、课堂小结教师引导学生进行总结,谈谈本节课你学到了什么?(由学生来完成)本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。
2、余角和补角(第二课时)
《余角和补角》教学案
合作交流探索实验
引出对顶角的性质
新知应用3、提出:什么叫对顶
角?对顶角是怎样产
生的?引发学生的思
考。
4、根据学生回答给出并
解释对顶角的概念。
探索对顶角的性质:
提出问题:
通过对概念的学习,
我们知道对顶角是一对
有特殊位置关系的角。
它们的大小有什么关系
呢?
程序:实验—观察—猜
想—验证
1、巡视学生的实验情况
并给予指导。
2、引导学生用说理的方
法说明结论的正确
性。
因为:∠1+∠4=180°
∠2+∠4=180°
所以:∠1=∠2
理由:同角的补角相等。
巩固练习:
1、课本P43想一想
3、在教师的引导下思考
对顶角产生的条件,
并尝试用语言描述对
顶角的概念。
1、草稿草上画出两条相
交直线并用量角器测
量它们的大小关系。
2、从以上实验猜想中发
现对顶角性质。
3、试用说理方法说明结
论的正确性。
1、个人、小组合作相结
合完成练习。
3、通过对概念的描
述培养学生有条理
的表达能力。
1、通过学生动手操
作的探索活动过
程,加深对性质的
理解。
2、通过经历实验—
观察—猜想—验证
的活动过程,初步发
展学生合情推理和
演绎推理的能力,为
后段的推理打基础。
1、通过对第1题的
练习,帮助学生巩
固对顶角的概念。
余角和补角PPT课件(华师大版)
3 (中考·厦门)如图,在三角形ABC中,∠C=90°,点 D,E分别在边AC,AB上.若∠B=∠ADE,则下列 结论正确的是( ) A.∠A和∠B互为补角 B.∠B和∠ADE互为补角 C.∠A和∠ADE互为余角 D.∠AED和∠DEB互为余角
4 (中考·绥化)将一副三角尺按下列方式进行摆放,∠1, ∠2不一定互补的是( )
总结
“同角(或等角)的余角相等”“同角(或 等角)的补角相等”的实质是等量代换,只不 过在特定的背景下使用起来更便利罢了.
1 如图,有两堵围墙,有人想测量地面上所形成的 ∠AOB的度数,但人又不能进入围墙,只能站在 墙外,请问该如何测量?
中∠1与∠2的 关系是( ) A.互补 B.互余 C.相等 D.无法确定
导引:因为∠1+∠2=180°,∠2+∠3=180°, 所以∠3=∠1=50°.故选A.
总结
由∠1、∠3都与∠2互补,应想到用补角 的性质,即同角的补角相等来解题.
1 若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关 系是( )
A.互余 B.互补 C.相等 D.∠α=90°+∠γ 2 如图,直线AB,CD交于点O,因为
1.余角的性质:同角的余角相等,即:若∠A+∠B= 90°,∠A+∠C=90°,则∠B=∠C.等角的余角相 等,即:若∠A+∠B=90°,∠D+∠C=90°,∠A =∠D,则∠B=∠C.
知识点
2.补角的性质:同角的补角相等,即:若∠A+∠B= 180°,∠A+∠C=180°,则∠B=∠C.等角的补角 相等,即:若∠A+∠B=180°,∠D+∠C= 180°,∠A=∠D,则∠B=∠C.
∠1+∠3=180°,∠2+∠3=180°, 所以∠1=∠2的根据是( ) A.同角的余角相等 B.等角的余角相等 C.同角的补角相等 D.等角的补角相等
4.3.3余角和补角 (第2课时)
教师:提出问题,引导、画图并举例 说明. 学生:根据已有知识思考、回答、认 识理解,学会画图,认识始边,终边. 总结:谁在前谁为始边, 后为终边, 如: 东偏南 60°,即东为始边,向南旋转 确定角的度数为 60°.不能弄错角.
尝 中,发现灯塔 A 在它南偏 东 60°的方向上。同时,在它北偏东 40°、南偏 西 10°、西北方向上又分别发现了客轮 B、货轮 C 和海岛 D。仿照表示灯塔方位的方法,画出表示客 轮 B 、货轮 C 和海岛 D 方向的射线. 解:
自 主 探 究
【问题1】 如图: ∠1 与∠2 互补, ∠3 与∠4 互补 , 教师:提出问题, 如果∠1=∠3,那么∠2 与∠4 相等吗?为什么? 学生:尝试分析,怎样说明、验证∠2 与∠4 的关系?组内讨论、分析. 师:根据学生阐述情况,引导学生证 明得出结论. 2 1 说明:验证方法是多样的,注意倾听 分析:怎么验证∠2 与∠4 相等?测量、叠合、理 学生的方法,评判、鼓励. 论验证. ( 组织学生讨论解决。 ) 结论:补角性质:等角(或同角)的补角相等 【问题 2】 如图: ∠1 与∠2 互余, ∠3 与∠4 互余 ,
认识角的互余、互补关系及其性质,确定方位 1.通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质. 2.方位角的实际应用.
【教学环节安排】
环 节 情 境 引 入 教 学 问 题 设 计 教学活动设计
教师提出问题,学生回顾回答.为本 节课的学习做准备.
【问题】 什么是互余的角?什么是互补的角?两 角互补,两角互余与位置有关吗?
教师:出示例 4,引导学生分析,板 演出所求方位角并标明. 学生:理解,认识,尝试画出. 师:出示题目,鼓励学生分析,写出 过程.
解:
展 示 作 业 设 计
余角和补角的定义课件
摄影
在摄影中,为了获得更好的拍摄 角度和构图,摄影师会运用补角
的概念来调整相机的角度。
余角和补角的综合应用实例
桥梁设计
在桥梁设计中,为了确保桥梁的稳定 性和安全性,需要精确地计算不同部 分的角度。余角和补角的综合运用可 以帮助工程师更好地设计和建造桥梁 。
道路规划
在道路规划和设计中,为了确保道路 的顺畅和车辆的安全行驶,需要计算 和调整道路的角度。余角和补角的运 用可以帮助设计师更好地完成这项任 务。
THANK YOU
余角和补角的定义课件
• 余角和补角的定义 • 余角和补角的性质应用 • 余角和补角的计算方法 • 余角和补角的特殊情况 • 余角和补角的实际应用
01
余角和补角的定义
余角的定义
总结词
余角是两个角的度数之和为90度。
总结词
补角是两个角的度数之和为180度。
详细描述
如果两个角的度数之和为90度,则这两个 角互为余角。例如,如果一个角是45度, 那么与它互为余角的另一个角就是45度。
角度的减法计算
利用补角的Leabharlann 质,可以将一个角度减去另一个角度,得到一 个新角度。
03
余角和补角的计算方法
余角的计算方法
定义
如果两个角的度数之和为90°,则这两个角互为余 角。
计算公式
余角 = 90° - 已知角。
举例
已知角为45°,则其余角 = 90° - 45° = 45°。
补角的计算方法
定义
总结词
余角的定义是两个角的度 数之和为90度。
详细描述
如果两个角的度数之和为 90度,则这两个角互为 余角。例如,如果一个角 是30度,那么与它互为 余角的另一个角就是60 度。
4.3.2第2课时余角与补角教学设计2024-2025学年湘教版数学七年级上册
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的余角与补角知识点和技能。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
4. 教室布置:根据教学需要,布置教室环境。将教室分为讲台区、学生座位区、分组讨论区和实验操作台等区域。讲台区用于教师授课和展示教学资源;学生座位区为学生听讲和自主学习的地方;分组讨论区用于学生分组讨论和互动交流;实验操作台用于学生进行实验操作和观察。
5. 教学工具:准备投影仪、计算机、音响等教学工具,以便教师在课堂上展示多媒体资源,提高教学效果。
4.3.2 第2课时 余角与补角教学设计2024-2025学年湘教版数学七年级上册
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教学内容分析
本节课的主要教学内容为湘教版数学七年级上册第4.3.2节第2课时“余角与补角”。教学内容主要包括:
1. 理解余角与补角的概念,掌握求一个角的余角与补角的方法。
9. 教学评价:制定本节课的教学评价方案,包括对学生的课堂表现、作业完成情况、实验操作能力、分组讨论成果等方面的评价。通过评价,了解学生对本节课知识的理解和掌握程度,为后续教学提供参考。
四、教学资源准备
五、教学实施过程
1. 课前自主探索
教师活动:
- 发布预习任务:教师通过在线平台或班级微信群,发布预习资料,如PPT、视频、文档等,明确预习目标和要求。
学生活动:
- 听讲并思考:学生认真听讲,积极思考老师提出的问题。
数学课件余角和补角
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。
《余角和补角》说课稿(精选6篇)
《余角和补角》说课稿《余角和补角》说课稿(精选6篇)作为一名辛苦耕耘的教育工作者,编写说课稿是必不可少的,借助说课稿可以更好地组织教学活动。
那么问题来了,说课稿应该怎么写?下面是小编收集整理的《余角和补角》说课稿,欢迎阅读与收藏。
《余角和补角》说课稿篇1一、说教材1、教材的地位和作用本节教材是华东师大版标准实验教科书初中数学七年级第四章的内容。
一方面,这是在学习了角的大小比较的基础上,对角之间关系的进一步深入和拓展;同时又为今后证明角的相等提供了一种依据和方法,起着承前启后的作用。
本节教材的编排特点是从生活中的实际问题体验数学问题,归纳数学理论,同时利用理论解决实际问题。
2、学情分析学生学习缺乏主动性,独立思维能力较差,动手操作能力相对稍强,能在教师引导下低起点、小步距进行探究。
整体逻辑思维能力正在从经验型逐步向理论型发展,初步具备了观察、思维以及想象的学习能力,爱发表见解,在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
二、教学目标知识目标:了解余角、补角的概念,掌握余角和补角的性质。
能力目标:使学生初步接触和体会演绎推理的方法和表述,使学生能用方程思想来处理图形的数量关系。
情感目标:通过探索互余、互补角的性质,培养学生积极的情感态度,促进良好的数学观的养成。
教学重难点教学重点:余角与补角的概念及性质教学难点:余角与补角的性质应用三、教学教法1、教法:本节课采用“学案导学法”教学。
这种教学方法遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,变被动学习为主动学习,并同时直观动态演示以突破学习难点。
2、学法:教师将预先编写好的导学学案,在课前发给学生,根据所教班级的学生的特点,采用“参照学案,自主阅读,独立思考,提出疑问,分组探究,合作学习,知识总结”的学习方式。
3、教学手段:采用多媒体课件辅助教学,增加课堂容量,提高教学效果。
余角、补角的概念和性质 教学课件 衡中内部资料
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
活动4:练习应用 练习:教材139页练习2,3,4题.
活动5:小结与作业
小结:谈谈你本节课的收获. 作业:习题4.3第11,13题.
本堂课先介绍了余角的概念以及互为余角的性质,再通过
类比的方法得出补角的概念以及互为补角的性质.让学生
清楚的明白互为余角与补角的区别和联系,使知识系统化
和完整化.最后一道题目的设计既提高了学生的兴趣,又
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
人教版七年级上数学《余角和补角》图形初步认识PPT教学课件(第2课时)
北
西
O 60 °
东 A
南
探究新知
射线OA的方向就是南偏东60°,即灯
塔A所在的方向.
D
北
射线OB的方向就是北偏东40°,
B
即客轮B所在的方向.
45° 40°
西
O
东
射线OC的方向就是南偏西10°,
60°
即货轮C所在的方向.
10°
C
A
南
射线OD的方向就是北偏西45°,即海岛D所在的方向.
探究新知
用方位角确定物体的画法步骤: ①先找出中心点,然后画出方向指标; ②把中心点和目的地用线连接起来; ③度量向北的射线和视线(中心点和目的地的连线)夹角.
问题情境
如图所示,打台球时,选择适当的方向用白球击打红球,反弹后的红球 会直接入袋,此时∠1=∠2, 其中∠FDC=90º,那么各个角与∠1有什 么关系?
问题情境
E
D
F
1
2
A
B
C
有的角与∠1的和等于90º,例如( 有的角与∠1的和等于180º,例如(
); ∠ADC
).
∠ADF
探究新知
余角的定义
4.3.3 余角和补角 第2课时
知识回顾
两角间的 数量关系
互余
1 2 90
(1 90 2)
互补
1 2 180 (1 180 2)
对应图形
性质 同角或等角的余角相等 同角或等角的补角相等
学习目标
1.了解方位角的概念. 2.能用方位角知识解决一些简单的实际问题.
课堂导入
成语“四面八方”怎样理解? 四面——东、西、南、北. 八方——东、西、南、北、东北、东南、西北、西南.
4.3.3.1 余角、补角的概念和性质
6x 4x 1 1 2
1 10 x 2, 即x 5
∴
例:解下列方程: 1.5 x 1.5 x 0.6 2
0.5
0.5
注意:如果分母
解:原方程可化为:
5x 2
1.5 x 2
去分母, 得5x –(1.5 - x)= 1 去括号,得 5x – 1.5 + x = 1 移项, 得 5x + x = 1 + 1.5
4.3
4.3.3
第1课时
角
余角和补角(2课时)
余角、补角的概念和性质
在具体的现实情境中,认识一个角的余角和补角,掌握
余角和补角的性质.
重点 认识角的互余、互补关系及其性质. 难点 通过简单的推理,归纳出余角、补角的性质,并 能用规范的语言描述性质.
活动1:创设情境,导入新课
1.用量角器量出图中的两个角的度数,并求出这两个
发散了他们的思维,使其更好地理解了互余的意义.
第三章 一元一次方程的复习(一)
挑战记忆
1、什么是一元一次方程
(1)方程的两边都是整式(分母中不含未知数) (2)只含有一个未知数 (3)未知数的指数是一次.
练习:1.判断下列各式中哪些是一元一次方程?
(1) 5x=0 (4)x+y=5
√ ×
(2)1+3x
火眼金睛
下面方程的解法对吗?若不对,请改正 。 解方程
3x 1 4x 1 1 3 6
不对
去分母得 2(3x 1) 6 (4 x 1)
解:去分母,得 去括号,得 移项,得
2(3x 1) 1 4 x 1
6x 2 1 4x 1
余角与补角ppt
补角的定义与性质
补角是两个角的度数和为180度 补角的性质:互补两角之和为180度,两角互补为补角
逆余角也是补角
余角与补角的关系
互余角和互补角是 余角和补角的延伸
两角互余和两角互 补可以相互转化
余角和补角的区别 在于角度和位置不 同
02
余角和补角的性质和运用
余角和补角的性质
余角
余角和补角在建筑中的运用
建筑结构
在建筑结构中,利用余角和补角可以形成优美的几何图形。例如,古罗马的 万神庙穹顶采用了120度的补角,形成了完美的穹顶结构。
光学设计
在光学设计中,利用余角和补角可以制造出具有特定反射和折射效果的材料 。例如,某些玻璃窗在阳光下会产生一定角度的反射光线,形成特定的视觉 效果。
如果两个角的和等于90度,则 这两个角互为余角。
补角
如果两个角的和等于180度,则 这两个角互为补角。
性质总结
余角和补角是一对互为补角的 关系,即一个角的余角是90度 减去这个角的度数,而一个角 的补角是180度减去这个角的度
数。
余角和补角的运用
1 2
余角的运用
在几何中,可以通过将一个角分成两个相加等 于90度的角来计算角度。
06
复习与回顾
余角与补角的定义及性质回顾
总结词:重要基础
详细描述:回顾余角和补角的定义,以及余角和补角的基本性质。重点强调余角 和补角的表示方法,以及它们在数学和几何中的应用。
余角与补角的计算回顾
总结词:核心技能
详细描述:全面梳理余角和补角的计算规则,包括余角的度 数等于90度减去另一个角的度数,补角的度数等于180度减 去另一个角的度数。同时,强调在计算中需要注意的事项和 易错点。
余角和补角优秀教学设计教案
余角和补角优秀教学设计教案一、教学内容本节课选自《初中数学》教材第七章第二节,详细内容为余角和补角的概念及其应用。
主要包括:余角的定义、性质和计算;补角的定义、性质和计算;运用余角和补角解决实际问题。
二、教学目标1. 理解并掌握余角和补角的概念,能够辨别并计算各种角度的余角和补角;2. 能够运用余角和补角的性质解决实际问题,提高逻辑思维能力和解决问题的能力;3. 培养学生的合作意识,激发学习兴趣,提高数学素养。
三、教学难点与重点教学难点:余角和补角的性质及其应用。
教学重点:余角和补角的定义、计算及实际问题解决。
四、教具与学具准备教具:三角板、圆规、直尺、多媒体设备。
学具:练习本、铅笔、直尺、量角器。
五、教学过程1. 实践情景引入通过展示一个时钟,让学生观察并思考:当时钟的指针分别指向3和9时,两个指针之间的夹角是多少度?这个夹角与当时钟的指针指向12时,两个指针之间的夹角有何关系?2. 余角和补角的定义3. 余角和补角的性质引导学生通过观察、思考和讨论,发现余角和补角的性质:(1)互余的两个角的和为90度;(2)互补的两个角的和为180度;(3)互余或互补的两个角的乘积相等;(4)一个角的余角和补角的和等于这个角的2倍。
4. 例题讲解(1)已知一个角的度数,求它的余角和补角;(2)已知一个角的余角或补角,求这个角的度数;(3)已知两个互余或互补的角,求其中一个角的度数。
5. 随堂练习(2)已知一个角的余角为40度,求这个角的度数;(3)已知两个角的和为180度,求这两个角的补角。
六、板书设计1. 定义:余角:两个角的和为90度时,这两个角互为余角;补角:两个角的和为180度时,这两个角互为补角。
2. 性质:(1)互余角的和为90度;(2)互补角的和为180度;(3)互余或互补角的乘积相等;(4)一个角的余角和补角的和等于这个角的2倍。
3. 例题解答步骤及答案。
七、作业设计1. 作业题目:(2)已知一个角的补角为100度,求这个角的度数;(3)已知两个角的和为90度,求这两个角的余角。
2024年湘教版七年级数学上册 4.3.2 第2课时 余角和补角(课件)
30.17°
又因为 OC 是∠BOD 的平分线,
29.66°
所以∠COD
=
12∠BOD
=
1× 2
60.34° = 30.17°.
因此,∠COD 的度数为 30.17°.
练一练
3. 如图,已知 O 为 AD 上一点,∠AOC 与∠AOB 互
补,OM,ON 分别为∠AOC,∠AOB 的平分线,若
∠MON = 40°,试求∠AOC 与∠AOB 的度数.
同角(或等角)的余角相等.
5 4 6 (b)
典例精析 例1 如图,∠AOB 与∠BOD 互为余角,OC 是∠BOD 的平分线,∠AOB = 29.66°,求∠COD 的度数.
解:因为∠AOB 与∠BOD 互为余角,
所以∠BOD = 90° -∠AOB = 90° - 29.66° = 60.34°.
2. ∠3 与∠4 有什么数量关系?
∠3 +∠4 = 180°.
1
2
如果两个角的和等于一个直角 ( 90° ),那么说 这两个角互为余角 ( 简称互余 ).
如图,可以说 ∠1 是 ∠2 的余角,或∠2 是∠1的余 角,或∠1和 ∠2互余.
几何语言表示为: 若∠1 +∠2 = 90°, 则∠1与∠2互为余角
知识要点
3 4
如果两个角的和等于一个平角(180°),那 么说这两个角互为补角 ( 简称互补 ).
如图,可以说 ∠3 是 ∠4 的补角,或 ∠4是 ∠3 的 补角,或 ∠3 和 ∠4 互补.
几何语言表示为: 若∠3+∠4 = 180°, 则∠3 与∠4 互为补角
练一练 1. 图中给出的各角,哪些互为余角?
x°(0<x<90) (90-x)° (180-x)°